
Bios 740- Chapter 9. Image Segmentation
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Image Segmentation
Image segmentation, defined as the partition of the entire image into a set of regions, aims to make anatomical or 
pathological structures changes clearer in images. Image segmentation tasks can be classified into three categories: 
semantic segmentation, instance segmentation and panoptic segmentation.

• Semantic segmentation is a pixel-level classification that assigns corresponding categories to all the pixels in an image.

• Instance segmentation needs to identify different objects within the same category.

• Panoptic segmentation presents a unified image segmentation approach where each pixel in a scene is assigned a 
semantic label and a unique instance identifier.

Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., & Girdhar, R. (2022). Masked-attention Mask Transformer for Universal Image Segmentation (No. arXiv:2112.01527). arXiv. 

https://doi.org/10.48550/arXiv.2112.01527

https://doi.org/10.48550/arXiv.2112.01527


Mathematical Formulation
Image segmentation aims to assign semantic labels to image regions.

 Formally, this is a mapping problem. 

 𝑓 is typically implemented as a deep neural network.

 .
Prompts are used in special settings:

 Interactive segmentation: user clicks or bounding boxes

 Vision-language models: textual prompts

 Prompts guide the model to focus on relevant regions or

semantics

 f : X → Y models the relationship between input 

and  segmentation output

 Typically implemented using deep models like U-

Net,  DeepLab, or Vision Transformers



Medical Image Segmentation
In biomedical field, image segmentation often plays a key role in computer-aided diagnosis and smart 
medicine. There are three main challenges in medical imaging segmentation:

❖Limited image samples per specific disease – The scarcity of annotated medical images for certain 
diseases restricts the performance of segmentation methods.

❖Complex lesion characteristics – Similar intensity, variable shapes, and dynamic positions of lesions make 
accurate segmentation difficult.

❖Image acquisition artifacts – Noise, spatial aliasing, and sampling artifacts lead to unclear or disconnected 
boundaries in structures of interest.



Image Segmentation before Deep Learning
❖Early segmentation methods were model-driven.

❖  Common techniques included:

 Thresholding

 Histogram mode seeking

 Region growing and merging

 Spatial clustering

 Energy diffusion

 Super-pixel representation

 Conditional and Markov Random Fields (CRFs & MRFs)

❖Relied on prior knowledge and handcrafted features.

Masood, S., Sharif, M., Masood, A., Yasmin, M., & Raza, M. (2015). A Survey on Medical Image Segmentation. Current Medical Imaging Reviews, 11(1), 3–14. 

https://doi.org/10.2174/157340561101150423103441

Advantages:

 Intuitive and interpretable

 Computationally efficient

Limitations:

 Poor generalization to complex structures

 Sensitive to noise and intensity variation

 Struggled with diverse anatomical variability

https://doi.org/10.2174/157340561101150423103441


Rise of  Deep Learning in Segmentation
In recent years, deep learning has become the dominant paradigm in medical image segmentation.

Core architecture types:

 Convolutional Neural Networks (CNNs) – foundational for early breakthroughs

 U-Net and its variants – encoder-decoder architecture specifically designed for biomedical segmentation

 Vision Transformers (ViT, Swin) – exploit long-range dependencies for better global context

Benefits of Deep Learning:

 Learns hierarchical and task-specific features automatically

 Capable of capturing complex anatomical structures

 Handles multimodal inputs (e.g., MRI + CT) and 3D volumetric data

 Integrates with attention mechanisms and prior knowledge via hybrid models

Deep learning methods typically outperform 

traditional approaches by 10–20 percentage 

points in Dice coefficient, especially on 

complex regions and harder substructures.
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Semantic Segmentation: The Problem

Paired training data: for each 

training image, each pixel is labeled 

with a semantic category.

Impossible to classify without context

Q: how do we include context?
Q: how do we model this?

Cow

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Classify center pixel

with CNN



U-Net: Motivation
In CNNs, different layers learn different feature levels:

• Lower layers: Learn low-level, fine-grained 

details (e.g., edges, textures)

• Higher layers: Capture high-level, coarse-grained 

semantic features (e.g., shape, structure)

•This hierarchy is ideal for classification tasks but 

introduces limitations for pixel-level tasks like 

segmentation

Challenges in Medical Image Segmentation

•Medical images often suffer from:

• Noise

• Low contrast

• Blurred or unclear boundaries

•Relying only on low-level features results in poor object 

recognition

•Relying only on high-level semantic features leads to 

inaccurate boundary detection

Need for Multi-Level Feature Integration

•Effective segmentation requires a combination of:

• High-level semantic understanding (context)

• Low-level spatial precision (details)

•General CNNs lack explicit mechanisms to combine 

both effectively

Encoder-Decoder Architectures

•Designed to combine high-level and low-level features

•Consist of:

• Encoder: Downsamples and extracts abstract features

• Decoder: Upsamples to recover spatial resolution and 

integrates detail

•Enables pixel-level prediction with semantic awareness



Semantic Segmentation Idea

Design a network with only convolutional layers without downsampling 

operators to make predictions for pixels all at once!

Problem: convolutions at

original image resolution 

will be very expensive ...

Design network as a bunch of convolutional layers, with downsampling and 

upsampling inside the network!

Downsampling:

Pooling, strided

convolution

Upsampling:

Unpooling or strided

transposed convolution



Downsampling and Upsampling Corresponding pairs of

downsampling and

upsampling layers

Common Downsampling types:

• Max pooling: Takes the maximum value in each 

window

• Average pooling: Computes the average value

• Stochastic pooling: Randomly selects an activation 

based on a probability distribution

• LP-pooling: Generalized pooling that uses the p-norm 

over each region

• Global pooling: Applies pooling over the entire feature 

map to reduce to a single value per channel

•Purpose: (i) Reduce computation; (ii) Increase receptive field; 

(iii) Achieve spatial invariance; (iv) Introduce regularization

Common unpooling strategies:

• Max-unpooling with indices:

• Fixed-position unpooling: inserts values at top-left 

corner of window

• Interpolation-based unpooling: uses nearest-

neighbor or bilinear interpolation to expand feature 

maps 

• Learnable unpooling: introduces parameters to 

learn where and how to upsample

       Often followed by convolutional layers to refine outputs



Learnable upsampling
Learnable upsampling replaces heuristic upsampling with trainable layers

• Common types:

• Transposed convolution (deconvolution): applies learnable filters to increase spatial resolution

• Sub-pixel convolution: reshapes feature maps using depth-to-space operations

• Resize-convolution: resizes feature map first, then applies standard convolution

• Learnable upsampling is adaptive to data and helps with fine-grained localization

The resize convolution. Dark green cells are zero-valued, red 

lines indicate a traditional convolution operation.

https://medium.com/@paren8esis/introduction-to-super-resolution-with-deep-learning-pt-2-ced99297a483



Learnable upsampling

The transposed convolution. Dark green cells are zero-valued, 

red lines indicate a traditional convolution operation.

The sub-pixel convolution. Dark green cells are zero-valued, 

red lines indicate a traditional convolution operation.

https://medium.com/@paren8esis/introduction-to-super-resolution-with-deep-learning-pt-2-ced99297a483



U-Net: Vanilla Version

Ronneberger, O., Fischer, P., & Brox, T. (2015, May 18). U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv.Org. https://arxiv.org/abs/1505.04597v1

❖ U-Net is a neat end-

to-end neural 

network with a 

characteristic "U" 

shape

Contracting Path (Encoder):

❖  Captures context through repeated 

downsampling blocks

❖  Each block includes two 3×3 convolutions 

+ ReLU, followed by 2×2 max pooling

❖  Gradually increases the receptive field 

without heavy computation

Expanding Path (Decoder):

❖  Upsamples feature maps to 

match input resolution

❖  Each block includes one 2×2 

transposed convolution (up-

conv), two 3×3 convolutions + 

ReLUBottleneck:

❖ Connects encoder and decoder

❖ Two 3×3 convolutions + ReLU

❖ Reduces spatial resolution and increases 

depth for high-level abstraction

Skip Connections:

➢ Link encoder and decoder layers at the same depth level

➢ Concatenate encoder feature maps with decoder inputs to 

combine detailed and contextual information

➢ Help restore spatial resolution and sharpen boundaries

Final Output:

❖ A 1×1 convolution maps 

the final feature map to the 

number of target classes

❖ Produces a pixel-level 

classification map (e.g., 

segmentation mask)

https://arxiv.org/abs/1505.04597v1


Contracting Path (Encoder)

❖ Block 1:

❖ Input: 572×572×1 (grayscale image)

❖ Two 3×3 unpadded convolutions + ReLU → 64 channels

❖ 2×2 max pooling (stride 2) → downsampled to 284×284

❖ Block 2:

❖ Two 3×3 convolutions + ReLU → 128 channels

❖ 2×2 max pooling → 140×140

❖ Block 3 & Block 4:

❖ Same as previous blocks with doubled channels (256, 

512)

❖ Max pooling after each block halves spatial dimensions

❖ Block 5 (Bottom):

❖ Two 3×3 convolutions + ReLU → 1024 channels

❖ First conv in this block included here, second used in 

expanding path for symmetry



Expanding Path (Decoder)
•Block 5:

• Continues from the bottom block with a second 3×3 

convolution + ReLU

• Followed by a 2×2 up-convolution → doubles spatial 

resolution, reduces channels to 512

•Block 4:

• Skip connection: concatenate encoder feature map 

(cropped to match size) → 1024 channels

• Two 3×3 convolutions + ReLU → reduce to 512 channels

• 2×2 up-convolution → upsample and reduce channels to 

256

•Block 3 & Block 2:

• Same as Block 4, with halved channels: 256→128→64

•Block 1 (Final Block):

• After skip connection: 128 channels

• Two 3×3 convolutions + ReLU → reduce to 64 channels

• Final 1×1 convolution → maps to number of classes (e.g., 

2 for binary)

• Followed by activation function (e.g., sigmoid for binary 

classification)



3D U-Net
• Due to the abundance and representation power of volumetric data, most medical image modalities are 

three-dimensional. 3D U-Net was commonly used in Brain tumor segmentation (e.g., BraTS dataset), Lung 
nodule detection, and liver and pancreas segmentation. 

• 3D U-Net is proposed to deal with 3D medical data directly. It replaces all 2D operations with their 3D 
counterparts. The users can annotate some slices in the volume to be segmented. The model then learns 
from these sparse annotations and provides a dense 3D segmentation.

• However, due to the limitation of computational resources, it only includes three down-sampling, which 
cannot effectively extract deep-layer image features, leading to limited segmentation accuracy for 
medical images.

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3D U-Net: Learning Dense Volumetric Segmentation 

from Sparse Annotation (No. arXiv:1606.06650). arXiv. https://doi.org/10.48550/arXiv.1606.06650

https://doi.org/10.48550/arXiv.1606.06650


U-Net: Impact
• Since its introduction in 2015, U-Net has become probably the most well-known architecture for segmenting 

medical images, being cited over 100,000 times so far.

• A lot of variants of the model have been derived to progress the state-of-the-art (SOTA) based on it.

Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2022). Medical Image Segmentation 
Review: The success of U-Net (No. arXiv:2211.14830). arXiv. http://arxiv.org/abs/2211.14830

Pearson, H., Ledford, H., Hutson, M., and Van Noorden, R. (2025) Exclusive: the most-cited papers of the twenty-first century, Nature. 588 |, Vol 640. 

 

http://arxiv.org/abs/2211.14830
https://www.nature.com/articles/d41586-025-01125-9


U-Net Taxonomy based on Design Ideas 

Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2022). Medical Image Segmentation 
Review: The success of U-Net (No. arXiv:2211.14830). arXiv. http://arxiv.org/abs/2211.14830

http://arxiv.org/abs/2211.14830


Timeline of  Prominent U-Net Variants

Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2022). Medical Image 
Segmentation Review: The success of U-Net (No. arXiv:2211.14830). arXiv. http://arxiv.org/abs/2211.14830

http://arxiv.org/abs/2211.14830


U-Net in Clinical Image Analysis Pipelines
U-Net plays a central role in clinical image 

         analysis pipelines

         Overview of key stages:

• Input Preparation: Image acquisition, 

normalization, and preprocessing for 

consistent input format

• Architecture Search: Automatic 

selection of the most efficient U-Net 

variant via neural architecture search

• Postprocessing: Refinement of 

segmentation masks (e.g., 

morphological operations)

• Clinical Application: Supports 

decisions such as tumor growth tracking 

or treatment planning

Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2022). Medical Image Segmentation 
Review: The success of U-Net (No. arXiv:2211.14830). arXiv. http://arxiv.org/abs/2211.14830

http://arxiv.org/abs/2211.14830
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Improving U-Net
Numerous U-Net variants have emerged to address limitations in specific medical imaging tasks. 

❖Backbone Design Enhancements: Replace standard U-Net encoder with deeper/more powerful backbones (e.g., ResNet, 

EfficientNet, DenseNet); Improve feature extraction and convergence

❖Skip Connection Enhancements: Use attention gates (Attention U-Net), dense connections (UNet++), or residual 

connections. Improve feature fusion and gradient flow

❖Bottleneck Enhancements: Incorporate dilated convolutions, squeeze-and-excitation blocks, or atrous spatial pyramid 

pooling. Capture multi-scale context and expand receptive field

❖Transformer Integration: Embed self-attention mechanisms in encoder, decoder, or bottleneck (TransUNet, UNETR). 

Improve global context modeling. 

❖Rich Representation Enhancements: Introduce multi-branch or multi-scale input/output streams (e.g., MultiResUNet). 

Enable robust learning from varying spatial scales and features

❖Probabilistic U-Nets: Bayesian U-Net introduces variational inference for uncertainty estimation. Useful for detecting 

ambiguous or low-confidence regions in medical images. 



Backbone Design Enhancement: V-Net

Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation (No. arXiv:1606.04797). arXiv. 

https://doi.org/10.48550/arXiv.1606.04797

Feature U-Net V-Net

Dimensionality 2D (originally)
3D volumetric 

convolutions

Residual Connections
 Improves training 

speed and convergence

Loss Function
Cross-entropy (class 

imbalance sensitive)

Dice loss (robust to 

imbalance)

Pooling Method Max pooling
Strided convolutions (no 

pooling layers)

Augmentation Limited

Advanced: B-spline 

deformations, histogram 

matching

Efficiency
Slice-by-slice, slower 

inference

Entire volume processed 

in 1 pass (~1s)

Clinical Relevance Strong for 2D slices
Better for volumetric 

segmentation (MRI, CT)

V-Net is a volumetric and residual version 

of U-Net, specifically designed for 3D 

medical images. It improves segmentation 

quality and training efficiency using: 

Fully 3D convolutions, Dice-based loss,

and Residual learning. It is a strong 

alternative to U-Net, particularly for 3D 

volumetric segmentation tasks like 

prostate, liver, or brain scans.

https://doi.org/10.48550/arXiv.1606.04797


Skip Connection Enhancement: UNet++

Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2018). UNet++: A Nested U-Net Architecture for Medical Image Segmentation (No. 

arXiv:1807.10165). arXiv. https://doi.org/10.48550/arXiv.1807.10165

Feature U-Net UNet++

Skip Connections
Direct skip from encoder 

to decoder

Dense + Nested skip 

paths to narrow 

semantic gap

Decoder Optimization Jointly optimized

Deep 

supervision improves 

gradient flow and 

allows for pruning

Feature Fusion Concatenation only

Progressive fusion of 

features with 

increasing semantic 

richness

Loss Function Binary Cross Entropy
Combined BCE + 

Dice at multiple levels

Accuracy (IoU Gain) Baseline

+3.9 IoU over U-Net 

and +3.4 IoU over 

Wide U-Net

Flexibility Single-output

Multi-output + fast 

inference mode via 

pruning

https://doi.org/10.48550/arXiv.1807.10165


UNet++



Transformer Complement: TransU-Net
• CNN + Transformer Hybrid Encoder:

• CNN backbone (e.g., ResNet-50) captures low-
level spatial features.

• Transformer layers model long-range 
dependencies on patch sequences.

• Cascaded Upsampler (CUP) Decoder:

• Multistage upsampling path with skip 
connections.

• Precise boundary localization and semantic 
restoration.

• Skip Connections Enhanced:

• Multi-resolution skip connections from encoder 
to decoder.

• U-Net-like structure helps retain fine spatial 
detail lost in transformer layers. 

• Superior Accuracy on Benchmarks:

• Outperforms U-Net, V-Net, and attention U-Net 
on Synapse and ACDC datasets.

Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A. L., & Zhou, Y. (2021). TransUNet: Transformers Make Strong Encoders for Medical Image 

Segmentation (No. arXiv:2102.04306). arXiv. https://doi.org/10.48550/arXiv.2102.04306

• Avg. Dice Score (Synapse):

• U-Net: 74.68%,

• TransUNet: 77.48%

• Avg. Dice Score (ACDC):

• U-Net: 87.55%,

• TransUNet: 89.71%

https://doi.org/10.48550/arXiv.2102.04306


Swin-UNet
 Motivations

• CNN-based U-Nets perform well but struggle to model global and 
long-range dependencies due to locality of convolutions.

• Transformers offer better global context modeling but lack spatial 
detail recovery.

 Proposed Architecture – Swin-Unet

• Pure Transformer-based U-Net-style architecture:
• Encoder, bottleneck, decoder, skip connections — all built 

from Swin Transformer blocks.
• Uses shifted window attention for local-global interaction.

• Patch Merging (Downsampling) and Patch Expanding 
(Upsampling) layers replace pooling and deconvolution.

• Skip connections preserve spatial resolution and complement global 
features.

 On Synapse dataset:
• Dice Score (DSC): 79.13%, HD: 21.55

• Outperforms U-Net, TransUNet, and Att-UNet in boundary 
accuracy (HD).

• On ACDC dataset:
• Dice Score: 90.00% — better than U-Net (87.55%) and 

TransUNet (89.71%) Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., & Wang, M. (2021). Swin-Unet: Unet-like Pure Transformer for 

Medical Image Segmentation (No. arXiv:2105.05537). arXiv. https://doi.org/10.48550/arXiv.2105.05537

https://doi.org/10.48550/arXiv.2105.05537


Swin-U-Net
• Swin-UNet presented SOTA results over the CNN-Transformer hybrid structures like TransUNet and 

demonstrated the robust generalization ability with the help of two multiorgan (Synapse) and cardiac (ACDC) 
segmentation datasets.



SynthSeg
• Problem: CNNs like U-Net fail to generalize across different MRI 

contrasts and resolutions.

• Solution: SynthSeg, a 3D U-Net trained entirely on synthetic images 
with domain randomization.

• Training Pipeline:

• Generates synthetic 3D brain scans by sampling from a generative 
model conditioned on label maps.

• Applies random transformations: spatial deformation, 
resolution changes, contrast variation, artifacts.

• Learns to segment across diverse modalities (T1, T2, PD, FLAIR, 
CT) and resolutions (1–7mm).

• No need for retraining: Once trained, SynthSeg generalizes to unseen 
domains directly.

Billot, B., Greve, D. N., Puonti, O., Thielscher, A., Van Leemput, K., Fischl, B., Dalca, A. V., & Iglesias, J. E. (2023). SynthSeg: Segmentation of brain MRI scans of any 

contrast and resolution without retraining. Medical Image Analysis, 86, 102789. https://doi.org/10.1016/j.media.2023.102789

https://doi.org/10.1016/j.media.2023.102789


No New U-Net (nnU-Net) 
Motivation: U-Net requires manual tuning, which is 

error-prone and hard to generalize across datasets.

Core Idea: Systematize the pipeline design 
using domain knowledge and rules, allowing 
automatic adaptation to new datasets.

Pipeline Automation:

• Fixed parameters: Common across tasks (e.g., U-
Net backbone, leaky ReLU, instance norm).

• Rule-based parameters: Heuristic functions 
linking dataset properties to pipeline choices.

• Empirical parameters: Limited optimization via 
cross-validation (e.g., post-processing).

Framework Includes: Intensity normalization; 
Resampling and patch-size selection;  Network 
topology and training schedule;  Sliding window 
inference + Gaussian weighting. 

• Results: Achieved state-of-the-art (SOTA) 
in 33/53 tasks across 23 datasets without manual 
tuning. Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: A self-configuring method for deep 

learning-based biomedical image segmentation. Nature Methods, 18(2), 203–211. https://doi.org/10.1038/s41592-020-01008-z

https://doi.org/10.1038/s41592-020-01008-z


nnU-Net
1. Dataset Fingerprints

❖ Definition: A compact summary of dataset 

properties automatically extracted before training.

❖ Examples of fingerprint features:

❖ Image spacing and resolution;

❖ Image sizes and aspect ratios;

❖ Number of classes; Modality (e.g., CT, MRI)

❖ Purpose: Provides the basis for automatic pipeline 

configuration, replacing manual inspection.

2. Fixed Parameters

❖ Definition: Parameters that remain constant across all tasks 

and datasets.

❖ Examples: U-Net architecture template; 

❖ Instance normalization; Leaky ReLU activation; 

❖ Data augmentation pipeline structure

❖ Purpose: Leverages prior knowledge from segmentation 

tasks to avoid unnecessary tuning.

3. Rule-Based Parameters

❖ Definition: Parameters dynamically chosen using

❖ heuristics derived from the dataset fingerprint.

❖ Examples:

❖ Patch size and batch size (based on image size 

and GPU memory)

❖ Number of downsampling steps

❖ Choice between 2D, 3D full-resolution, or 3D 

low-resolution U-Net

❖ Purpose: Adapt the pipeline design automatically to 

suit dataset characteristics.

4. Empirical Parameters

•Definition: Parameters that are fine-tuned empirically, 

typically through cross-validation.

•Examples:

• Use of post-processing (e.g., removing small false-

positive regions)

• Ensembling strategies

•Purpose: Introduce minor empirical refinements for 

performance boost without extensive manual search.



nnU-Net: Impact
•Reduced Entry Barrier:

• Enabled non-experts to build highly competitive 

segmentation models without deep learning expertise.

• Popular in clinical, academic, and industrial settings.

•Reproducibility and Open Science:

• Fully open-source with reproducible configurations and 

modular design.

• Inspired a generation of autoML tools and plug-and-

play segmentation pipelines.

•Long-Term Influence:

• nnU-Net's automated approach has shaped the 

development of follow-up frameworks (e.g., nnFormer, 

nnSAM).

• Highlights the power of rule-based heuristics and data-

driven design in practical deep learning systems.

•Standardized Benchmarking:

• nnU-Net became the de facto baseline for 

biomedical segmentation tasks cited over 5500 

times.

• Automatically configured pipelines have 

redefined expectations in medical imaging 

competitions.

•Performance Across Modalities:

• Achieved state-of-the-art results in 33 of 53 

tasks across 23 public datasets (e.g., KiTS, 

BraTS, ACDC).

• Demonstrated cross-modality 

generalization (CT, MRI, PET) without manual 

tuning.



U-Mamba
Motivation: CNNs (e.g., U-Net) suffer from limited 

receptive fields. Transformers offer global context but 
are computationally expensive. There is a need for models 
that efficiently capture long-range dependencies.

Key Contributions:

• U-Mamba combines:
• CNN Residual blocks: for local feature extraction.
• Mamba blocks (SSMs): for scalable long-range 

dependency modeling.

• Employs a hybrid encoder-decoder architecture with skip 
connections.

• Self-configuring like nnU-Net: adapts automatically to 
various datasets.

Architecture Overview:

• Encoder: Residual + Mamba blocks.

• Decoder: Residual blocks with transposed convolution.

• Variants: U-Mamba_Bot (bottleneck only) and U-
Mamba_Enc (full encoder).

Ma, J., Li, F., & Wang, B. (2024). U-Mamba: Enhancing Long-range Dependency for Biomedical 

Image Segmentation (No. arXiv:2401.04722). arXiv. http://arxiv.org/abs/2401.04722

Gu, A., & Dao, T. (2024). Mamba: Linear-Time Sequence Modeling with Selective State Spaces (No. 

arXiv:2312.00752). arXiv. https://doi.org/10.48550/arXiv.2312.00752

http://arxiv.org/abs/2401.04722
https://doi.org/10.48550/arXiv.2312.00752


U-Mamba
• U-Mamba also enjoys a self-configuration mechanism, as it is implemented within the nnU-Net framework.

• It outperforms STOA CNN-based and Transformer-based segmentation networks across all tasks.



Interpretability
• Medical imaging: Interpret U-Net predictions for lesion/tumor segmentation using Grad-CAM heatmaps.

• Weak supervision: Use Grad-CAM as a proxy for segmentation maps when pixel-level labels are missing 
(e.g., CAM-based segmentation).

• Training verification: Check if the model is focusing on anatomically relevant regions.

Methods such as occlusion sensitivity, Grad-CAM and Smoothgrad help them address the question: “Which 
parts of the image were important in arriving to a given decision of a classification?”

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: Visual Explanations from Deep Networks via 

Gradient-based Localization. International Journal of Computer Vision, 128(2), 336–359. https://doi.org/10.1007/s11263-019-01228-7

(a) Original image with a cat and a dog.

(b) Guided Backpropagation highlights all 

contributing features.

(c, f) Grad-CAM localizes class-discriminative 

regions for VGG-16 and ResNet-18.

(d) Guided Grad-CAM (b × c) provides high-

resolution, class-specific visualizations.

(e) Occlusion sensitivity yields similar results to 

Grad-CAM but is computationally more expensive.

Red in (c, f, i, l) and blue in (e, k) indicate strong 

evidence for the target class. (Best viewed in color.)

https://doi.org/10.1007/s11263-019-01228-7


Masked Autoencoder (MAE)
MAE = Self-Supervised Vision Learner

Learns by reconstructing missing image patches

Key idea: Mask random patches (e.g., 75%), and reconstruct them from 
the visible ones

Architecture: Asymmetric encoder-decoder;  Encoder: processes 
only visible patches;

Decoder: lightweight, reconstructs masked patches

MAE Training Workflow

1. Patchify the input image into non-overlapping patches

2. Randomly mask 75% of the patches

3. Encoder processes only the remaining 25%

4. Mask tokens + visible patch embeddings go to the decoder

5. Loss: Mean squared error (MSE) on masked patches

MAE Decoder ≈ U-Net Decoder. Both aim to restore missing spatial 
resolution

U-Net learns semantic segmentation, MAE learns image structure

Potential integration:

• Use MAE pretraining to initialize U-Net encoder (transfer learning)

• Apply MAE-style reconstruction loss to regularize segmentation learning

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. (2021). Masked Autoencoders Are 

Scalable Vision Learners (No. arXiv:2111.06377). arXiv. https://doi.org/10.48550/arXiv.2111.06377

https://doi.org/10.48550/arXiv.2111.06377


Overview of  Loss Functions 

• Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., Yang, X., & Martel, A. L. (2021). Loss odyssey in medical image segmentation. Medical Image Analysis, 71, 
102035. https://doi.org/10.1016/j.media.2021.102035

https://doi.org/10.1016/j.media.2021.102035


Loss Functions: Taxonomy
Loss functions are categorized into four levels:

•  Pixel-Level:
Focus on per-pixel accuracy.
Includes: Cross-Entropy, Focal, TopK, 
Distance-map Cross-Entropy.

•  Region-Level:
Capture global region consistency and handle 
class imbalance.
Includes: Dice, IOU, Tversky, Lovász-
Softmax, Region Mutual, Robust T-Loss.

•  Boundary-Level:
Emphasize precise boundary delineation.
Includes: Boundary Loss, Hausdorff, 
Boundary-aware, InverseForm, Conditional 
Boundary Loss.

•  Combination:
Blend multiple losses for complementary 
benefits.
Examples: Combo Loss (e.g., Cross-Entropy 
+ Dice), Unified Focal Loss.



Pixel Level (Distribution-based)

• Cross-Entropy (CE) Loss measures the difference between two probability 
distributions for a given random variable, measuring how well the model’s 
predictions match the target labels. 

• 𝐿𝐶𝐸 𝑦, 𝑡 = − σ𝑛=1
𝑁 log 𝑡𝑛 ⋅ 𝑦𝑛 , when dealing with imbalanced datasets, one 

approach is to assign different ways to each class to help to balance the 
influence of each class on the overall loss and improve the performance of the 
model on the under-represented classes. Specifically, one may set the weight 
for each class to be inversely proportional to number of sample in that class.

𝐿𝑊𝐶𝐸 𝑦, 𝑡 = − 

𝑛=1

𝑁

tn ⋅ 𝑤log 𝑡𝑛 ⋅ 𝑦𝑛

• Focal Loss is a modified version of the CE loss that assigns different weights 
to easy and hard samples. Here, hard samples are sample that are mis-
classified with a high probability, while easy samples are those correctly 

classified with a high probability. 𝐿𝑓𝑜𝑐𝑎𝑙 𝑦, 𝑡, 𝛾 = − σ𝑛=1
𝑁 ሺ

ሻ
1 − 𝑡𝑛 ⋅

𝑦𝑛
𝛾 log 𝑡𝑛 ⋅ 𝑦𝑛 , where 𝛾 is a non-negative tunable hyperparameter. When 𝛾 

is set to 0 for all samples, it reduces to the plain CE loss.

Pixel-level loss functions dive deep into the individual pixels to achieve high accuracy in classifying each pixel within 

segmented regions. These loss functions compute the dissimilarity or error between the predicted pixel values and their 

corresponding ground truth labels independently for each pixel.



Region Level
• Region-level loss functions take a broader view in semantic segmentation tasks. Instead of focusing on each pixel, 

these methods prioritize the overall accuracy of object segmentation.

• Dice Loss originates from Dice Coefficient 
2 𝑌∩𝑇

𝑌 +|𝑇|
 where 𝑌 is the binary segmentation prediction mask and 𝑇 is the 

binary segmentation target mask for a single class. It is computed separately for each target class and the average over 
all classes is used.

𝐿𝑑𝑖𝑐𝑒 = 1 −
1

𝐶


𝑐=0

𝐶−1
2 σ𝑛=1

𝑁 𝑡𝑛
𝑐𝑦𝑛

𝑐

σ𝑛=1
𝑁 ሺ𝑡𝑛

𝑐 + 𝑦𝑛
𝑐ሻ

• IOU(Jaccard) Loss originates from Jaccard index 
𝑌∩𝑇

|𝑌∪𝑇|
, and is calculated for each class as well.

𝐿𝐼𝑜𝑈 = 1 −
1

𝐶


𝑐=0

𝐶−1
σ𝑛=1

𝑁 𝑡𝑛
𝑐𝑦𝑛

𝑐

σ𝑛=1
𝑁 ሺ𝑡𝑛

𝑐 + 𝑦𝑛
𝑐 − 𝑡𝑛

𝑐𝑦𝑛
𝑐ሻ

• Tversky Loss originates from the Tversky index 
𝑌∩𝑇

𝑌∩𝑇 +𝛼 𝑌\T +𝛽|𝑌\T|
 where 𝛼 and 𝛽 control the weights for false 

negatives and false positives. When 𝛼 = 𝛽 = 0.5, it reduces to Dice coefficient. When 𝛼 = 𝛽 = 1, it reduces to IoU.

𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦 = 1 −
1

𝐶


𝑐=0

𝐶−1
σ𝑛=1

𝑁 𝑡𝑛
𝑐𝑦𝑛

𝑐

σ𝑛=1
𝑁 ሺ𝑡𝑛

𝑐𝑦𝑛
𝑐 + 𝛼𝑡𝑛

𝑐 1 − 𝑦𝑛
𝑐 + 𝛽𝑦𝑛

𝑐ሺ𝑡 − 𝑡𝑛
𝑐ሻሻ



Boundary Level

• Boundary-level loss functions specialize in the precision of object boundaries within the segmentation task. Their 
primary objective is to sharpen object boundaries and effectively separate overlapping objects. 

• Boundary Loss aims to minimize the distance between ground truth and predicted segmentation. It computes the 
distance between two boundaries in the integral framework: 

𝐷𝑖𝑠𝑡 𝜕𝐺, 𝜕𝑆 ≈ 2ሺΩ
𝜙𝐺 𝑞 𝑠 𝑞 𝑑𝑞 − Ω

𝜙𝐺 𝑞 𝑔 𝑞 𝑑𝑞ሻ 

𝐿𝐵 = න
Ω

𝜙𝐺 𝑞 𝑠 𝑞 𝑑𝑞

where 𝑔ሺ𝑞ሻ is a binary indicator function that indicates whether 𝑞 is on the boundary of ground truth; 𝜙𝐺 𝑞  represents the 
distance term and is defined as 𝜙𝐺 = −𝐷𝐺ሺ𝑞ሻ if 𝑞 ∈ 𝐺 and 𝐷𝐺ሺ𝑞ሻ otherwise for the distance map of ground truth 𝐷𝐺 𝑞 ; 
and 𝑠ሺ𝑞ሻ denotes the probability predictions generated by the model.

• Hausdorff Distance (HD) Loss is based on Hausdorff distance 𝐻𝐷 𝑋, 𝑌 = maxሺ𝑑ℎ 𝑋, 𝑌 , 𝑑ℎሺ𝑌, 𝑋ሻሻ where 𝑑ℎ 𝑋, 𝑌 =
max
𝑥∈𝑋

min
𝑦∈𝑌

𝑑ሺ𝑥, 𝑦ሻ and 𝑑ℎ 𝑌, 𝑋 = max
𝑦∈𝑌

min
𝑥∈𝑋

𝑑ሺ𝑦, 𝑥ሻ, which is calculated between the boundaries of the predicted and 

ground truth masks. However, it solely depends on the largest error and is overly sensitive to outliers, leading to 
algorithm instability and unreliable results.



Combination

• By integrating multiple loss functions, a combination of them seeks equilibrium between pixel-wise precision, 
overall object segmentation quality and boundary delineation accuracy.

• Combo Loss is the most commonly used loss function in practice, combining Dice loss and weighted CE loss to 
overcome the class imbalance problem.

𝐿𝑐𝑜𝑚𝑏𝑜 = 𝛼𝐿𝑊𝐶𝐸 + 1 − 𝛼 𝐿𝑑𝑖𝑐𝑒

• Exponential Logarithmic Loss is similar to the Combo loss in terms of combination. The difference is that it 
takes the logarithmic and exponential of both the loss functions before combining them, giving flexibility to 
control how much the model focuses on easy/hard pixels.

𝐿𝐸𝑥𝑝−𝐿𝑜𝑔 = 𝛼𝐿𝐸𝑥𝑝−𝐿𝑜𝑔−𝑊𝐶𝐸 + 𝛽𝐿𝐸𝑥𝑝−𝐿𝑜𝑔−𝐷𝑖𝑐𝑒

where 𝐿𝐸𝑥𝑝−𝐿𝑜𝑔−𝑊𝐶𝐸 = −log 𝐿𝑊𝐶𝐸
𝛾𝑊𝐶𝐸

and 𝐿𝐸𝑥𝑝−𝐿𝑜𝑔−𝐷𝑖𝑐𝑒 = −log 𝐿𝑑𝑖𝑐𝑒
𝛾𝑑𝑖𝑐𝑒

 , and 𝛾𝑊𝐶𝐸, 𝛾𝑑𝑖𝑐𝑒 can be used 

to control the focus of the loss function, with 𝛾 > 1 focusing more on hard-to-classify pixels. 

• Dice Loss with Focal Loss is used to alleviate the imbalanced organ segmentation problem and force the model to 
learn from poorly segmented voxels better.

𝐿𝐷𝑖𝑐𝑒−𝐹𝑜𝑐𝑎𝑙 = 𝛼𝐿𝑑𝑖𝑐𝑒 + ሺ1 − 𝛼ሻ𝐿𝑓𝑜𝑐𝑎𝑙



Visual Comparison

On the ACDC dataset, we can observe a more 

accurate localization and segmentation for boundary 

regions in boundary-level loss functions. The 

boundary DoU loss function effectively address the 

challenge caused by the significant shape variations 

of the right ventricle region compared to the 

alternative loss functions.

On the Synapse dataset, Dice loss shows varying 

performance, performing quite good in the top 

example while completely failing to identify the 

stomach and gallbladder in the lower example. 

The Focal Tversky loss, on the other hand, 

presents the most promising segmentation map, 

correctly identifying all the organs.
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Foundation Models and Image Segmentation
• Definition: Foundation Models (FMs) are large-scale pre-trained models designed to adapt across diverse 

downstream tasks.

• Paradigm Shift:

• Move from narrow task-specific models to generic, task-agnostic systems.

• Enabled by advances in neural networks, self-supervised learning, and scaling laws.

• Impact on Segmentation:

• FMs give rise to segmentation generalists, capable of handling a wide range of tasks.

• They are promptable, similar to LLMs, allowing dynamic conditioning and flexible task specifications.

• Support zero-shot and few-shot segmentation across domains without retraining.

• Key Benefits:

• Unified models across modalities (e.g., CT, MRI, X-ray)

• Adaptability to novel or underrepresented tasks

• Reduced dependency on large annotated datasets

• Conclusion: FMs are transforming the landscape of medical image segmentation by introducing generalizable, 
interactive, and versatile frameworks.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On the opportunities and risks of 

foundation models,” arXiv preprint arXiv:2108.07258, 2021.



Foundation Models
• Foundation Models (FMs) can be broadly categorized into:

• Language Foundation Models

• Vision Foundation Models

 Language Foundation Models

• Large Language Models (LLMs):

• Core approach for machine language intelligence
• Trained to predict the next token by modeling the generative 

likelihood of word sequences
• Enable applications like text generation, summarization, and 

translation

• Multimodal Large Language Models (MLLMs):

• Extend LLMs to incorporate non-textual inputs (e.g., audio)
• Combine language reasoning with vision/audio perception

• Facilitate complex tasks such as visual question answering, 
image captioning, and multimodal dialogue

 Vision Foundation Models

• Learn generic visual representations across a wide range of domains

• Examples: Vision Transformers (ViTs), SAM, CLIP, DINO

• Serve as backbones for tasks such as classification, detection, 
segmentation, and generation

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On the opportunities and risks of 

foundation models,” arXiv preprint arXiv:2108.07258, 2021.

A foundation model can centralize the information 

from all the data from various modalities. 



Categories of  Vision Foundation Models
➢ 1. Contrastive Language-Image Pre-training (CLIP):

➢ Encoder-only architecture with separate image and text 
encoders

➢ Learns by maximizing agreement between matched image-
text pairs

➢ Enables zero-shot classification and retrieval

➢ 2. Self-Distillation with No Labels (DINO):

➢ Self-supervised learning using Vision Transformers (ViTs)
➢ Trains by aligning student-teacher models without labels
➢ Captures strong visual representations despite compact size

➢ 3. Diffusion Models (DMs):

➢Generative models trained via denoising and variational 
inference

➢Generate high-quality, realistic images from noise
➢Used in creative applications and medical synthesis

➢ 4. Segment Anything Model (SAM):
➢General-purpose segmentation model
➢ Enables promptable, zero-shot segmentation on diverse 

domains
➢A major advance in image registration and spatial 

understanding
R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On the opportunities and risks of 

foundation models,” arXiv preprint arXiv:2108.07258, 2021.



EchoCLIP

• Visual-Language Foundation Model for Echocardiogram (EchoCLIP) 
is trained on more than 1 million cardiac ultrasound videos and 
corresponding expert text.

• It is built on OpenCLIP and composed of an image encoder using 
ConvNeXt architecture for processing video frames and a text 
encoder using decoder-only Transformer for processing the 
corresponding physician interpretations. These two encoders project 
the images and interpretations onto a joint embedding space. 

• A long-context variant using a custom tokenizer based on common 
echocardiography concepts is developed.

• EchoCLIP can be adapted to perform both classification and 
regression tasks. 
• For classification task, we can construct text prompts describing 

a positive case, obtain an embedding of those prompts using 
EchoCLIP’s text encoder and compute the cosine similarity 
between them.

• For a regression task, we can generate a collection of variations 
on a base text prompt by only changing the relevant value in the 
text. Then cosine similarity between the generated prompt 
embeddings and the embeddings of each of the first 20 frames 
of videos is then computed.

Christensen, M., Vukadinovic, M., Yuan, N., & Ouyang, D. (2024). Vision–language foundation model for echocardiogram 

interpretation. Nature Medicine, 30(5), 1481–1488. https://doi.org/10.1038/s41591-024-02959-y

The figure demonstrates Grad-CAM 

visualizations over ultrasound images for 

identifying different cardiac implantable 

devices:

•TAVR (Transcatheter Aortic Valve 

Replacement): Clearly highlighted 

central aortic valve region

•Impella: High-intensity focus along the 

catheter path

•Pacemaker: Lateral region marked, 

indicating lead presence

•MitraClip: Strong activation in the 

mitral valve area

https://doi.org/10.1038/s41591-024-02959-y


Segment Anything (SAM)
• SAM has rapidly gained traction in medical image 

analysis. 

• Key Capability:

• Segments objects without prior knowledge of the 
object type or imaging modality

• Mimics the flexibility of human visual 
perception

• Promptable Interaction:

• Inspired by NLP, users can input prompts 
(points, bounding boxes)

• Adjusts segmentation results based on resolution 
scale or area of interest

• Zero-Shot and Few-Shot Learning:

• Requires little to no additional training to adapt 
to new segmentation tasks

• Supports highly generalizable medical imaging 
workflows across modalities

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y., Dollár, P., & Girshick, R. (2023). Segment 

Anything. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), 3992–4003. https://doi.org/10.1109/ICCV51070.2023.00371

https://doi.org/10.1109/ICCV51070.2023.00371


SAM Architecture Overview
• 1. Image Encoder:

• Based on a ViT pre-trained using Masked 
Autoencoders (MAE)

• Produces rich multi-scale image embeddings

• 2. Prompt Encoder:

• Handles sparse prompts (points, boxes) 
and dense prompts (masks)

• Encodes spatial and semantic information 
from user input

• 3. Mask Decoder:

• A lightweight, efficient module

• Combines image and prompt embeddings

• Outputs accurate segmentation masks guided 
by prompts

Segment Anything Model (SAM) overview. A heavyweight image encoder outputs an 

image embedding that can then be efficiently queried by a variety of input prompts to 

produce object masks at amortized real-time speed. For ambiguous prompts 

corresponding to more than one object, SAM can output multiple valid masks and 

associated confidence scores.



• SAM is trained on the large-scale dataset SA-1B, which consists of 11M high-resolution images with 1.1B high-
quality segmentation masks, which is 400 times more masks than any existing segmentation dataset.

• The dataset has three stages:  manual annotation stage, semi-automatic stage, and fully automatic stage.

• In zero-shot single point valid mask evaluation, annotators 
consistently rate the quality of SAM’s masks substantially higher 
than the strongest baseline, RITM.

• As number of points increases from 1 to 9, the gap between methods 
decreases, as the task of segmentation becomes easier.

Segment Anything (SAM)



SAM: Play Around with it Online!

Segment Anything | Meta AI (segment-anything.com)

https://segment-anything.com/


Segment Anything 2 (SAM 2)
• However, SAM only works for images. In order to be 

applicable to both images and videos, Segment Anything 2  
is proposed as a unified model for video and image 
segmentation, considering image as a single-frame video.

• It is a natural generalization of SAM to the video domain, 
processing video frames one at a time, equipped with a 
memory attention module to attend to the previous 
memories of the target object. When applied to images, the 
memory is empty and the model behaves like SAM.

• A geographically diverse dataset SA-V is constructed, 
consisting of 35.5M masks across 50.9K videos, 53 times 
more masks than any existing video segmentation dataset.

• SAM 2 behaves spatially similar to SAM. However, the 
frame embedding used by it is not directly from an image 
encoder, but instead conditioned on memories of past 
predictions and prompted frames.

• SAM 2 can produce better segmentation accuracy while 
using 3 times fewer interactions than prior approaches, and 
deliver better performance compared to SAM on image 
segmentation benchmarks, while being 6 times faster.

Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T., Khedr, H., Rädle, R., Rolland, C., 

Gustafson, L., Mintun, E., Pan, J., Alwala, K. V., Carion, N., Wu, C.-Y., Girshick, R., Dollár, P., 

& Feichtenhofer, C. (2024). SAM 2: Segment Anything in Images and Videos (No. 

arXiv:2408.00714). arXiv. https://doi.org/10.48550/arXiv.2408.00714

https://doi.org/10.48550/arXiv.2408.00714


SEEM
• Although SAM demonstrates strong zero-shot performance, it produces segmentations without semantic meaning. 

In addition, its prompt types are limited to points, boxes and text.

• Segment Everything Everywhere All at Once (SEEM) proposes a novel decoding mechanism that enables diverse 
prompting including a referred region from another image, aiming at a universal segmentation interface that 
behaves like LLMs.

• It not only employs a generic encoder-decoder architecture, but also employs a sophisticated interaction scheme 
between queries and prompts.

• Given an image 𝐼 ∈ 𝑅𝐻×𝑊×3, an image encoder is first used to extract image features 𝑍. Then based on the text, 
visual and memory prompts ⟨𝑃𝑡, 𝑃𝑣, 𝑃𝑚⟩, the decoder guides the learnable queries 𝑄ℎ to predict the mask 
embeddings 𝑂ℎ

𝑚 and class embeddings 𝑂ℎ
𝑐 to generate masks 𝑀 and semantic concepts 𝐶.

Zou, X., Yang, J., Zhang, H., Li, F., Li, L., Wang, J., Wang, L., Gao, J., & Lee, Y. J. (2023). Segment Everything Everywhere All at Once (No. 

arXiv:2304.06718). arXiv. https://doi.org/10.48550/arXiv.2304.06718

https://doi.org/10.48550/arXiv.2304.06718


SEEM

Compare with other strong baselines 

SimpleClick and SAM with 5 

common types of prompts, the SEEM 

achieves the best performance in the 

extremely limited number of clicks 

over all three datasets.



FMs for Biomedical Image Segmentation
• While SAM achieves or approaches state-of-the-art performance in many general vision tasks, its 

performance in medical image segmentation presents certain limitations:

 Application Gaps:

• Difficult Anatomical Structures:
• Struggles with segmentation of small or complex organs such as the carotid artery, adrenal 

glands, optic nerve, and mandible bone.

 Key Challenges:

• Data Specificity:

• SAM excels in general-domain images, but medical images often exhibit features and artifacts not 
typically present in everyday visual data.

• Dimension Mismatch:

• Most medical imaging modalities (e.g., MRI, CT) produce volumetric (3D) data, while SAM is 
inherently 2D-based.

• Lack of native support for 3D spatial context limits its performance in full-volume analysis.

• Data Scarcity and Annotation Quality:

• High-quality annotations in medicine require expert knowledge, are time-consuming to produce, and 
face privacy constraints.

• Limits the availability of large-scale datasets to fine-tune or evaluate SAM reliably for clinical 
applications.



• Multiple method have been proposed for the adaption of SAM to the 
medical domain.

• Zero-shot segmentation capabilities evaluation: Medical imaging 
presents unique challenges, distinguished by factors like varied 
imaging protocols and a wider range of patient demographics. These 
complexities are not as predominant in standard domain images, 
making SAM’s adaptability in this context particularly intriguing.

• Domain-specific tuning: To address the varying results across 
different contrast appearances and organ morphologies, researchers 
have explored several domain-specific tuning strategies:

• Projection tuning: Replacing the pretrained decoder with a new, 
task-specific projection head, aiming to harness generalized 
features

• Adapter tuning: Incorporating adapters designed to fine-tune 
the model’s response to the specific challenges presented by 
medical imaging.

• Full tuning: A substantial reconfiguration, finetuning both the 
encoder and decoder of SAM to transition its generalized 
knowledge base.

Lee, H. H., Gu, Y., Zhao, T., Xu, Y., Yang, J., Usuyama, N., Wong, C., Wei, M., Landman, B. A., Huo, Y., Santamaria-Pang, A., & Poon, H. (2024). Foundation Models for Biomedical 

Image Segmentation: A Survey (No. arXiv:2401.07654). arXiv. http://arxiv.org/abs/2401.07654

FMs for Biomedical Image Segmentation

SAM adaptation in medical imaging includes zero-shot evaluation, varying degrees of 

model fine-tuning (adapter, projection, full tuning), 3D extension for volumetric 

data, and knowledge distillation to transfer expertise to lighter models, each 

enhancing domain-specific performance through tailored pipelines.

http://arxiv.org/abs/2401.07654


• 3D Imaging Modalities Extension:

• To align with SAM’s 2D framework, 
3D images are processed as axial 
slices for slice-by-slice predictions.

• All slice-level outputs are then fused 
into a comprehensive volumetric 
map to restore spatial continuity and 
capture 3D anatomical relationships.

• Knowledge Distillation:

• A label refinement 
network improves the coarse masks 
generated by SAM.

• These refined annotations are used to 
train a task-specific student 
model for enhanced segmentation 
accuracy tailored to medical tasks.

FMs for Biomedical Image Segmentation

Application of SAM Across Medical Imaging Modalities. The figure showcases Radiology, Pathology, and 

Camera Imaging examples. Central components of SAM, including the Image Encoder, Mask Decoder, and 

Prompt Encoder, are delineated. Methods ranging from Zero-shot Evaluation to Knowledge Distillation are 

accentuated within tan boxes.

Lee, H. H., Gu, Y., Zhao, T., Xu, Y., Yang, J., Usuyama, N., Wong, C., Wei, M., Landman, B. A., Huo, Y., Santamaria-Pang, A., & Poon, H. (2024). Foundation Models for Biomedical 

Image Segmentation: A Survey (No. arXiv:2401.07654). arXiv. http://arxiv.org/abs/2401.07654

http://arxiv.org/abs/2401.07654


Chronological Timeline of  Medical IS Datasets

Lee, H. H., Gu, Y., Zhao, T., Xu, Y., Yang, J., Usuyama, N., Wong, C., Wei, M., Landman, B. A., Huo, Y., Santamaria-Pang, A., & Poon, H. (2024). Foundation Models for 
Biomedical Image Segmentation: A Survey (No. arXiv:2401.07654). arXiv. http://arxiv.org/abs/2401.07654

http://arxiv.org/abs/2401.07654


Taxonomy based on IS Tasks and FMs

• Zhou, T., Zhang, F., Chang, B., Wang, W., Yuan, Y., Konukoglu, E., & Cremers, D. (2024). Image Segmentation in Foundation Model Era: A Survey (No. 
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Various Existing Works Build Upon SAM
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Comparisons between SOTA and SAM
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• To enhance SAM’s performance on medical images, Segment Anything in Medical Images:  (MedSAM) 
curates a large-scale dataset containing over one million medical image-mask pairs of 11 modalities to 
fine-tune SAM on these medical images.

• MedSAM has demonstrated substantial capabilities in segmenting a diverse array of targets and robust 
generalization abilities to manage new data and tasks. Its performance not only significantly exceeds that 
of existing the STOA segmentation foundation model, but also rivals or even surpasses specialist models.

Ma, J., He, Y., Li, F., Han, L., You, C., & Wang, B. (2024). Segment anything in medical images. Nature Communications, 15(1), 654. https://doi.org/10.1038/s41467-024-44824-z

MedSAM

https://doi.org/10.1038/s41467-024-44824-z


• A large dataset comprising over 6 million triples of 
image, segmentation mask and textual description is 
curated. GPT-4 is used to harmonize noisy, 
unstructured available texts with established 
biomedical object ontologies.

• Similar to SEEM, BioMedParse focuses on learning 
text prompts. 

• The input is an image and a text prompt that 
specifies the object type for segmentation and 
detection, which are passed along to the image 
and text encoders, respectively. The image 
encoder can be SAM-ViT, while the text encoder 
can be PubMedBERT or a transformer from 
scratch.

• The mask decoder outputs a segmentation mask 
by cross-attending the image and text 
embeddings and gradually upsample the image 
features back to high-resolution pixels. At the 
last layer, the attention dot product on the pixel 
embeddings delivers the segmentation mask.

BioMedParse



• The BioMedParse outperforms existing methods such as SAM and MedSAM on image segmentation across 
nine imaging modalities, with larger improvement on objects with irregular shapes, it can also simultaneously 
segment and label all objects in an image. Moreover, using text prompts alone, BiomedParse is much more 
scalable than previous methods, which require orders of magnitude more user operations in specifying 
bounding boxes.

BioMedParse
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Theoretical Challenges
 1. Semantic Gap in Skip Connections: U-Net combines 
encoder and decoder features at the same spatial scale via skip 
connections.

❖ Challenge: Encoder features are low-level (e.g., edges), while 
decoder features are high-level (e.g., semantic). There's no 
theoretical guarantee that such feature fusion preserves 
semantic coherence.

❖ Open Question: What is the optimal way to bridge this gap 
while preserving both localization and semantics?

 2. Limited Receptive Field and Global Context: U-Net is 
built with local convolution operations.

❖ Challenge: Its theoretical receptive field grows linearly with 
depth, so modeling long-range dependencies requires deep 
networks.

❖ Consequence: U-Net lacks formal mechanisms (like self-
attention) to capture global structure, which is crucial in 
medical imaging for understanding spatial dependencies.

 3. Overparameterization Without Generalization 
Guarantees: U-Net can contain tens of millions of parameters.

❖ Challenge: There are no strong generalization bounds for U-
Net specifically. Standard bounds (e.g., VC-dimension or 
Rademacher complexity) are either too loose or do not reflect 
real-world performance.

❖ Research Gap: How does overparameterization influence 
generalization in structured prediction tasks like segmentation?

 4. Sensitivity to Input Perturbations

❖ Observation: U-Net’s segmentation output can be unstable under 

small changes (e.g., adversarial noise, brightness shifts).

❖ Theoretical Challenge: U-Net lacks certified robustness 

guarantees—a theoretical framework to ensure stable outputs under 

bounded input perturbations.

❖ Implication: This limits its safe deployment in clinical decision-

making.

 5. Lack of Theoretical Justification for Architectural Choices

❖ Examples: Why are two 3×3 convolutions used per block? Why 

use symmetric architecture between encoder and decoder?

❖ Challenge: These choices are empirically motivated, not derived 

from principled optimization or information-theoretic criteria.

 6. No Optimality Guarantee in Segmentation Accuracy

❖ Observation: U-Net minimizes per-pixel cross-entropy or Dice loss.

❖ Theoretical Issue: These losses are surrogates and may not 

correspond to true segmentation performance (e.g., IoU, boundary 

precision).

❖ Open Problem: How to design loss functions that are both 

theoretically consistent and aligned with segmentation metrics?
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Project MONAI
• MONAI is a freely available, community-supported PyTorch-based framework for deep 

learning in healthcare, providing purpose-specific AI model architectures, transformations 
and utilities that streamline the development and deployment of medical AI models.

• Multiple aspects are carefully considered for challenges in real data:

• The design considers the accompanying metadata that indicates the underlying physical 
interpretations of the data acquisition process and relevant annotations .

• Low-level data processing components are simple and robust to handle the data variability and 

highly flexible requirements.

• High-level workflows are also introduced in addition to the exposed low-level component APIs.

Cardoso, M. J., Li, W., Brown, R., Ma, N., Kerfoot, 

E., Wang, Y., Murrey, B., Myronenko, A., Zhao, C., 

Yang, D., Nath, V., He, Y., Xu, Z., Hatamizadeh, A., 

Myronenko, A., Zhu, W., Liu, Y., Zheng, M., Tang, 

Y., … Feng, A. (2022). MONAI: An open-source 

framework for deep learning in healthcare (No. 

arXiv:2211.02701). arXiv. 

https://doi.org/10.48550/arXiv.2211.02701

https://doi.org/10.48550/arXiv.2211.02701


• Transforms

• Loss functions

• Network architectures

• Dataset and IO

• Training, inference engines and event handlers:

• Visualization and utilizes

Project MONAI



Loss Functions in MONAI



Loss Functions in MONAI



Training Models with MONAI



Training Models with MONAI



Interpretability with MONAI



References
Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2022). Medical Image Segmentation Review: The 

success of U-Net (No. arXiv:2211.14830). arXiv. http://arxiv.org/abs/2211.14830
Azad, R., Heidary, M., Yilmaz, K., Hüttemann, M., Karimijafarbigloo, S., Wu, Y., Schmeink, A., & Merhof, D. (2023). Loss Functions in the Era of Semantic Segmentation: A Survey and 

Outlook (No. arXiv:2312.05391). arXiv. http://arxiv.org/abs/2312.05391
Billot, B., Greve, D. N., Puonti, O., Thielscher, A., Van Leemput, K., Fischl, B., Dalca, A. V., & Iglesias, J. E. (2023). SynthSeg: Segmentation of brain MRI scans of any contrast and 

resolution without retraining. Medical Image Analysis, 86, 102789. https://doi.org/10.1016/j.media.2023.102789

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On the opportunities and risks of foundation models,” arXiv 
preprint arXiv:2108.07258, 2021.

Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., & Wang, M. (2021). Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation (No. arXiv:2105.05537). arXiv. 
https://doi.org/10.48550/arXiv.2105.05537

Cardoso, M. J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., Murrey, B., Myronenko, A., Zhao, C., Yang, D., Nath, V., He, Y., Xu, Z., Hatamizadeh, A., Myronenko, A., Zhu, W., Liu, Y., 
Zheng, M., Tang, Y., … Feng, A. (2022). MONAI: An open-source framework for deep learning in healthcare (No. arXiv:2211.02701). arXiv. https://doi.org/10.48550/arXiv.2211.02701

Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A. L., & Zhou, Y. (2021). TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation (No. 
arXiv:2102.04306). arXiv. https://doi.org/10.48550/arXiv.2102.04306

Chen, X., Wang, X., Zhang, K., Fung, K.-M., Thai, T. C., Moore, K., Mannel, R. S., Liu, H., Zheng, B., & Qiu, Y. (2022). Recent advances and clinical applications of deep learning in medical 
image analysis. Medical Image Analysis, 79, 102444. https://doi.org/10.1016/j.media.2022.102444

Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., & Girdhar, R. (2022). Masked-attention Mask Transformer for Universal Image Segmentation (No. arXiv:2112.01527). arXiv. 
https://doi.org/10.48550/arXiv.2112.01527

Christensen, M., Vukadinovic, M., Yuan, N., & Ouyang, D. (2024). Vision–language foundation model for echocardiogram interpretation. Nature Medicine, 30(5), 1481–1488. 
https://doi.org/10.1038/s41591-024-02959-y

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation (No. arXiv:1606.06650). arXiv. 
https://doi.org/10.48550/arXiv.1606.06650

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Gu, A., & Dao, T. (2024). Mamba: Linear-Time Sequence Modeling with Selective State Spaces (No. arXiv:2312.00752). arXiv. https://doi.org/10.48550/arXiv.2312.00752
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. (2021). Masked Autoencoders Are Scalable Vision Learners (No. arXiv:2111.06377). arXiv. 

https://doi.org/10.48550/arXiv.2111.06377
Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nature 

Methods, 18(2), 203–211. https://doi.org/10.1038/s41592-020-01008-z
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y., Dollár, P., & Girshick, R. (2023). Segment Anything. 2023 IEEE/CVF 

International Conference on Computer Vision (ICCV), 3992–4003. https://doi.org/10.1109/ICCV51070.2023.00371
Lee, H. H., Gu, Y., Zhao, T., Xu, Y., Yang, J., Usuyama, N., Wong, C., Wei, M., Landman, B. A., Huo, Y., Santamaria-Pang, A., & Poon, H. (2024). Foundation Models for Biomedical Image 

Segmentation: A Survey (No. arXiv:2401.07654). arXiv. http://arxiv.org/abs/2401.07654
Liu, L., Cheng, J., Quan, Q., Wu, F.-X., Wang, Y.-P., & Wang, J. (2020). A survey on U-shaped networks in medical image segmentations. Neurocomputing, 409, 244–

258. https://doi.org/10.1016/j.neucom.2020.05.070
Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., Yang, X., & Martel, A. L. (2021). Loss odyssey in medical image segmentation. Medical Image Analysis, 71, 

102035. https://doi.org/10.1016/j.media.2021.102035
Ma, J., He, Y., Li, F., Han, L., You, C., & Wang, B. (2024). Segment anything in medical images. Nature Communications, 15(1), 654. https://doi.org/10.1038/s41467-024-44824-z 
Ma, J., Li, F., & Wang, B. (2024). U-Mamba: Enhancing Long-range Dependency for Biomedical Image Segmentation (No. arXiv:2401.04722). arXiv. http://arxiv.org/abs/2401.04722

http://arxiv.org/abs/2211.14830
http://arxiv.org/abs/2312.05391
https://doi.org/10.1016/j.media.2023.102789
https://doi.org/10.48550/arXiv.2105.05537
https://doi.org/10.48550/arXiv.2211.02701
https://doi.org/10.48550/arXiv.2102.04306
https://doi.org/10.1016/j.media.2022.102444
https://doi.org/10.48550/arXiv.2112.01527
https://doi.org/10.1038/s41591-024-02959-y
https://doi.org/10.48550/arXiv.1606.06650
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2111.06377
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1109/ICCV51070.2023.00371
http://arxiv.org/abs/2401.07654
https://doi.org/10.1016/j.neucom.2020.05.070
https://doi.org/10.1016/j.media.2021.102035
https://doi.org/10.1038/s41467-024-44824-z
http://arxiv.org/abs/2401.04722


References
Masood, S., Sharif, M., Masood, A., Yasmin, M., & Raza, M. (2015). A Survey on Medical Image Segmentation. Current Medical Imaging Reviews, 11(1), 3–14. 

https://doi.org/10.2174/157340561101150423103441 
Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation (No. arXiv:1606.04797). arXiv. 

https://doi.org/10.48550/arXiv.1606.04797
Pearson, H., Ledford, H., Hutson, M., and Van Noorden, R. (2025) Exclusive: the most-cited papers of the twenty-first century, Nature. 588 |, Vol 640. 
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T., Khedr, H., Rädle, R., Rolland, C., Gustafson, L., Mintun, E., Pan, J., Alwala, K. V., Carion, N., Wu, C.-Y., Girshick, R., Dollár, P., & 
Feichtenhofer, C. (2024). SAM 2: Segment Anything in Images and Videos (No. arXiv:2408.00714). arXiv. https://doi.org/10.48550/arXiv.2408.00714

Ronneberger, O., Fischer, P., & Brox, T. (2015, May 18). U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv.Org. https://arxiv.org/abs/1505.04597v1 
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. International 

Journal of Computer Vision, 128(2), 336–359. https://doi.org/10.1007/s11263-019-01228-7
Suganyadevi, S., Seethalakshmi, V., & Balasamy, K. (2022). A review on deep learning in medical image analysis. International Journal of Multimedia Information Retrieval, 11(1), 19–

38. https://doi.org/10.1007/s13735-021-00218-1
Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., & Nandi, A. K. (2022). Medical image segmentation using deep learning: A survey. IET Image Processing, 16(5), 1243–

1267. https://doi.org/10.1049/ipr2.12419
Zhou, T., Zhang, F., Chang, B., Wang, W., Yuan, Y., Konukoglu, E., & Cremers, D. (2024). Image Segmentation in Foundation Model Era: A Survey (No. arXiv:2408.12957). 
arXiv. http://arxiv.org/abs/2408.12957
Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2018). UNet++: A Nested U-Net Architecture for Medical Image Segmentation (No. arXiv:1807.10165). arXiv. 
https://doi.org/10.48550/arXiv.1807.10165
Zou, X., Yang, J., Zhang, H., Li, F., Li, L., Wang, J., Wang, L., Gao, J., & Lee, Y. J. (2023). Segment Everything Everywhere All at Once (No. arXiv:2304.06718). arXiv. 
https://doi.org/10.48550/arXiv.2304.06718

https://doi.org/10.2174/157340561101150423103441
https://doi.org/10.48550/arXiv.1606.04797
https://www.nature.com/articles/d41586-025-01125-9
https://doi.org/10.48550/arXiv.2408.00714
https://arxiv.org/abs/1505.04597v1
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s13735-021-00218-1
https://doi.org/10.1049/ipr2.12419
http://arxiv.org/abs/2408.12957
https://doi.org/10.48550/arXiv.1807.10165
https://doi.org/10.48550/arXiv.2304.06718

	默认节
	Slide 1
	Slide 2: Content
	Slide 3: Content

	Techniques for Image Segmentation
	Slide 4: Image Segmentation
	Slide 5: Mathematical Formulation
	Slide 6: Medical Image Segmentation
	Slide 7: Image Segmentation before Deep Learning
	Slide 8: Rise of Deep Learning in Segmentation
	Slide 9: Content
	Slide 10: Semantic Segmentation: The Problem
	Slide 11: U-Net: Motivation
	Slide 12: Semantic Segmentation Idea
	Slide 13: Downsampling and Upsampling
	Slide 14: Learnable upsampling
	Slide 15: Learnable upsampling
	Slide 16: U-Net: Vanilla Version
	Slide 17: Contracting Path (Encoder)
	Slide 18:  Expanding Path (Decoder) 
	Slide 19: 3D U-Net
	Slide 20: U-Net: Impact
	Slide 21: U-Net Taxonomy based on Design Ideas 
	Slide 22: Timeline of Prominent U-Net Variants
	Slide 23: U-Net in Clinical Image Analysis Pipelines
	Slide 24: Content
	Slide 25: Improving U-Net
	Slide 26: Backbone Design Enhancement: V-Net
	Slide 27: Skip Connection Enhancement: UNet++
	Slide 28: UNet++
	Slide 29: Transformer Complement: TransU-Net
	Slide 30: Swin-UNet 
	Slide 31: Swin-U-Net
	Slide 32: SynthSeg
	Slide 33: No New U-Net (nnU-Net) 
	Slide 34: nnU-Net
	Slide 35: nnU-Net: Impact
	Slide 36: U-Mamba
	Slide 37: U-Mamba

	Interpretability
	Slide 38: Interpretability

	Self-Supervised Learning
	Slide 41: Masked Autoencoder (MAE)
	Slide 42: Overview of Loss Functions  

	Loss Functions
	Slide 43: Loss Functions: Taxonomy
	Slide 44: Pixel Level (Distribution-based)
	Slide 45:   Region Level
	Slide 46: Boundary Level
	Slide 47: Combination
	Slide 48: Visual Comparison

	Project MONAI
	Slide 49: Content

	Foundation Models
	Slide 50: Foundation Models and Image Segmentation
	Slide 51: Foundation Models
	Slide 52: Categories of Vision Foundation Models
	Slide 53: EchoCLIP
	Slide 54: Segment Anything (SAM)
	Slide 55: SAM Architecture Overview
	Slide 56: Segment Anything (SAM)
	Slide 57: SAM: Play Around with it Online!
	Slide 58: Segment Anything 2 (SAM 2)
	Slide 59: SEEM
	Slide 60: SEEM
	Slide 61: FMs for Biomedical Image Segmentation
	Slide 62: FMs for Biomedical Image Segmentation
	Slide 63: FMs for Biomedical Image Segmentation
	Slide 64: Chronological Timeline of Medical IS Datasets
	Slide 65: Taxonomy based on IS Tasks and FMs
	Slide 66: Various Existing Works Build Upon SAM
	Slide 67: Comparisons between SOTA and SAM
	Slide 68: MedSAM
	Slide 69
	Slide 70
	Slide 71: Content
	Slide 72: Theoretical Challenges
	Slide 73: Content
	Slide 74: Project MONAI
	Slide 75
	Slide 76: Loss Functions in MONAI
	Slide 77: Loss Functions in MONAI
	Slide 78: Training Models with MONAI
	Slide 79: Training Models with MONAI
	Slide 80: Interpretability with MONAI

	References
	Slide 81: References
	Slide 82: References


