Bios 740- Chapter 9. Image Segmentation

Acknowledgement: Many thanks to Mr. Mingchen Hu for preparing some of these slides. I also
drew on material from the lecture presentations of StanfordCS231n as well as content generated by
ChatGPT.
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Image Segmentation

Image segmentation, defined as the partition of the entire 1image into a set of regions, aims to make anatomical or
pathological structures changes clearer in images. Image segmentation tasks can be classified into three categories:
semantic segmentation, instance segmentation and panoptic segmentation.

* Semantic segmentation is a pixel-level classification that assigns corresponding categories to all the pixels in an image.
* Instance segmentation needs to identify different objects within the same category.

* Panoptic segmentation presents a unified image segmentation approach where each pixel in a scene 1s assigned a
semantic label and a unique instance identifier.

panoptic Instance semantic pxel-wiss  Obiect
Task Type Goal
Label Instances

Semantic Classify all pixels x
Segmentation

‘ Instance Segment individual
Segmentation objects
Panoptic Combine both tasks |

Segmentation

Cheng, B., Misra, ., Schwing, A. G., Kirillov, A., & Girdhar, R. (2022). Masked-attention Mask Transformer for Universal Image Segmentation (No. arXiv:2112.01527). arXiv.
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https://doi.org/10.48550/arXiv.2112.01527

Mathematical Formulation

Image segmentation aims to assign semantic labels to image regions.
P Formally, this is a mapping problem. f:xX—Y

P [ is typically implemented as a deep neural network.

Input Space X =7 x P Output Space Y =M x C
> I: Image domain (e.g., RGB images, CT scans) > M: Segmentation mask (pixel-wise label matrix)
» P: Prompt space (used in interactive/prompt-based » C: Set of semantic categories

segmentation)

» Qutput y = (m, c) links each mask to its semantic class
» Each input x € X is a pair (i,p), where i e Z,p € P
Prompts are used in special settings:

P Interactive segmentation: user clicks or bounding boxes

P Vision-language models: textual prompts

» Prompts guide the model to focus on relevant regions or
semantics

P f: X — Y models the relationship between input
and segmentation output

P Typically implemented using deep models like U-
Net, DeepLab, or Vision Transformers
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Medical Image Segmentation

In biomedical field, image segmentation often plays a key role in computer-aided diagnosis and smart
medicine. There are three main challenges in medical imaging segmentation:

“» Limited image samples per specific disease — The scarcity of annotated medical images for certain
diseases restricts the performance of segmentation methods.

“* Complex lesion characteristics — Similar intensity, variable shapes, and dynamic positions of lesions make
accurate segmentation difficult.

“* Image acquisition artifacts — Noise, spatial aliasing, and sampling artifacts lead to unclear or disconnected
boundaries in structures of interest.

Brain Tumor

KITS LITS MSD MSD MSD
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Image Segmentation before Deep Learnlng

*+ Early segmentation methods were model-driven.
s Common techniques included:

» Thresholding

Maximum
Likehood
(ML)

P Histogram mode seeking

Nearest
Neighbor

P Region growing and merging

P Spatial clustering

K- Nearest
Neighbor

» Energy diffusion

Parzen
Window

P Super-pixel representation
P Conditional and Markov Random Fields (CRFs & MRFs)

¢ Relied on prior knowledge and handcrafted features.

Decision

Deformable i
Models Bayesian Approach Neural Networks
Region Growing Thresholding
Medical Image
Segmentation
Methods f
Markov Random
Classifiers Field
Atlas Guided
Clustering [ Approaches ‘ Other Approaches
Advantages:

P Intuitive and interpretable

» Computationally efficient

Limitations:

P Poor generalization to complex structures

P Sensitive to noise and intensity variation

P Struggled with diverse anatomical variability

Masood, S., Sharif, M., Masood, A., Yasmin, M., & Raza, M. (2015). A Survey on Medical Image Segmentation. Current Medical Imaging Reviews, 11(1),3-14.
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https://doi.org/10.2174/157340561101150423103441

Rise of Deep Learning in Segmentation

In recent years, deep learning has become the dominant paradigm in medical image segmentation.

Core architecture types:

» Convolutional Neural Networks (CNNs) — foundational for early breakthroughs

P U-Net and its variants — encoder-decoder architecture specifically designed for biomedical segmentation
P Vision Transformers (ViT, Swin) — exploit long-range dependencies for better global context

Benefits of Deep Learning:

P Lecarns hierarchical and task-specific features automatically

P Capable of capturing complex anatomical structures

» Handles multimodal inputs (e.g., MRI + CT) and 3D volumetric data

P Integrates with attention mechanisms and prior knowledge via hybrid models

Deep learning methods typically Outperform Dataset Target Region Traditional Deep Learning
traditional approaches by 10-20 percentage BraTS Whole Tumor 65-75% 90-95%
points in Dice coefficient, especially on Tumor Core 60-70% 85-90%
. Enhancing Tumor 55-65% 75-85%

complex regions and harder substructures.

LiTS Liver 70-80% 96-98%
Tumor 50-60% 65-75%
PROMISE12 Prostate Gland 75-80% 88-92%

Table: Dice Similarity Coefficient (%) comparison on benchmark datasets
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Semantic Segmentation: The Problem

?
GRASS, CAT, TREE, At test time, classify each pixel of a new image.
SKY,; ass
Paired training data: for each Classifv center pixel
training image, each pixel is labeled with CI}\IIN P
with a semantic category. . g Vet
Full image [ : j - ‘ [\L\ [%\ ‘E%E/]‘Q Cow
DR 3 i Y- » 7’ i N
I )
rAh Q.fu:‘“, Cow

e QE“@PEU Grass

Impossible to classify without context Q: how do we model this?\ .
Q: how do we include context?

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014
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U-Net: Motivation

In CNNs, different layers learn different feature levels:
* Lower layers: Learn low-level, fine-grained
details (e.g., edges, textures)

* Higher layers: Capture high-level, coarse-grained

semantic features (e.g., shape, structure)
*This hierarchy is ideal for classification tasks but
introduces limitations for pixel-level tasks like
segmentation

Challenges in Medical Image Segmentation
*Medical images often suffer from:

* Noise

* Low contrast

* Blurred or unclear boundaries
*Relying only on low-level features results in poor object
recognition
*Relying only on high-level semantic features leads to
inaccurate boundary detection
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Need for Multi-Level Feature Integration
*Effective segmentation requires a combination of:
* High-level semantic understanding (context)
* Low-level spatial precision (details)
*General CNNss lack explicit mechanisms to combine
both effectively

Encoder-Decoder Architectures
*Designed to combine high-level and low-level features
*Consist of:
* Encoder: Downsamples and extracts abstract features
* Decoder: Upsamples to recover spatial resolution and
integrates detail
*Enables pixel-level prediction with semantic awareness



Semantic Segmentation Idea

Design a network with only convolutional layers without downsampling
operators to make predictions for pixels all at once!

Problem: convolutions at

; : original image resolution
onv onv . .

- i il Sl will be very expensive ...

Y o Scores: Predictions:
CxHxW HxW

Convolutions:
) DxHxW . ) )
Design network as a bunch of convolutional layers, with downsampling and

upsampling inside the network!
Med-res: Med-res:

D,x H/4 xW/4 D,x H/4 xW/4

Upsampling:
Unpooling or strided
transposed convolution

Downsampling: §
Pooling, strided
convolution

Low-res:
D;x H/4 xW/4

High-res: High-res: Predictions:
D, xH/2 x W/2 D, x H/2 x W/2 Hx W

i‘T—‘ﬁ C GILLINGS SCHOOL OF
L8 UI J GLOBAL PUBLIC HEALTH



D OoOwns amplin g and UP S amplin g Corresponding pairs of

downsampling and
upsampling layers

Max Pooling

) Max Unpooling
Remember which element was max!

Use positions from

11216 3 pooling layer ol o I o
3(5]2]1 5|6 112 ojf1]|o0fo0
e ———> e — —
3 | 4
L]z]2]1 ¥ | B Rest of the network ol Rl Rl
7348 310]014
Input: 4 x4 Output: 2x2 _Input:2x2 Output: 4 x 4
Common Downsampling types:

Common unpooling strategies:

* Max pooling: Takes the maximum value in each * Max-unpooling with indices:

window * Fixed-position unpooling: inserts values at top-left
* Average pooling: Computes the average value cornet of window
» Stochastic pooling: Randomly selects an activation .

Interpolation-based unpooling: uses nearest-
neighbor or bilinear interpolation to expand feature
maps

Learnable unpooling: introduces parameters to
learn where and how to upsample

Often followed by convolutional layers to refine outputs

based on a probability distribution
* LP-pooling: Generalized pooling that uses the p-norm
over each region .
* Global pooling: Applies pooling over the entire feature
map to reduce to a single value per channel
*Purpose: (1) Reduce computation; (1i) Increase receptive field;
(i11) Achieve spatial invariance; (iv) Introduce regularization
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Learnable upsampling

Learnable upsampling replaces heuristic upsampling with trainable layers

* Common types:
* Transposed convolution (deconvolution): applies learnable filters to increase spatial resolution
* Sub-pixel convolution: reshapes feature maps using depth-to-space operations
* Resize-convolution: resizes feature map first, then applies standard convolution

* Learnable upsampling is adaptive to data and helps with fine-grained localization

» Resize step: interpolate input x € RFXW to size rH x rW ..-..

ol -
XI{J = Z Xmn* k( i—mj— n) interpolate zero-padding

) - )
(m,n)

where k is the interpolation kernel (e.g., bilinear, bicubic) =llllll=

» Convolve: apply learnable filters

y = Conv(x)

The resize convolution. Dark green cells are zero-valued, red
lines indicate a traditional convolution operation.
https://medium.com/@paren8esis/introduction-to-super-resolution-with-deep-learning-pt-2-ced99297a483
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Learnable upsampling

Let x € RFinxWin kernel w € RK*k stride s:

zZero-expansion

|
a4 L]
H B B BN

Lkl ENEEEEEE
- K e EEEEEEEE
Yij = i=m ’LJ__HJ m,n
m=0 n=0 The transposed convolution. Dark green cells are zero-valued,

red lines indicate a traditional convolution operation.

l i | =

.LU reshape = ”“‘ “‘ ' > |nput: xeRC-rszXW
. ‘—CW : ‘ \ ‘ | > Output: y ERCXFHX.FW

lllll o0 B Operation

1610- paddmg I I

............

Yritmrjt+nc = Xjjc.r2+rm+n

The sub-pixel convolution. Dark green cells are zero-valued, for m,n € {0,...,r — 1}, rearranging depth into spatial
red lines indicate a traditional convolution operation. resolution

https://medium.com/@paren8esis/introduction-to-super-resolution-with-deep-learning-pt-2-ced99297a483
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U-Net: Vanilla Version

Skip Connections: Final Output:
» Link encoder and decoder layers at the same depth level % A 1x1 convolution maps
» Concatenate encoder feature maps with decoder inputs to the final feature map to the
% U-Net is a neat end- combine detailed and contextual information number of tafget classes
to-end neural > Help restore spatial resolution and sharpen boundaries ** Produces a pixel-level

classification map (e.g.,
segmentation mask)

network  with a
characteristic "U"
shape

Input Image

S N
==

. g

% Captures context through repeated Eﬁ m g @ m
downsampling blocks ) v

s Upsamples feature maps to

Contracting Path (Encoder): 4
X match mput resolution

a 4 Segmentation Mask
jm [E Expanding Path (Decoder):

/

Cmemampey % Each block includes one 2x2

%+ Each block includes two 3 %3 convolutions N N N N % 2X2MaxPulg transposed convolution (up-
+ ReLU, followed by 2 X2 max pOOllng ‘ },@ : Zzz(T:ransplosledCrfnvoh':ion COHV), two 3% 3 convolutions +
< Gradually increases the receptive field Bottleneck: o/ ) 11 Comoin i ReLU

& Skip Connection and Concatenation

without heavy computation +»» Connects encoder and decoder
s Two 3 x3 convolutions + ReLU
¢ Reduces spatial resolution and increases
depth for high-level abstraction
Ronneberger, O., Fischer, P., & Brox, T. (2015, May 18). U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv.Org. https:/arxiv.org/abs/1505.04597v]
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https://arxiv.org/abs/1505.04597v1

Contracting Path (Encoder)

1 64 64

¢ Block 1:
_input < Input: 572x572x1 (grayscale image)
|ma:;c,i_::§ > Block 1 » Two 3 x3 unpadded convolutions + ReLU — 64 channels
¢ 2x2 max pooling (stride 2) — downsampled to 284 x284
¢ Block 2:
% Two 3 %3 convolutions + ReLU — 128 channels
¥ 126 128 % 2x2 max pooling — 140x 140
¢ Block 3 & Block 4:
Block 2 ¢ Same as previous blocks with doubled channels (256,
512)
% Max pooling after each block halves spatial dimensions
¥ 256 s 2 Block 5 (Bottom):
A k1 it Block 3 s Two 3 x3 convolutions + ReLU — 1024 channels
= +» First conv in this block included here, second used in

a " 512 512
s[>l -~ Block 4 expanding path for symmetry
i E ’ 1024

Eme-mm. Block 5

D)

A

D)

CR)

572 %572
570 x 570
568 x 568

2842
282
2807

14

s
Los]
—
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Expanding Path (Decoder)

128 64 64 2
*Block 5:
* Continues from the bottom block with a second 3% 3
Block 1 - - output convolution + ReLU
?neagmentatlon * Followed by a 2x2 up-convolution — doubles spatial
P resolution, reduces channels to 512
*Block 4:
» Skip connection: concatenate encoder feature map
I (cropped to match size) — 1024 channels
256 128 * Two 3 %3 convolutions + ReLU — reduce to 512 channels
‘ .| e 2Xx2 up-convolution — upsample and reduce channels to
Block 2 =

256
t « Same as Block 4, with halved channels: 256—128—64
512 256

*Block 3 & Block 2:
s B *Block 1 (Final Block):
Block 3 > I:l:l = conv 3x3, ReLU * After skip connection: 128 channels
i 512“' S =+ copy and crop * Two 3 %3 convolutions + ReLU — reduce to 64 channels
Block 4 ==+ & [~ll>l § max pool 2x2 * Final 1 X1 convolution — maps to number of classes (e.g.,
1024 'R 4 up-conv 2x2 2 for binary)
Block 5 -':— = conv 1x1 * Followed by activation function (e.g., sigmoid for binary
N classification

388 x 388 W

388 x 388 '

390x3%0 ¥

392 x 392
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3D U-Net

* Due to the abundance and representation power of volumetric data, most medical image modalities are
three-dimensional. 3D U-Net was commonly used in Brain tumor segmentation (e.g., BraTS dataset), Lung
nodule detection, and liver and pancreas segmentation.

* 3D U-Net 1s proposed to deal with 3D medical data directly. It replaces all 2D operations with their 3D
counterparts. The users can annotate some slices in the volume to be segmented. The model then learns
from these sparse annotations and provides a dense 3D segmentation.

* However, due to the limitation of computational resources, it only includes three down-sampling, which
cannot effectively extract deep-layer image features, leading to limited segmentation accuracy for

medical images.

1284256 128
256+512

‘ 128 256 256
o — D
3 - =p concat

conv (+ BN) + ReLu
e e . E

', max pool

up-conv

train and

apply
3D u-net

raw image manual sparse annotation dense segmentation

apply trained 3D u-net

raw image dense segmentation

- ’ conv
Cicek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3D U-Net: Learning Dense Volumetric Segmentation

from Sparse Annotation (No. arXiv:1606.06650). ar Xiv. https://doi.org/10.48550/arXiv.1606.06650
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U-Net: Impact

* Since its introduction in 2015, U-Net has become probably the most well-known architecture for segmenting
medical images, being cited over 100,000 times so far.

* A lot of variants of the model have been derived to progress the state-of-the-art (SOTA) based on it.

Feature

THEMOST-CITED
PAPERS OF THE
TWENTY-FIRST
CENTURY

—
Title E 3000 4 Classification
Segmentation
Deep Residual Learning for Image Recognition Reconstruction
Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-AACT M 2500 1
Using thematic analysis in psychology
Diagnostic and Statistical Manual of Mental Disorders, DSM-5
A short history of SHELX
Random Forests
Attention is all you need
ImageNet classification with deep convolutional neural networks
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 2
Preferred Reporting ltems for Systematic Reviews and Meta-Analyses: The PRISMA Statement
U-Net: Convolutional Networks for Biomedical Image Segmentation
Electric Field Effect in Atomically Thin Carbon Films 500 1
Fitting Linear Mixed-Effects Models Using Ime4

Detection
Registration
Denoising
Image synthesis
Others

2000 1

F 1
2
3
4
5
6
7
8
)

1500 4

Number of articles
S
=

. . . . —

Anexclusive Natureanalysis reveals the 25 highest-cited Scikit-leam: Machine leaming in Python

papers published this century and explores why they Deep leaming 0L , — e B W ,
are breaking records. By Helen Pearson, Heidi Ledford, Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recom 2015 2016 2017 2018 2019 2020 2021 2022
Matthew Hutson and Richard Van Noorden Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Years

Pearson, H., Ledford, H., Hutson, M., and Van Noorden, R. (2025) Exclusive: the most-cited papers of the twenty-first century, Nature. 588 |, Vol 640.

Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2022). Medical Image Segmentation
Review: The success of U-Net (No. arXiv:2211. 14830). arXiv. thp_.Zme_QLgLaszZZlLlﬂﬁm
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http://arxiv.org/abs/2211.14830
https://www.nature.com/articles/d41586-025-01125-9

U-Net Taxonomy based on Design Ideas

CHMN-bazed T-MNet

Transformers

Standalone T B
for TU-MNet Design

14. MEF-TMet

Craphical Model AFmorithems ~|:
15. Bavesian Skip INet

B Probabilistic
18 WVAE U-IJet Desi

17. Probakilistic T7-I"et

1B. Focal Thearsky Attendion TI-et
Mnlti-scale Fasion 10. Polar Transforreation WI-ITet

Nariational Anto Encoeder (VAFE) Regulariration ~|:

20. MFP-UNet

21. Denss Muld-path U7-1at Enhancement

Rich Representation }

AInkti-modality Fasion
22 Cascaded TI-et

L i Drepith Infor is —I: 25, 3D Antention TT-Met

Backbone Design
Enhancement

Processing Featnre hlaps

Skip Connection
withinm the Sldp

Enhancement

Combination of Encoder and
Decoder Feature Alaps

43, hA-Net

Bottleneck
Enhancement

Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2022). Medical Image Segmentation

Review: The success of U-Net (No. arXiv:2211. 14830). arXiv. hn;lﬁammmg[ahsﬁz_ll,_léﬁﬂl
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Timeline of Prominent U-Net Variants

@D Main 2D/3D U-Net
. Skip Connection Enhancement

Backbone Design Enhancement
. Bottleneck Enhancement

. Transformers

. Rich Representation Enhancement
. Probabilistic Design

Residual U-Net?
|
V-Net? 3D-CNN®
| |
GP-Unet®

DUNa! D UNet

Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2022). Medical Image
Segmentation Review: The success of U-Net (No. arXiv:2211.14830). arXiv. : 1
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U-Net in Clinical Image Analys1s Pipelines

Input . FE“E“."‘S ___________________ Output

Signals Classification, Detection and, Segmentation

Text - Document

U-Net plays a central role in clinical image

Semantic segmentation ]

w w1 @ Tumor growth Therapy planning
g T, € O icati i < ol Anatomical studies
& De-aliasing / Resolution ] El ! &r Medication regimen monitoring support

1
' [ Image

DUNC

’ ~
1 Data Image ‘I
: augmentation transformation 1

1

De-noising

Image

|

correction

Review: The success of U-Net (No. arXiv:2211. 14830). arXiv. hltllﬁammmg[a.bsm_ll,_lﬂiﬁﬂ
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registration é :

] [ Surgery planning ] [ Remote surgery ]
: \ /

Treatment

Diagnosis, Planing, and Monitoring

(

[ Intra-surgery navigation ]

Early disease detection

Measurement

Region volumes

Locating tumors /
regions of interest

of tissue /

Diagnostic support system

Azad, R., Aghdam, E. K., Rauland A, Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P, Adeh E., & Merhof, D. (2022). Medical Image Segmentation

1 ] ! ‘ \II :’ / [ |I

| oo [éﬁ 1E [‘“"g““""‘“‘““] = EE |

: —= : : | A : : Detectlon : 1 1 1

. 5.9 : : = \4 . : analy51.s plpehnes

e L= ..-,-.e..,!.L il B === . ~=™ || Overview of key stages:

{ . . Do) Mt Sevne A Lo ‘slﬁng| .« Input Preparation: Image acquisition,
------ B [ - @ - [ i normalization, and preprocessing for
[ ECG ] [ EGG ] [EMG ] ] : : . . [ Instance segmentation ] : . .

B | (e - . consistent input format
(o) (e ) )= I : ) :
:_'B_;_;E;_;E;E;@;E;_;E;_;@;g;n_;_" ; ' - ¢ Architecture Search: Automatic
- == O Wﬁﬂl’\l_m - selection of the most efficient U-Net
. ) D i 5 ~ i i variant via neural architecture search
gy b e GEIT RIS . P Other | __1 ost-processing ! o
[ External data ][ Generative data ] : : [Transformer m:ura.l] [ Generative ] -E E ! : [ —— ] : :' [m] \: : [ ] POStproceSS lng: Refinement Of
resource : network networks ) : _’: arg, : : operation : : Se . k
_ L : S e [ ] gmentation masks (e.g.,
l Operation ¢ [ D]f::ﬁ‘:;:::f ] [ ] 2ol ! [ Begisation ] :_>: 1::;;;?-::1 : : 1
(e i ) ([ ot | WA e —— S 3 morphological operations)
e ][ — e Voo * Clinical Application: Supports

decisions such as tumor growth tracking
or treatment planning
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Improving U-Net

Numerous U-Net variants have emerged to address limitations in specific medical imaging tasks.

“* Backbone Design Enhancements: Replace standard U-Net encoder with deeper/more powerful backbones (e.g., ResNet,
EfficientNet, DenseNet); Improve feature extraction and convergence

“* Skip Connection Enhancements: Use attention gates (Attention U-Net), dense connections (UNet++), or residual
connections. Improve feature fusion and gradient flow

“* Bottleneck Enhancements: Incorporate dilated convolutions, squeeze-and-excitation blocks, or atrous spatial pyramid
pooling. Capture multi-scale context and expand receptive field

“* Transformer Integration: Embed self-attention mechanisms in encoder, decoder, or bottleneck (TransUNet, UNETR).
Improve global context modeling.

“* Rich Representation Enhancements: Introduce multi-branch or multi-scale input/output streams (e.g., MultiResUNet).
Enable robust learning from varying spatial scales and features

“* Probabilistic U-Nets: Bayesian U-Net introduces variational inference for uncertainty estimation. Useful for detecting
ambiguous or low-confidence regions in medical images.
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Backbone Desigh Enhancement: V-Net

Feature

Dimensionality

Residual Connections

Loss Function

Pooling Method

Augmentation

Efficiency

Clinical Relevance

Mllletarl F , Navab, N. &Ahmadl

GILLINGS SCHOOL OF

U-Net V-Net
.. 3D volumetric
2D (originally) convolutions
% Improves training
speed and convergence
Cross-entropy (class Dice loss (robust to
imbalance sensitive) imbalance)
: Strided convolutions (no
Max pooling :
pooling layers)
Advanced: B-spline
Limited deformations, histogram
matching
Slice-by-slice, slower Entire volume processed
inference in 1 pass (~1s)

Better for volumetric

Strong for 2D slices segmentation (MRI, CT)

V-Net is a volumetric and residual version
of U-Net, specifically designed for 3D
medical images. It improves segmentation
quality and training efficiency using:
Fully 3D convolutions, Dice-based loss,
and Residual learning. It 1s a strong
alternative to U-Net, particularly for 3D
volumetric  segmentation tasks like
prostate, liver, or brain scans.

32 Channels Prediction
12 x 64
Input

128 x128 x 64
P = &%
- |-I@®

~Down “Conv.

l6Ch2 1 1 E'g
128 x128 x 64 & -
1 ] I.- 6IChanﬁe Is

~“Down “Con 64 x 64 x 32

Sidcr:nn;:zl ]x.]x»]ﬂjg
L L 1% et

“Con

2 :|x.‘|_.‘pr e

T Convolution Layer
256 Channels '- 2x zmurs.q ide:2
128 Channels "
16x16x 8 - gﬂ DeConrolution Layer
+L L +g 2x2 filters stride:2
“Up “Conv. - “Fine-grain “" camind
forw
Convalation uslng 8

256 Channels @ Sx5x snn er stride: |
8x8x4

® Element-wise sum
PReLu non-linearity

~A. (2016). V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation (No. arXiv:1606.04797). arXiv.
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Skip Connection Enhancement: UNet++

Feature

Skip Connections

Decoder Optimization

Feature Fusion

Loss Function

Accuracy (IoU Gain)

Flexibility

GILLINGS SCHOOL OF
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U-Net

Direct skip from encoder

to decoder

Jointly optimized

Concatenation only

Binary Cross Entropy

Baseline

Single-output

UNet++

Dense + Nested skip
paths to narrow
semantic gap

Deep

supervision improves
gradient flow and
allows for pruning

Progressive fusion of
features with
increasing semantic
richness

Combined BCE +
Dice at multiple levels

+3.9 IoU over U-Net
and +3.4 IoU over
Wide U-Net

Multi-output + fast
inference mode via
pruning

~.

\ Down-sampling
/ Up-sampling

------ > SKip connection
XY Convolution

x0l = H[XO*O, U(X"O)] x02= H[XO.()’ x0.! ; U(X”)] x03= H[XO'O, x0.1 ) x().z, U(Xu)]

U(XI,O) U(xl.l) U(x'—’) U(x'ﬁ)
(b) x04 = H[XO"’, X0, x02 x03 U(X"3)]

L JH@E@T), i=0
x H ( [xi’k]i;[l) ,U($i+l’j_l)]) . >0


https://doi.org/10.48550/arXiv.1807.10165

UNet++

UNet++ L4 3

Ground Truth

wide U-Net UNet++

£

#

Polyp

Liver

UNet++ L3

Nuclei

.

UNet++ L2 UNet++ L! UNet++ 1.2 o UNet++L? o UNet++L?
Param =0.1M Param = 0.5M Param = 2.2M Param = 9.0M
95 40 90 80
S o4 36 86 78
) A O @
293 32 e A O ® 5
E Apg °® o
UNet++ L! 5 72 ® % ® A 78 @ s
£ 9 24 74 72 @
90 20 70 70
0 20 40 60 0 20 40 60 0 20 40 60 0 400 800 1200
Inference Time (s) Inference Time (s) Inference Time (s) Inference Time (s)
(a) (b) ©) (d)
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Transformer Complement: TransU-Net

CNN + Transformer Hybrid Encoder:
* CNN backbone (e.g., ResNet-50) captures low-  embedded Sequence
level spatial features. o S

* Transformer layers model long-range Eyz] "» ’ |
dependencies on patch sequences. e V, WV
iy . {1 HW
1R a4 /A
Cascaded Upsampler (CUP) Decoder: oy o 4
. . . . 4 -
* Multistage upsampling path with skip "
connections. 9 T s
* Precise boundary localization and semantic m |4 [44 N
restoration. > ey | » Convasd, Rell
. N m ‘ [ (128, W, W)
- 7 Skip Connections Enhanced: , ‘—E ', 1 A
. . . . ’ il & Segmeniation head
e Multi-resolution skip connections from encoder / EEE) | o st
tO deCOder' . Hidden Mhlw b - Feature Concatenation
“ (n_patch, D) (%! Eum;n’e,

» U-Net-like structure helps retain fine spatial

detail lost in transformer layers. .
* Avg. Dice Score (Synapse): * Avg. Dice Score (ACDC):

@ Superior Accuracy on Benchmarks: | « U-Net: 74.68%, . U-Net: 87.55%,
e Outperforms U-Net, V-Net, and attention U-Net e TransUNet: 77.48% e TransUNet: 89.71%

on Synapse and ACDC datasets.
Chen,J.,Lu, Y., Yu, Q Luo, X., Adeli, E. Wang,Y Lu L., Yuille, A. L., &Zhou Y. (2021). TransUNet: Transformers Make Strong Encoders for Medical Image



https://doi.org/10.48550/arXiv.2102.04306

Swin-UNet

(O Motivations

* CNN-based U-Nets perform well but struggle to model global and
long-range dependencies due to locality of convolutions.

» Transformers offer better global context modeling but lack spatial

Skip Connection
1/4

Linear Projection
Patch Expanding

Swin Transformer w i 11

W x I x Class

Wl xC(4x)

Skip Connection
1/8

Block x2

Patch Expanding

Swin Transformer Wl ..
—

Skip Connection
1/16

Block x2 8 B

Patch Expanding

Swin Transformer W H
x4

detail recovery.
@ Proposed Architecture — Swin-Unet e LV
* Pure Transformer-based U-Net-style architecture:
* Encoder, bottleneck, decoder, skip connections — all built ~ , , [ rwome
from Swin Transformer blocks. e Block 2
* Uses shifted window attention for local-global interaction.
* Patch Mergin% (Downsampling{.and Patch Expanding v o
(Upsampling) layers replace pooling and deconvolution. 75| [
 Skip connections preserve spatial resolution and complement global -
features.
[l On Synapse dataset: LRl (e

* Dice Score (DSC): 79.13%, HD: 21.55
* Outperforms U-Net, TransUNet, and Att-UNet in boundary

accuracy (HD).
* On ACDC dataset:

Encoder

W H o
32732 X

e Dice Score: 90.00% — better than U-Net (87.55%) and

TransUNet (89.71%)
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comentation (No. arXiv:2105.0 1 X https://do1.019

Bottleneck

Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., & Wang, M. (2021). Swin-Unet: Unet-like Pure Transformer for

0,.48550/3

Block x2 16 16

Patch Expanding

Decoder

X] 05.0


https://doi.org/10.48550/arXiv.2105.05537

Swin-U-Net

Swin-UNet presented SOTA results over the CNN-Transformer hybrid structures like TransUNet and
demonstrated the robust generalization ability with the help of two multiorgan (Synapse) and cardiac (ACDC)
segmentation datasets.

Methods DSCtT HDJ |Aorta Gallbladder Kidney(I.) Kidney(R) Liver Pancreas Spleen Stomach

V-Net [35] 68.81 - 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98
DARR [36] 69.77 - 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96
R50 U-Net [2] |74.68 36.87 | 87.74 63.66 80.60 78.19 93.74 56.90 85.87 T74.16
U-Net [3] 76.85 39.70 | 89.07 69.72 TT.TT 68.60 93.43 53.98 86.67 T75.58
R50 Att-UNet [2]| 75.57 36.97 | 55.92 63.91 79.20 72.71 93.56 49.37 87.19 T74.95
Att-UNet [37] | 77.77 36.02 |89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
R50 ViT [2] 71.29 32.87|73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95
TransUnet [2] | 77.48 31.69|87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

SwinUnet 79.13 21.55| 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

[laorta | gallbladder [ left kidney | right kidney [l liver  pancreas [Wlspleen  stomach

Methods | DSC| RV Myo LV
R50 U-Net |87.55(87.10 80.63 94.92
R50 Att-UNet| 86.75 [87.58 79.20 93.47
R50 VIiT | &87.57(86.07 81.88 94.75
TransUnet |89.71 [88.86 84.53 95.73
SwinUnet {90.00(88.55 85.62 95.83
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SynthSeg

* Problem: CNNs like U-Net fail to generalize across different MRI
contrasts and resolutions.

Prediction Y

3D UNET

* Solution: SynthSeg, a 3D U-Net trained entirely on synthetic images
with domain randomization.

* Training Pipeline:

* Generates synthetic 3D brain scans by sampling from a generative
model conditioned on label maps.

* Applies random transformations: spatial deformation,
resolution changes, contrast variation, artifacts.

[Backpropagation]

1

> Average soft
Dice loss

» Learns to segment across diverse modalities (T1, T2, PD, FLAIR, |Training Set{S;} Target Labels T)
CT) and resolutions (1-7mm). Average Dics
.90 ﬁ F
* No need for retraining: Once trained, SynthSeg generalizes to unseen % % fﬁ Qil i; %
domains directly. | , 75 it b
T1-39 ADNI Tlmix FSM-T1 MSp-T1 FSM-T2 FSM-DBS MSp-PD FLAIR cr =6 ' i . i
i Beniline Dice 0.91 0.83 0.86 0.84 0.82 . - - - - : W ;
SD95 1.31 2.63 2.14 2.09 3.55 - - - - - .65 . $
Dice 0.91 0.82 0.84 0.84 0.81 - - - - =
nnUNet (Isensee et al., 2021) .60 B !
We RGO W - L . e mTiemseine mma msavseo I
% e ice - E K ¥ 4 E s i X ¥ .
TrA Gearand etal., 2020) SD95 - 2.26 1.73 1.72 214 2.35 4.48 3.71 3.95 19.43 5 MnnUNet EESIFA W SynthSeg l v
; Dice = 0.8 0.82 0.84 0.84 0.82 0.82 0.74 0.73 0.62 39 oW 4 (% B 0 P ¢ N PO AR CT
SIEAN(Chenietal,(2032) SD95 - 3.03 2.24 2.21 2.57 2.32 2.09 4.41 3.30 451 R B T et wse goth FoM o8 MSQ el
o R . e Dice 0.85 0.81 0.86 0.86 0.83 0.82 0.81 0.81 0.64 0.71
o= SD95 1.85 3.09 1.77 1.81 2.47 2.21 2.34 2.99 3.67 3.36 Fig. 4. Box plots showing Dice scores obtained by all methods for every dataset. For
Dice 0.88 0.84 0.87 0.88 0.86* 0.86* 0.86* 0.84* 0.78* 0.76* each box, the central mark is the median; edges are the first and third quartiles; and
SynthSeg (ours) SD95 1.5 2.18* 1.69* 1.59* 1.89* 1.83*% 1.81* 2.06* 2.35* 3.29* outliers are marked with ¢.

Billot, B., Greve, D. N., Puonti, O., Thielscher, A., Van Leemput, K., Fischl, B., Dalca, A. V., & Iglesias, J. E. (2023). SynthSeg: Segmentation of brain MRI scans of any
contrast and resolution w1thout retraining. Medzcal Image Analysis, 86 102789 https://doi.org/10.1016/j.media.2023.102789
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No New U-Net (nnU-Net)

Motivation: U_Net requires manual tuning, Which is nnUnet ............................................................................ ‘, ..................................................................................... -
error-prone and hard to generalize across datasets. [ Deta fingerpint e el o e
Core Idea: Systematize the pipeline design | R — ey ol | [Ercemike _|—>
: . . : mage resampling stra SiERE :
using domain knowledge and rules, allowing \ L eerphg sty | il ;
1 1 Train Image target spacing | Configuration of
automatic adaptation to new datasets. Tan il spac | Confuratonof |
. . . Intensity nonnal — Prediction
Pipeline Automation: —-+ e — N topciony L o s
» Fixed parameters: Common across tasks (e.g., U- > [ /L;esm! , L!ow_mhap?so, | o |t
Net backbone, leaky ReLU, instance norm). batchsize | lopology |"| o9etepacing =4 L e
% / U 2 n : fingerprint
i Rllle-based parameters: HGUI'lSth fllIlCthIlS Fixed parameters [0p1imizer| ‘Training procedure‘ ‘Inference proeedure| n E[ I 3
. . . . . . : — , —— s
llnklng dataset propertles tO plpellne ChOICGS Arch'rtecturetemplate| [ Learning rate | |Dataaugmentation| [ Loss function | . = U E[ .

* Empirical parameters: Limited optimization via
cross-validation (e.g., post-processing).

Framework Includes: Intensity normalization;
Resampling and patch-size selection; Network
topology and training schedule; Sliding window
inference + Gaussian weighting.

* Results: Achieved state-of-the-art (SOTA)
in 33/53 tasks across 23 datasets without manual
tunin o, er, P. F.. Kohl, S. A. A., Petersen, J.. & Maier-Hein, K. H.
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2021). nnU-Net: A self-configuring

Isensee, F., Jacg



https://doi.org/10.1038/s41592-020-01008-z

nnU-Net

& 1. Dataset Fingerprints @ 2. Fixed Parameters
o A P .
" Deﬁn;?on. IA; CothaCltl sumtmal:tydott;d;ltaseit o % Definition: Parameters that remain constant across all tasks
properties automatically extracted before training. and datasets
o 1 . .
X Elfilnllples of ﬁn.gerpr(lint fezlltu.res.. < Examples: U-Net architecture template;
’ Image spacing (flm eSO ut¥on., ¢ Instance normalization; Leaky ReLU activation;
+ Image sizes and aspect ratios; < Data augmentation pipeline structure

. % Number O,f classes; Modahty (e.g., ,CT’ ,MR,I) ¢ Purpose: Leverages prior knowledge from segmentation
¢ Purpose: Prowdes the basis for E}utomaFlc pipeline tasks to avoid unnecessary tuning.

configuration, replacing manual inspection.
@ 4. Empirical Parameters
*Definition: Parameters that are fine-tuned empirically,
typically through cross-validation.

*Examples:
* Use of post-processing (e.g., removing small false-

positive regions)
* Ensembling strategies
*Purpose: Introduce minor empirical refinements for
performance boost without extensive manual search.

@ 3. Rule-Based Parameters
¢ Definition: Parameters dynamically chosen using
¢ heuristics derived from the dataset fingerprint.

% Examples:
¢ Patch size and batch size (based on image size

and GPU memory)
¢ Number of downsampling steps
+* Choice between 2D, 3D full-resolution, or 3D

low-resolution U-Net
¢ Purpose: Adapt the pipeline design automatically to

suit dataset characteristics.

IﬁUNC GILLINGS SCHOOL OF
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nnU-Net: Impact

*Standardized Benchmarking: ‘Reduced Entry Barrier: o N
« nnU-Net became the de facto baseline for * Enabled non-experts to ?buﬂd highly compefitive
biomedical segmentation tasks cited over 5500 segmentation models without deep learning expertise.
times. e Popular in clinical, academic, and industrial settings.
* Automatically configured pipelines have *Reproducibility and Open Science:
redefined expectations in medical imaging * Fully open-source with reproducible configurations and
competitions. modular design.
Performance Across Modalities: e Inspired a generation of autoML tools and plug-and-
« Achieved state-of-the-art results in 33 of 53 play segmentation pipelines.
tasks across 23 public datasets (e.g., KiTS, *Long-Term Influence:
BraTS, ACDC). * nnU-Net's automated approach has shaped the
o Demonstrated cross-modality development of follow-up frameworks (e.g., nnFormer,
generalization (CT, MRI, PET) without manual nnSAM).
tuning. * Highlights the power of rule-based heuristics and data-

driven design in practical deep learning systems.
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U-Mamba

Motivation: CNNs (e.g., U-Net) suffer from limited |, X
receptive fields. Transformers offer global context but & L

are computationally expensive. There 1s a need for models Sy | Wl e
that efficiently capture long-range dependencies.

Key Contributions: E 2 £
« U-Mamba combines: %) | Baa iy |
* CNN Residual blocks: for local feature extraction. e o J L
* Mamba blocks (SSMs): for scalable long-range Linar Linear
dependency modeling. : ____________________________________ I |
. . . (B,L,C) Input
. Emp10}€s a hybrid encoder-decoder architecture with skip D) L 4 | -
nnections. O ek e
co cctions D | 000 B e I | Residual Block
* Self-configuring like nnU-Net: adapts automatically to IN'+ Leaky ReLU = = TV ks
various dafasets. g e ] e
== ip Connection
. . (B, C, H, W, D)
Architecture Overview: 4
 Encoder: Residual + Mamba blocks. - [—— -
* Decoder: Residual blocks with transposed convolution. -- — -
. he_ I h
e Variants: U-Mamba Bot (bottleneck only) and U- o \ -/ | — ‘
Mamba Enc (full encoder). "HN Bl [ ; — | Yt
N Dierelice A oA
== i T
- Selection Mechanism
Gu, A., & Dao, T.(2024). Mamba: Linear-Time Sequence Modeling with Selective State Spaces (No. Ma, J., Li, F., & Wang, B. (2024). U-Mamba: Enhancing Long-range Dependency for Biomedical
arXiv:2312.00752). arXiv. https:/doi.org/10.48550/arXiv.2312.00752 Image Segmentation (No. arXiv:2401.04722). arXiv. http:/arxiv.org/abs/2401.04
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U-Mamba

* U-Mamba also enjoys a self-configuration mechanism, as it is implemented within the nnU-Net framework.

* It outperforms STOA CNN-based and Transformer-based segmentation networks across all tasks.

1 Organs in Abdomen CT Organs in Abdomen MRI
Methods DSC NSD DSC NSD
nnU-Net 0.8615+0.0790  0.8972+0.0824 | 0.8309+0.0769 0.8996+0.0729
SegResNet 0.792740.1162  0.8257+0.1194 | 0.8146+0.0959 0.884140.0917
UNETR 0.682440.1506  0.7004+0.1577 | 0.6867+£0.1488 0.744040.1627
SwinUNETR,  0.7594+0.1095 0.766340.1190 | 0.7565+0.1394 0.8218+0.1409
U-Mamba Bot 0.8683+0.0808 0.9049+0.08210.8453+0.0673 0.9121+0.0634
U-Mamba_Enc 0.8638+0.0908 0.8980+0.0921/0.8501+0.0732 0.9171+0.0689

Methods Organs in Abdomem MRI Instruments in Endoscopy | Cells in Microscopy
DSC NSD DSC NSD k1
nnU-Net 0.7450£0.1117  0.8153£0.1145 10.62640.3024  0.6412+0.3074 | 0.5383£0.2657
SegResNet 0.7317£0.1379  0.8034£0.1386 |0.5820£0.3268 0.5968+0.3303 | 0.5411+0.2633
UNETR 0.5747£0.1672  0.6309£0.1858 |0.5017£0.3201 0.5168+0.3235 | 0.4357=0.2572
SwinUNETR ~ 0.7028£0.1348  0.7669+0.1442 10.5528£0.3089  0.5683+0.3123 | 0.3967+0.2621
U-Mamba_Bot 0.7588+0.1051 0.828510.1074|0.65404+0.3008 0.6692+0.3050| 0.5389+0.2817
U-Mamba_Enc 0.7625:+0.1082 0.8327+0.1087|0.630310.3067 0.6451+0.3104| 0.5607+0.2784

Ground Truth nnU-Net SegResNet UNETR SwinUNETR ~ U-Mamba Bot ~ U-Mamba_Enc

GILLINGS SCHOOL OF
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Interpretability

* Medical imaging: Interpret U-Net predictions for lesion/tumor segmentation using Grad-CAM heatmaps.

* Weak supervision: Use Grad-CAM as a proxy for segmentation maps when pixel-level labels are missing
(e.g., CAM-based segmentation).

* Training verification: Check if the model is focusing on anatomically relevant regions.

Methods such as occlusion sensitivity, Grad-CAM and Smoothgrad help them address the question: “Which
parts of the image were important in arriving to a given decision of a classification?”

(a) Original image with a cat and a dog.
(b) Guided Backpropagation highlights all
contributing features.
(c, f) Grad-CAM localizes class-discriminative

- , | regions for VGG-16 and ResNet-18.
(b) Guided Backprop ‘Cat’ c) Grad-AM ‘Cat’  (d)Guided Grad-CAM ‘Cat” (&) Occlusion map ‘Cat’ () ResNetGd-CAM ‘Cat’ ( d) Guided Grad-CAM (b x C) pr ovides hi gh—
@ | resolution, class-specific visualizations.
(e) Occlusion sensitivity yields similar results to
Grad-CAM but is computationally more expensive.
Red in (¢, f, 1, 1) and blue in (e, k) indicate strong
evidence for the target class. (Best viewed in color.)

(g) Original Image  (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’ ~ (j)Guided Grad-CAM ‘Dog’ (k) Occlusion map ‘Dog’ (1)ResNet Grad-CAM ‘Dog’

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-CAM: Visual Explanations from Deep Networks via
Gradient-based Localization. International Journal of Computer Vision, 128(2), 336-359. https://doi.org/10.1007/s11263-019-01228-7
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Masked Autoencoder (MAE)

MAE = Self-Supervised Vision Learner

Learns by reconstructing missing image patches

Key idea: Mask random patches (e.g., 75%), and reconstruct them from
the visible ones

encoder

v

Architecture: Asymmetric encoder-decoder;  Encoder: processes
only visible patches;

Decoder: lightweight, reconstructs masked patches
MAE Training Workflow

1. Patchify the input image into non-overlapping patches
2. Randomly mask 75% of the patches

3. Encoder processes only the remaining 25%

[o}
©
0
] o
a
| 0]
(]
EEE EEEEEEEEEEER

4. Mask tokens + visible patch embeddings go to the decoder
5. Loss: Mean squared error (MSE) on masked patches

MAE Decoder = U-Net Decoder. Both aim to restore missing spatial
resolution

U-Net learns semantic segmentation, MAE learns image structure
Potential integration:

* Use MAE pretraining to initialize U-Net encoder (transfer learning)

* Apply MAE-style reconstruction loss to regularize segmentation learning

He, K., Chen, X., Xie, S., Li, Y., Dollar, P., & Girshick, R. (2021). Masked Autoencoders Are
Scalable Vision Learners (No. arXiv:2111.06377). arXiv. https:/doi.ore/10.48550/arXi 06

mask 95%
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Overview of Loss Functions

IoU/
] d Smooth
SS accard .. icnsion
Log Distance map A
Dice weighted '

X , Two side Onéﬁside
L

distance map

Down-weight FP & FN  class weighted r
casy cxemples [DIGGHOG  Tyersky  GD HD Loss
_ Weight
atp=1 FP & FN

Dok s g
FocalTversky
Oistibutonbased Loss  (COMPOUNIIORY  RegonbasedLoss  Boundany-based Loss.

Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., Yang, X., & Martel, A. L. (2021). Loss odyssey in medical image segmentaion. Medical Image Analysis, 71,
102035. https://doi.org/10.1016/;.media.2021.102035
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Loss Functions: Taxonomy

Loss functions are categorized into four levels:

. . Pixel-Level:

Focus on per-pixel accuracy.

Includes: Cross-Entropy, Focal, TopK,
Distance-map Cross-Entropy.

O Region-Level:

Capture global region consistency and handle
class imbalance.

Includes: Dice, IOU, Tversky, Lovasz-
Softmax, Region Mutual, Robust T-Loss.

O Boundary-Level:

Emphasize precise boundary delineation.
Includes: Boundary Loss, Hausdorff,
Boundary-aware, InverseForm, Conditional
Boundary Loss.

. Combination:
Blend multiple losses for complementary
benefits.

Examples: Combo Loss (e.g., Cross-Entropy
+ Dice), Unified Focal Loss.

Dice Loss
Log-Cosh Dice Loss
Generalised Wasserstein Dice Loss
10U (Jaccard) Loss
Lovisz-Softmax Loss
Tversky Loss
Focal Tversky Loss
Sensitivity Specificity Loss

Region Mutual Loss

Robust T-Loss

Cross-Entropy Loss
TopK Loss

Focal Loss

~ Region Level

Distance map derived cross-entropy |

Loss

r~ Boundary Level

Semantic Segmentation

Loss Functions Taxonomy

— Pixel Level

Combination

Boundary Loss
Hausdorff Distance Loss
Boundary-aware Loss
Active Boundary Loss
InverseForm Loss
Conditional Boundary Loss

Boundary Difference Over Union
Loss

Region-wise Loss

— Cross-Entropy
Combo Loss  —
Dice
Exponential | fios Extrony
Logarithmic Loss | Dice
Unified Focal sl
Loss L

Focal Tversky



Pixel Level (Distribution-based)

Pixel-level loss functions dive deep into the individual pixels to achieve high accuracy in classifying each pixel within
segmented regions. These loss functions compute the dissimilarity or error between the predicted pixel values and their
corresponding ground truth labels independently for each pixel.

* Cross-Entropy (CE) Loss measures the difference between two probability
distributions for a given random variable, measuring how well the model’s
predictions match the target labels.

Symbol | Description

* Leg(y,t) = —XN_1log(ty, - ¥,), when dealing with imbalanced datasets, one ~ Nunber of il
approach 1s to assign different ways to each class to help to balance the (
influence of each class on the overall loss and improve the performance of the
model on the under-represented classes. Specifically, one may set the weight

Number of target classes
| Onehotenooding vector eprscating the gt chass o the ® il
t

for each class to be inversely proportional to number of sample in that class. ¢ | Binaryindicator fthen pixl bclongs o cls  ohervise
N | Prdictd class probabites forn® piel
Lyce(y, t) = — Z t, - wlog(t, - yn) of | Prdiced probabilty of n® el belonging t lass .
n=1 by | Predicted probabilty for the taget s of n® i,

w | Weights assigned to target classes,

* Focal Loss is a modified version of the CE loss that assigns different weights
to easy and hard samples. Here, hard samples are sample that are mis-
classified with a high probability, while easy samples are those correctly
classified with a high probability. Leoeqi(y,t,¥) = — Xn=1(1 —t; -
yn)Y log(t,, - v,), where y is a non-negative tunable hyperparameter. When y
is set to 0 for all samples, it reduces to the plain CE loss.
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Region Level

* Region-level loss functions take a broader view in semantic segmentation tasks. Instead of focusing on each pixel,
these methods prioritize the overall accuracy of object segmentation.

2lYnT|
lYl+IT|
binary segmentation target mask for a single class. It is computed separately for each target class and the average over
all classes is used.

* Dice Loss originates from Dice Coefficient where Y is the binary segmentation prediction mask and T 1is the

C 1
2 Zn 1 thyn

C = Zn=1(tc + yn)

Lgice =1 —

* IOU(Jaccard) Loss originates from Jaccard index % and 1s calculated for each class as well.

L z n 1thyn
IoU —
? C Z 1(t1€ + Yn - n%g)

lynT|
lYNT|+a|Y\T|+B|Y\T]
negatives and false positives. When ¢ = f = 0.5, it reduces to Dice coefficient. When ¢ = f = 1, it reduces to loU.

c-1
, _, 1 Z >N tsys
oy =1——=
Tversky C - Z 1(tnyn + atn(]_ — yri) + ,By,f(t - tﬁ))

* Tversky Loss originates from the Tversky index where a and £ control the weights for false
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Boundary Level

* Boundary-level loss functions specialize in the precision of object boundaries within the segmentation task. Their
primary objective is to sharpen object boundaries and effectively separate overlapping objects.

* Boundary Loss aims to minimize the distance between ground truth and predicted segmentation. It computes the
distance between two boundaries in the integral framework:

Dist(9G,0S) = 2(J, pc(@s(@)dq — |, P (@) 9(q)dq)
La = | del@s(@da

where g(q) is a binary indicator function that indicates whether g is on the boundary of ground truth; ¢;(q) represents the
distance term and is defined as ¢; = —D;(q) if ¢ € G and D;(q) otherwise for the distance map of ground truth D;(q);
and s(q) denotes the probability predictions generated by the model.

« Hausdorff Distance (HD) Loss is based on Hausdorff distance HD(X,Y) = max(d,(X,Y),d, (Y, X)) where d,(X,Y) =

rygg)?(rjglelgd (x,y) and dp(Y,X) = r)rllgg(mmd (y, x), which is calculated between the boundaries of the predicted and

ground truth masks. However, it solely depends on the largest error and is overly sensitive to outliers, leading to
algorithm instability and unreliable results.
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Combination

* By integrating multiple loss functions, a combination of them seeks equilibrium between pixel-wise precision,
overall object segmentation quality and boundary delineation accuracy.

* Combo Loss is the most commonly used loss function in practice, combining Dice loss and weighted CE loss to
overcome the class imbalance problem.

Leompo = aLycg + (1 — a)Lgjce

* Exponential Logarithmic Loss is similar to the Combo loss in terms of combination. The difference is that it
takes the logarithmic and exponential of both the loss functions before combining them, giving flexibility to
control how much the model focuses on easy/hard pixels.

LExp—Log — aLExp—Log—WCE + ,BLExp—Log—Dice

Y Ydice
where Leyp-Log-wce = (_log(LWCE)) "Fand Lexp-Log-Dice = (_log(Ldice)) ‘¢ and YwcE» Ydice €an be used
to control the focus of the loss function, with y > 1 focusing more on hard-to-classify pixels.

* Dice Loss with Focal Loss is used to alleviate the imbalanced organ segmentation problem and force the model to
learn from poorly segmented voxels better.

Lpice—Focal = @Lgice + (1 — a)Lfocal
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Visual Comparison

LV s MYO BN RV
Ground Truth Boundary DoU Dice Dice + CE CB Boundary Tversky

On the ACDC dataset, we can observe a more
accurate localization and segmentation for boundary
regions in boundary-level loss functions. The
boundary DoU loss function effectively address the
challenge caused by the significant shape variations
of the right ventricle region compared to the
alternative loss functions.

On the Synapse dataset, Dice loss shows varying i FocalTversky ~ Jaccard  Lovész-Softmax  Tversky
performance, performing quite good in the top
example while completely failing to identify the
stomach and gallbladder in the lower example.
The Focal Tversky loss, on the other hand,
presents the most promising segmentation map,
correctly identifying all the organs.

Spl RKid LKid Gal Liv Sto Aor Pan
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Foundation Models and Image Segmentation

* Definition: Foundation Models (FMs) are large-scale pre-trained models designed to adapt across diverse
downstream tasks.

Paradigm Shift:
* Move from narrow task-specific models to generic, task-agnostic systems.

* Enabled by advances in neural networks, self-supervised learning, and scaling laws.

Impact on Segmentation:
* FMs give rise to segmentation generalists, capable of handling a wide range of tasks.
* They are promptable, similar to LLMs, allowing dynamic conditioning and flexible task specifications.
e Support zero-shot and few-shot segmentation across domains without retraining.

Key Benefits:
* Unified models across modalities (e.g., CT, MRI, X-ray)
* Adaptability to novel or underrepresented tasks

* Reduced dependency on large annotated datasets

Conclusion: FMs are transforming the landscape of medical image segmentation by introducing generalizable,
interactive, and versatile frameworks.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On the opportunities and risks of
foundation models,” arXiv preprint arXiv:2108.07258, 2021.
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Foundation Models

* Foundation Models (FMs) can be broadly categorized into:
* Language Foundation Models
* Vision Foundation Models

@ Language Foundation Models

. Large Language Models (LLMs):
Core approach for machine language intelligence

* Trained to predict the next token by modeling the generative
likelihood of word sequences

* Enable applications like text generation, summarization, and
translation

* Multimodal Large Language Models (MLLMs):
* Extend LLMs to incorporate non-textual inputs (e.g., audio)
* Combine language reasoning with vision/audio perception
* Facilitate complex tasks such as visual question answering,
image captioning, and multimodal dialogue

@ Vision Foundation Models

* Learn generic visual representations across a wide range of domains

* Examples: Vision Transformers (ViTs), SAM, CLIP, DINO

» Serve as backbones for tasks such as classification, detection,
segmentation, and generation

Data

Text I I

r‘y Images

/\/\fw Training
Speech /

o Structured
* . Data

3D Signals ;‘

N

‘.‘

e Adaptation
Foundation /
Model

.
i

=

/]
y

e

<=

Tasks

Question )
Answering /.

Sentiment
Analysis

~

Information V\

Extraction

Image
Captioning @
Object

aRecognition

Instruction
Following ..

A foundation model can centralize the information

from all the data from various modalities.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On the opportunities and risks of
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Categories of Vision Foundation Models

» 1. Contrastive Language-Image Pre-training (CLIP):
» Encoder-only architecture with separate image and text

encoders Data Sources Skills
» Learns by maximizing agreement between matched image- _
text pairs Perceptual Sources @w, Traditional Vision Tasks
» Enables zero-shot classification and retrieval e B
» 2. Self-Distillation with No Labels (DINO): «,/», '{?'_ﬁﬂ = =
> Self-supervised learning using Vision Transformers (ViTs) Falcnl plile| [l g
» Trains by aligning student-teacher models without labels Devices  Agents  Sesors “ e -
> Captures strong visual representations despite compact size o @ = FY—
> 3. Diffusion Models (DMs): BetaTypes Sl S
> G%nerative models trained via denoising and variational RG ﬁth Therml Oynamics  Mind
inference L
» Generate high-quality, realistic images from noise ﬂd W
» Used in creative applications and medical synthesis 7 i
> 4. Segment Anything Model (SAM): @ 3%
» General-purpose segmentation model Tt Radio  Audi X
» Enables promptable, zero-shot segmentation on diverse
domains
» A major advance in image registration and spatial
understanding

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On the opportunities and risks of

l lP |( foundation-medelsy” a
-=l'-l- ‘ GLOBAL PUBLIC HEALTH




EchoCLIP

|
I
|

normal left ventricular
systolic function.
LVEF is 73%. Text

* Visual-Language Foundation Model for Echocardiogram (EchoCLIP) | &t iz encoder
1s trained on more than 1 million cardiac ultrasound videos and St

corresponding expert text.

* It 1s built on OpenCLIP and composed of an image encoder using
ConvNeXt architecture for processing video frames and a text
encoder using decoder-only Transformer for processing the .
corresponding physician interpretations. These two encoders project
the images and interpretations onto a joint embedding space.

Image
encoder

Correlation Desired

between correlation
embeddings

* A long-context variant using a custom tokenizer based on common
echocardiography concepts 1s developed.

The figure demonstrates Grad-CAM
visualizations over ultrasound images for
identifying different cardiac implantable
devices:

Impella  *TAVR (Transcatheter Aortic Valve
Replacement): Clearly highlighted
central aortic valve region

*Impella: High-intensity focus along the
catheter path

*Pacemaker: Lateral region marked,
indicating lead presence

mitraclip *MitraClip: Strong activation in the
mitral valve area

TAVR

* EchoCLIP can be adapted to perform both classification and
regression tasks.

* For classification task, we can construct text prompts describing
a positive case, obtain an embedding of those prompts using
EchoCLIP’s text encoder and compute the cosine similarity
between them.

* For a regression task, we can generate a collection of variations
on a base text prompt by only changing the relevant value in the
text. Then cosine similarity between the generated prompt
embeddings and the embeddings of each of the first 20 frames
of videos 1s then computed.

Pacemaker

Christensen, M., Vukadinovic, M., Yuan, N., & Ouyang, D. (2024). Vision—language foundation model for echocardiogram
interpretation. Nature Medicine, 30(5), 1481-1488. https://doi.org/10.1038/s4159
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Segment Anything (SAM)

* SAM has rapidly gained traction in medical image vilid mask

analysis.

* Key Capability:

» Segments objects without prior knowledge of the ol
object type or imaging modality 1
* Mimics the flexibility of human visual ~ N
perceptlon 0 ! D cat with
' black ears

* Promptable Interaction:

segmentation prompt

* Inspired by NLP, users can input prompts () Task: promptable segmentation

(points, bounding boxes) e

* Adjusts segmentation results based on resolution
scale or area of interest
e Zero-Shot and Few-Shot Learning:

* Requires little to no additional training to adapt
to new segmentation tasks

* Supports highly generalizable medical imaging

workflows across modalities Figure 8: Samples from the 23 diverse segmentation datasets used to evaluate SAM’s zero-shot transfer capabilities.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y., Dollar, P., & Girshick, R. (2023). Segment

BBBCO38v1 [12]

valid mask I—» annotae ————

lightweight mask decoder model data
T T— ain ~ ——
mige Seament Anything B (SA-1B):
encoder
: * 1+ billion masks
promp * 11 million images o
encoder , A 4
* privacy respecting s
T . ! + licensed images 7
prompt image

(b) Model: Segment Anything Model (SAM)  (c) Data: data engine (top) & dataset (bottom)

DOORS [80] DRAM [24] EgoHOS [113] GTEA [34, 63]
¥ ik | -y
= 1

NDD20 [100] ~ NDISPark [22, 23 OVIS [81] PPDLS [74]

TrashCan [52]
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SAM Architecture Overview

e 1.Im

age Encoder:

Based on a ViT pre-trained using Masked
Autoencoders (MAE)

Produces rich multi-scale image embeddings

* 2. Prompt Encoder:

Handles sparse prompts (points, boxes)
and dense prompts (masks)

Encodes spatial and semantic information
from user input

3. Mask Decoder:

BUNC

A lightweight, efficient module
Combines image and prompt embeddings

Outputs accurate segmentation masks guided
by prompts

GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH

mask decoder =

Image - N ——
encoder t t t

conv\ | prompt encoder

Image ‘ ‘ t Y

onbedgpe K pois - bor - text
0

Image

valid masks

SC0re

500

, SCOre

Segment Anything Model (SAM) overview. A heavyweight image encoder outputs an
image embedding that can then be efficiently queried by a variety of input prompts to

produce object masks at amortized real-time speed. For ambiguous prompts

corresponding to more than one object, SAM can output multiple valid masks and

associated confidence scores.



Segment Anything (SAM)

* SAM is trained on the large-scale dataset SA-1B, which consists of 11M high-resolution images with 1.1B high-
quality segmentation masks, which 1s 400 times more masks than any existing segmentation dataset.

» The dataset has three stages: manual annotation stage, semi-automatic stage, and fully automatic stage.

2 { : SA-1B LVIS vl COCO ADE20K Open Images
g : i i ' : ! ¢ Ground Truth

o b o SAM

g7 ! ! "L SAM single output

E i i : L =

th ! J ' « RITM ’ »

»

<3 .

LVIS VISOR DRAM [BD NDD20 OVIS iShape
Datasets

(c) Mask quality ratings by human annotators

- SAM (oracl i~ . . . .
5l (v i . JSAM (orcle) et * In zero-shot single point valid mask evaluation, annotators
2P . BB e consistently rate the quality of SAM’s masks substantially higher
I A < e .
o 7" e RIIM o | than the strongest baseline, RITM.
Csold i 1] S S L
2 | 8 Elmfllé]qtk 3| * As number of points increases from 1 to 9, the gap between methods
E — ~ 109 E 1 — ; decreases, as the task of segmentation becomes easier.
Number of points Number of points
(d) Center points (default) (¢) Random points
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SAM: Play Around with it Online!

Segment Anything | Meta Al (segment-anything.com)

Seg ment Anyth|ng Home Demo Dataset Blog Paper O
Research by Meta Al
a
Cut out the selected object, or try multi-mask mode.
Tools
*) Upload = Gallery

-
R Hover & Click

Click an object one or more
times. Shift-click to remove
regions.

e -

Add Remove
Mask Area

Reset Undo

@ Multi-mask

O cutout object

. J

[E Box

+, Everything
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Segment Anything 2 (SAM 2)

* However, SAM only works for images. In order to be
apphcable to both images and videos, Segment Anything 2 vidco & prompis in one or multple frames
is proposed as a unified model for video and i image
segmentation, considering image as a single-frame video.

(skipped)  points mask

* It is a natural generalization of SAM to the video domain, -
processing video frames one at a time, equipped with a
memory attention module to attend to the previous
memories of the target object. When applied to images, the
memory is empty and the model behaves like SAM.

object segmentation throughout the video

prompt

video frame

prompt
encoder

v
image
encoder
N
memory
attention
N2
mask
decoder

model

memory
bank

1

v
valid object mask on each frame

’—» annotate l

SA-V Dataset

+ 642.6 K masklets
+ 35.5 M masks

+ 50.9 K videos

+ 196.0 hours

* A geographically diverse dataset SA-V is constructed,
consisting of 35.5M masks across 50.9K videos, 53 times
more masks than any existing video segmentation dataset.

* SAM 2 behaves spatially similar to SAM. However, the
frame embedding used by it is not directly from an image - - 3 [
encoder, but instead conditioned on memories of past
predictions and prompted frames.

(a) Task: promptable visual segmentation  (b) Model: Segment Anything Model 2 (c) Data: data engine and dataset

ol Al 7

f\m

Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T., Khedr, H., Rédle, R., Rolland, C.,
Gustafson, L., Mintun, E., Pan, J., Alwala, K. V., Carion, N., Wu, C.-Y., Girshick, R., Dollar, P.,
& Felchtenhofer C. (2024) SAM 2: Segment Anythmg in Images and Videos (No.
arXiv:2408.00714). arXiv.

—
_, memory mask decoder

attention

memory
bank

image
encoder

memory
encoder

prompt encoder

* SAM 2 can produce better segmentation accuracy while
using 3 times fewer interactions than prior approaches, and
deliver better performance compared to SAM on image
segmentation benchmarks, while being 6 times faster.

ma:k pomts box
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SEEM

* Although SAM demonstrates strong zero-shot performance, it produces segmentations without semantic meaning.
In addition, its prompt types are limited to points, boxes and text.

* Segment Everything Everywhere All at Once (SEEM) proposes a novel decoding mechanism that enables diverse
prompting including a referred region from another image, aiming at a universal segmentation interface that
behaves like LLMs.

* It not only employs a generic encoder-decoder architecture, but also employs a sophisticated interaction scheme
between queries and prompts.

 Given an image I € R¥*W*3_an image encoder is first used to extract image features Z. Then based on the text,
visual and memory prompts (P, P,, By,), the decoder guides the learnable queries Qy, to predict the mask
embeddings O;* and class embeddings Oy, to generate masks M and semantic concepts C.

Generic Seg Referring Seg Interactive Seg .DEE j': ] No _
Learnable Queries Object Queries Text Queries Visual Queries .DD : Int?:::nn
M... /I'J . L‘J DD[_ — Interaction
e 20~ R O
Text Prompt  Visual Prompt Memory Prompt :":": :lt — P Tentative
e . e :":lr _lr oy Attention

(a) Queries and Prompt Interaction (b) Self-Attention Mask

Zou X. Yang,J ,Zhang,H Li, F, L1 L. Wang,] Wang,L Gao J & Lee, Y. J. (2023). Segment Everything Everywhere All at Once (No.
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SEEM

Algorithm 1: Pseudo code for SEEM.

# Inputs: Image(img) [B,3,H,W]; Pos_Mask (pm), Neg Mask(nm) [B,1,H,W]; Text (txt) [abc...]; i H
# Variables: Learnable Queries(()y); Attention Masks between () and P (gpm) II I Class Emmddmgs II I MaSK EmbEddmgs / CrossAttentlun —
# Functions: Img_Encoder (), Text_Encoder(),Visual Sampler (), feature_attn(),prompt_attn(),output(); '
2 QorQ:,Qu = Qp.copy();# Initialize object, text and visual queries. SEEM@ DECOder
3 F,, P, = Img_Encoder (img), Text Encoder (txt);# F, and P, denote image feature, bLext | 5E|fM'l i
prompt . ‘ v entian _
4 P, = Visual_Sampler (F,, pm, nm);# Sample visual prompt from image feature, pos/neg Leamable Queries |magEF!atums TextPrompt  Memory Prompt VlsuaIPrumpt \ :
mask.
5 d.efSEEH_DECOdEI(Fy,QD,QL,Qu,Pw,Pt,Pm): DD“ID ”ID I“D D DD D D DD DD DD D
6 Qo,Qt,Qv = feature_attn(Fy,Qo,Qt,Qv); # Cross attend queries with image features.
7 Qo,Qt,Qv = prompt_attn(gpm, Qo, Qt,Quv, Py, Pt, Pm):;# Self attend gueries and prompts.
8 | Om,0¢, Pn = output (Fy,Qo,Qt,Qu);# Compute mask and class outputs. Joint |mage,'|'ext Representation Space
Y def forward (img, pm, nm, txt) : ,"'%
10 FuiQo0,Q,Qy, Py, Py = init (); P, = None;# Tnitialize variables. ? ? [ ,-'* H
11 fori in range (max_ iter): #
2 | | OmOc Py = SE8M Decoder (Fy, Qoy Qs Qus Pur Pey ) Text Encoder | | Image Encoder b Visual Sampler | ¥ VaskPoo _.| D
¢ + |
L —al r r r bL Interpolate
=aLe B pano + BLm BCE pano + YLm DICE pano + @Le CE ref + DL BCE ref  (Class/Sentence O 4& ]| et
\ Mage reatures

+CLm_DICE ref + aLc_CE_iseg + DLm BCE iseg + ¢Lm_DICE iseg

Compare Wlth Other Strong baselines Method Point  Stroke Sfrgb:l? Polygon Box | Point  Stroke %P:r?bltln?eagel’alygun BoX | Point  Stroke Scﬁi Polygon BoX
SimpleClick and SAM with 5 STERCI BT | 90— BT &1 6 105 W6 WS Sy @5 0T 70 BT w32
common types Of prOmptS, the SEEM SimpleClick (L) | 38.9 339 68.8 39.2 347 | 375 291 59.8 352 31.2 | 368 164 56.4 417 29.5
achicves the best performance in the — S0® | B¢ 21 a2 s mr @ mowe o owpopelme om0 o
eXtremely llIl'llth number Of CliCkS SEEM (T) 789 810 81.2 722 73.7 | 671 694 69.5 63.1 609 | 654 673 67.3 59.0 53.4
over all three datasets. L RN IR RN
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FMs for Biomedical Image Segmentation

* While SAM achieves or approaches state-of-the-art performance in many general vision tasks, its
performance in medical image segmentation presents certain limitations:

€ Application Gaps:

* Difficult Anatomical Structures:
» Struggles with segmentation of small or complex organs such as the carotid artery, adrenal
glands, optic nerve, and mandible bone.
€ Key Challenges:
* Data Specificity:
* SAM excels in general-domain images, but medical images often exhibit features and artifacts not
typically present in everyday visual data.
* Dimension Mismatch:

* Most medical imaging modalities (e.g., MRI, CT) produce volumetric (3D) data, while SAM is
inherently 2D-based.

* Lack of native support for 3D spatial context limits its performance in full-volume analysis.

* Data Scarcity and Annotation Quality:

 High-quality annotations in medicine require expert knowledge, are time-consuming to produce, and
face privacy constraints.

* Limits the availability of large-scale datasets to fine-tune or evaluate SAM reliably for clinical
applications.
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FMs for Biomedical Image Segmentation

« Multiple method have been proposed for the adaption of SAM to the — ™=t s o oo
medlcal domaln. Input * Maskr+E:coder *Pmmft Encoder Output
. - - Zero-shot ———— = SAM Encoder D, £1 SAM Decoder ————
* Zero-shot segmentation capabilities evaluation: Medical imaging =N
presents unique challenges, distinguished by factors like varied i PP P

imaging protocols and a wider range of patient demographics. These R | T A e

Adapter N Adapter
complexities are not as predominant in standard domain images, ‘ o
making SAM’s adaptability in this context particularly intriguing. T o, Y s e
° ° ° . = — $ SAM Encoder Projection
* Domain-specific tuning: To address the varying results across i - ¢ n
different contrast appearances and organ morphologies, researchers , c. | N S i
have explored several domain-specific tuning strategies: Ful - iy —
] SAM Encoder N SAM Decoder
* Projection tuning: Replacing the pretrained decoder with a new, - S
task-specific projection head, aiming to harness generalized R & s b .wm.,:m,
features 0 Extension | I E b Eﬂ e
* Adapter tuning: Incorporating adapters designed to fine-tune - 4
the model’s response to the specific challenges presented by coms | M \l a . l
medical imaging. o "}'l( [ q = "ﬁ e
. : : : Y
* Full tuning: A substantial reconfiguration, finetuning both the !
encoder and decoder of SAM to transition its generalized SAM adaptation in medical imaging includes zero-shot evaluation, varying degrees of
knowledge base. model fine-tuning (adapter, projection, full tuning), 3D extension for volumetric

data, and knowledge distillation to transfer expertise to lighter models, each
enhancing domain-specific performance through tailored pipelines.
Lee, H. H,, Gu, Y Zhao, T., Xu, Y. Yang, J., Usuyama, N. Wong, C., We1 M., Landman, B. A., Huo, Y., Santamaria-Pang, A., & Poon, H. (2024). Foundation Models for Biomedical
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FMs for Biomedical Image Segmentation

* 3D Imaging Modalities Extension:

* To align with SAM’s 2D framework,
3D images are processed as axial
slices for slice-by-slice predictions.

» All slice-level outputs are then fused
into a comprehensive volumetric
map to restore spatial continuity and
capture 3D anatomical relationships.

* Knowledge Distillation:

* Alabel refinement
network improves the coarse masks

generated by SAM.

* These refined annotations are used to @j"

train a task-specific student
model for enhanced segmentation
accuracy tailored to medical tasks.

X-ray Ultrasound
Radiology
™ Imaging ]
-
. Segment Anything Model [
Brightfield (SAM) Zero-shot Evaluation
; Pathology
—— —
Imaging
Medical Domain-specific Tuning
Images Image —
Encoder
Endoscopy Mask
L Multi-Dimensional
|, Camera Extension
Imaging
Prompt |
Encoder Knowledge Distillation

Bounding
Box

Prompts

Application of SAM Across Medical Imaging Modalities. The figure showcases Radiology, Pathology, and

Camera Imaging examples. Central components of SAM, including the Image Encoder, Mask Decoder, and
Prompt Encoder, are delineated. Methods ranging from Zero-shot Evaluation to Knowledge Distillation are

accentuated within tan boxes.

Lee, H. H,, Gu, Y., Zhao, T., Xu, Y., Yang, J., Usuyama, N., Wong, C., Wei, M., Landman, B. A., Huo, Y., Santamaria-Pang, A., & Poon, H. (2024). Foundation Models for Biomedical
Image Segmentation: A Survey (No. arXiv:2401.07654). arXiv. http://arxiv.org/abs/2401.07654
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Chronological Timeline of Medical IS Datasets

Details
Year Dataset Public
Modality Anatomy Data Size Label Quality # Targets Seg. Target Type
1998 JSRT [131] < M-Ray Chest 307 Manual 2 Multi-Organ
2012 VESSELIZ[124] < CT Lung 20 Manual | Organ Parts
2012 PROMISEIZ [V6] < MRI Prostate 100 Manual | Single Organ
2013 NCI-ISBI [21] < MRI Prostate 80 Manual 2 Organ Parts
2015 BTCWV [#2] < CT Abdomen 50 Manual 13 Multi-Organ
2015 CT-Lymph Nodes [ 31,119, 122 < CcT Mediastinum 176 Manual 1 Single Organ
2015 GlaS [135, 136] < Pathology Colon 165 Manual | Cells
2016 Pancreas-CT [34, 120, 121] ] CT Pancreas =0 Manual 1 Single Organ
2007 LiTS [1¥] < CT Liver 131 Manual 2 Tumor
2007 ACDC[17] ] MRI Heart 150 Manual 3 Organ Parts
2018 FUMPE [ 103] ] CT Lung 35 Exp.+Mdl. | Lesion
2018 MSD [10] < CT, MRI Multiple 1411 CT, 1222 MRI Manual 18 Multi-Task
2018 DRIVE |1 35] ] Fundus Retina 40 Manual 1 Organ Parts
2018 REFUGE [111] ] Fundus Retina 1200 Manual 2 Organ Parts
2019 CHAOS [71=76] < CT, MRI1 Abdomen 40 CT, 40 MRI Manual 4 Multi-Organ
2019 SHM-ACR Pneumothorax [ 160] < X-Ray Chest 12047 Manual 1 Lesion
2019 AbdomenUS [116] < Ultrasound Abdomen 61 Real, 926 Synth. Real+Synth. B Multi-Organ
Breast Ultrasound Images [ 1] ] Ultrasound Breast T8RO Manual 3 Tumor
- CAMUS [53] ] Ultrasound Heart 500 Manual 3 Organ Parts
2020 Mé&Ms [21] ] MRI Heart 375 Manual 3 Organ Parts
MosMed COVID-19 [ 109] < CcT Lung 50 Manual | Infection
COVID-19 Radiography [ 32, [ 1G] < X-Ray Chest 21165 Manual 1 Single Organ
COVID-QU-Ex [32,37, 116,141, 142] ] X-Ray Chest 33920 Manual 2 Infection
QaTa-COVI9 [35] ] X-Ray Chest Q258 Manual | Infection
CT2ZUS [137] < Ultrasound Abdomen 4586 Synth. | Single Organ
PolypGen [5-7] < Endoscope Colon 8037 Manual | Polyp
AbdomenCT-1K [102] < CcT Abdomen 1z Exp.+Mdl. 4 Multi-Organ
AMOS [72] < CT, MRI Abdomen 500 CT, 100 MRI Exp.+Mdl. 15 Multi-Organ
KiTs [57] ] CcT Kidney 599 Exp.+Mdl. 3 Organ, Tumor
TotalSegmentator [ 1 57] < CT Full Body 1228 Manual 117 Multi-Organ
BraTs [2, 13—16,73,77,81, 106, 107] ] MRI Brain 4500 Manual 3 Tumor
HaN-Seg [113] ] CT, MRI Head & MNeck 56 CT, 56 MRI Manual 30 Multi-Organ
FH-P5-AQP [ 100] < Ultrasound Transperineal 6224 Exp.+Mdl. 2 Multi-Organ

Lee, H. H, Gu, Y., Zhao, T, Xu, Y., Yang, J., Usuyama, N., Wong, C., Wei, M., Landman, B. A., Huo, Y., Santamaria-Pang, A., & Poon, H. (2024). Foundation Models for
Biomedical Image Segmentatlon A Survey (No arXiv:2401. 07654). arXiv. hm&ammmg&thMﬁ
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Taxonomy based on IS Tasks and FMs

Image Segmentation

in Foundation Model Era

Semantic Instance Panoptic Interactive Referring Few-shot
Segmentation (§4.1) Segmentation (§4.2) Segmentation (§4.3) Segmentation (§5.1)  Segmentation (§5.2) Segmentation (§5.3)
LSeg [57] MasQCLIP [96] MaskCLIP [104] ZSRS[117] WinCLIP[118]
cLp * DenseCLIP [88] OPSNet [97] Unpair-Seg [ 105] RISCLIP[113] RD-FSS [119]
DMs - o ) ( : _ _
FreeSeg-Diff [2Y] MosaicFusion [Y5] ODISE [106] Ref-Diff [114] DifFSs [120]
Peekaboo [V1] DatasetDM [VY] Pix2Seq-D [107] LD-ZNet[115] SegICL[121]
DINO - ] (]
DeepSpectral [9]] CutLER [100] U2Seg [108] SPINO [122]
STEGO [V2] Cuvler [101]
SAM - (]
82C [93] Semantic-SAM [109] = GraCo [110] VRP-SAM[127]
SEEM [50] MedSAM [111]
LLMs
LISA [5Y] LLaFs[124]
PixelLLM [5(]
Composition .
of FMs ¥ sAM-CLIP [94] X-Paste [107] F-LMM[116]
RIM [95] GroundedSAM [107] PPT [117]

* Zhou, T., Zhang, F., Chang, B., Wang, W., Yuan, Y., Konukoglu, E., & Cremers, D. (2024). Image Segmentation in Foundation Model Era: A Survey (No.
arXiv:2408.12957). arXiv. http://arxiv.org/abs/2408.12957
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Various Existing Works Build Upon SAM

Year-Month wu 2D 3D ‘ A PP PA | E.Frozen E.Finctune | R.N.M T.P.H T.P.E T.A Downstream Tasks
Method
2023-April SAM-Adaptor [25] - = = = - - - = = - Polyp
2023 -April SAMAug [ 166] v - - v - - vy - - = H&E, Polyp
2023 April MedSAM Adaptor [ 1 51] v v - - - - - - = - Abd, Opt. B.T, T.N
2023 -April LOSAN [ 100] v - - - - - - - - - Wessel & Lesion
2023 -April SAMed [162] - = = - = = - - - Abd
2023-April GareSAM [1415] v = - = - = = = = = Abd
2023 -April SkinSAM [63] v - - - - - - - = S
2023 -April PiClick [ 155] v = = = - = = = = = MNeural Tissue
2023-May Polyp-SAM [91] - = = = = - = = - = Polyp
2023-May SAM-Track [31] - = = - - = = = = = Brain
Z2023-May WS-SANM [S1] v - v - v - - - - Polyp
2023 -May BreastSANM [62] - = = [ - = = =] Breast .
2023 -May LuSAN [69] - = = = - = = = = Lung
2023-May TAMSAM [51] v - - - - - - - - = I & E
2023 -June DeSAM [10] - - - - - - - - - - Prostate
2023 June AutoS AN [128] - = = - = = = - = H & E, Polyp
2023 -June TEPO [ 29] - = - - = - = = = Brain
2023 -June RASAM[163] - - - - - - - - - - Organ-at-risk
2023 -June IDSAM-adaptor [15] - - - - - = = = - - Parts Tumor
2023 -Junc AutoS ANMC2) [61] - - - - - = - - - - Cardiac Structure
2023-June Medl S AM [59] v = v = - = v = = = H & N, Abhd, Lung
2023 -June CellViT [59] - — - - - - - - - H & E
2023-July SAM-LT [ 39 - - - - - - - - - - Opt
2023-July SAMM [1a9] - - % % - - - [ Abd., Prostate
2023-TJuly SAMAug [26] - = = - - = = = = = Polyp. Lung
2023-July All-in-SAM [35] - = - [ - = = - [ = H & E
2023-July SAM-Path [161] - = = - - = = - - = H & B
2023 -July CmAA [132] - - - - - = - - - - Glioma
2023-July MedSAM [101] - = = = = = - = = - 15 LM, =30 C. T
2023-August SAM-MLC [66] - = - = - - - = = = Lung
2023-August AdaptiveSAMNM [112] - = = - = - = - - = 5.5
2023 -August Poly-SAMN-++ [201] - = = - - - - - - - Polyp
2023-August SPSAN [155] - = - [ - - - - - = Polyp. S.L
2023-August SamDSK [167] - - - - - = - - - - Polyp, S L, Breast .
2023-August AutoSAM Adaptor [901] = - = - - = = - - Abd
2023 -August SANM-Med2D>» [ 30] - - - — - - — - - O MICCAIZ2023
2023-August SAMedOCT [13] v = = = v - v = = = oCT
2023-September SAM3D [23] - = = = - = = - = = Brain Lung.. Abd
2023-September SAMUS [95] - = = = - = - = = = Ultrasound
2023-September MA-SAM [25] = - = = - = - - = [ Abd, Prostate, 5.5
2023-September MedWVISTA-SAM [25] - [ [ = - Echocardiography

<Acronym: Mecaning> A.P.P:Adapt Psucdo Prior: PA:Prompt Augmentation: E.:Encoder; R.N.M: Retrain New Model: T.P.H: Train Projection Head;
T.P.E:Train Prompt Encoder; T.A:Train Adaptor; Abd:Abdomen; Opt:Optic; B.T:Brain Tumor; T.N:Thyroid Noduale; I.WM: Imaging Modalities; C.T':

Cancer Types: Per.: Peripheral:; C.: Cancer

Lee, H. H,, Gu, Y., Zhao, T., Xu, Y., Yang, J., Usuyama, N., Wong, C., Wei, M., Landman, B. A., Huo, Y., Santamaria-Pang, A., & Poon, H. (2024). Foundation Models
for Biomedical Image Segmentatlon A Survey (No. arXiv: 2401. 07654) arXiv. hl&lﬁammmg[ahs[ZﬂQLDlﬁﬂ
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Comparisons between SOTA and SAM

R - - Performance
Drirm. Maodality Region Targels SOTAs MedS.A M SAM Prompt Mode
Brain Intracranial Hemorrhage 0795 [92] 0940 ORGT [101] 1pf.2phb
Glioblastoma 0913 [52] 0.943 0744 [101] 1pf.2phb
Head-Neck Cancer OLTEE [9] 0794 O.G14 [101] 1pf.2pb
Head & MNeck Lymph Nodes Q742 [50] 0821 QU771 [101] 1 pf.2ph
Throat Cancer 0667 [12] 0803 0281 [101] 1pf.2phb
Pancreas & Tumor O.S28, 0623 (9] 0872, 0791 0731, 0741 [101] 1pf.2pb
oT Liver & Tumor 0950, 0790 [97] 0980, O_BET 0916, 0766 [101] 1pf.2p.
Spleen 0.974 [67] 0976 0938 [65] 1 box
Kidney & Tumor 0948, 0763 [H5] 0971, 0902 0947, 0867 [101] 1pf.2p.
Abdomen Morta 0956 0912 [101] 1 p.f. 2 p.
Esophagus 0737 0.B4S [56] 1 box
Stomach 0962 Q855 [101] 1pf.2pb
Gallblader 0918 0.R72 [56] 1 box
Ve 0918 0.R97 [56] 1 box
Audrenal Gland 0.661 QU742 [56] 1 box
- - - ~—-=-—- =~ Brainstem - - o9~ T T T X T 1pf.2pb
Cerebellum 0915 |1 ﬁ‘-J] 0.968 Q76S [101] 1pf.2pb
Deep Grey Mamer 0974 [07] 0956 0,496 [65] 1pf.2pb
wventricles OBT2 [86] 0900 QUG39 [101] 1pf.2pb
Brain Glioma O.RTE, 0928 [115] 0.944, 0 D62 QU763 (1), D834 (FLAIR) [101] 1pf.2pb
Gilioma Enhancing Tumor 0956 [57] 0.952 O.7RE [101] 1pf.2phb
Glioma Tumor Core O.G56 |57 0.959 Q710 [101] 1 2 phb
3D Ischemic Stroke 0964 [55] 0.923 0613 [101] 1 2 phb
Meningioma 09, 0892 [115] 0.979, 0970 0921 (T1-CE), (L792 (T2-FLAIR) [101] 1 2 p.b
westibular Schwannoma 0.925 [41] 0952 0853 [101] 1 2 pb
Eye PL 0930 [o7] 0.941 Q815 [101] 1 2 p.b
Eye PR 0923 [07] 0940 Q819 [101] 1 2 p.b
Optic Nerve DG, D F46 [67] 0613, 0703 0395 (L), 0433 (R) [ 101] 1 2 p.b
Bonce Mandible 0944 [67] 0697 0543 [101] 1 2 p.b
Head S& Neck Cricopharyngeus D632 (67 [eX=Ty e oGl [101] 1 .2 pb
ME Gind Lacrimal 0631, 0621 [67] 0640, D6ET 0.613 (L), 0599 (R) | 101] 1 2 phb
Gilnd Submand 0_B48, 0840 [67] 0913, 0909 0779 (L), 0797 (R) [ 101] 1 2 p.b
Parotid 0871, 0856 [67] 0917, 0916 0727 (L), 0714 (R) [101] 1 2 pb
Gilois Q752 [67] 0850 0301 [101] 1 2 p.b
Larynx SG 0814 [0 0882 0S40 [101] 1 2 p.b
Lips 0722 [67] 0BG 0584 [101] 1 2 p.b
Left Kidney 0921 [6E] 0948 0912 [101] 1 2 p.b
Right Kidney 0927 [05] 0948 0921 [101] 1 2 p.b
Abdomen Liver 0920 [65] 0.957 0902 [101] 1 2 phb
Spleen 0894 [6H] 0948 0910 [101] 1 .2 pb
Left Atrium 0.933 [97] 0973 0836 [101] 1 2 pb
Left Ventricle 0959 [143] 0.985 O.F7S [101] 1 2 pb
Heart Right Ventricle 0926 [143] 0972 0903 [101] 1 2 p.b
Artery Carotid 0874, 0833 [152] 0620, 0627 OSTE (L) 00610 (R) [ 101] 1 2 p.b
Whole Heart OBGT [19] 0963 0521 [101] 1 2 p.b
Prostate 0831 [o7] 0985 Q872 [101] 1 2 p.b
Prostate Prostate Cancer OBO0 [126] 0969 0693 [101] 1 2 p
Spinc Spine 0952 [125] 0918 0808 [101] 1 2 p
SpinalCord 0891 [165] 0774 0559 [101] 1 2 p
OCT Eyec Diabetic Macular Edema 0983 [144] 0950 QR84 [101] 1 2 p.b
Hearr 0950 [145] 0.96GH Q901 [101] 1 2 p.b
Lung 09T9 [145] 0.991 0933 [101] 1 2phb
Wiral Pneumonia 0992 [51] 0984 Q892 [101] 1 2 p.b
2D Pneumothorax B9l 1] 0815 OS02 [101] 1 2 p.h
H-Ray et Tuberculosis 0.978 (9] 0.969 0.939 [101] 1pf2ph
COVID-19 0971 [27] 0989 Q782 [101] 1pf.2pb
Breasit Breast Cancer 0963 4] 0833 OG6S [101] 1pf.2pb

Lee, H. H., Gu, Y., Zhao, T., Xu, Y., Yang, J., Usuyama, N., Wong, C.,Wel M., Landman B. A, Huo Y., Santamarla -Pang, A., & Poon, H. (2024). Foundation Models for
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MedSAM

* To enhance SAM’s performance on medical images, Segment Anything in Medical Images: (MedSAM)
curates a large-scale dataset containing over one million medical image-mask pairs of 11 modalities to

fine-tune SAM on these medical images.

* MedSAM has demonstrated substantial capabilities in segmenting a diverse array of targets and robust
generalization abilities to manage new data and tasks. Its performance not only significantly exceeds that
of existing the STOA segmentation foundation model, but also rivals or even surpasses specialist models.

a Performance Distribution of External Validation Tasks b Performance Correspondence of External Validation Tasks
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BioMedParse

* A large dataset comprising over 6 million triples of
image, segmentation mask and textual description is
curated. GPT-4 is used to harmonize noisy,
unstructured available texts with established
biomedical object ontologies.

» Similar to SEEM, BioMedParse focuses on learning
text prompts.

* The input is an image and a text prompt that
specifies the object type for segmentation and
detection, which are passed along to the image
and text encoders, respectively. The image
encoder can be SAM-V1T, while the text encoder
can be PubMedBERT or a transformer from
scratch.

* The mask decoder outputs a segmentation mask
by cross-attending the image and text
embeddings and gradually upsample the image
features back to high-resolution pixels. At the
last layer, the attention dot product on the pixel
embeddings delivers the segmentation mask.
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Number of image-mask—description triples
per modality in BiomedParseData
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BioMedParse

* The BioMedParse outperforms existing methods such as SAM and MedSAM on image segmentation across
nine imaging modalities, with larger improvement on objects with irregular shapes, it can also simultaneously
segment and label all objects in an image. Moreover, using text prompts alone, BiomedParse is much more
scalable than previous methods, which require orders of magnitude more user operations in specifying

bounding boxes.
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Theoretical Challenges

@ 1. Semantic Gap in Skip Connections: U-Net combines
encoder and decoder features at the same spatial scale via skip
connections.

X2 Challen%e: Encoder features are low-level (e.g., edges), while
decoder features are high-level (e.g., semantic). There's no
theoretical guarantee that such feature fusion preserves
semantic coherence.

% Open Question: What is the optimal way to b.rid;e this gap
while preserving both localization and semantics

@ 2. Limited Receptive Field and Global Context: U-Net is
built with local convolution operations.

* Challenge: Its theoretical receptive field grows linearly with
depth, IEO modeling long-range dependencies requires deep
networks.

% Consequence: U-Net lacks formal mechanisms (like self-
attention) to capture global structure, which is crucial in
medical imaging for understanding spatial dependencies.

@ 3. Overparameterization Without Generalization
Guarantees: U-Net can contain tens of millions of parameters.

¢ Challenge: There are no strong generalization bounds for U-
Net specifically. Standard bounds (e.g., VC-dimension or
Rademacher complexity) are either too loose or do not reflect
real-world performance.

% Research Gap: How does overparameterization influence
generalization in structured prediction tasks like segmentation?

IﬁUNC GILLINGS SCHOOL OF
L8 GLOBAL PUBLIC HEALTH

@ 4 Sensitivity to Input Perturbations

% Observation: U-Net’s segmentation output can be unstable under
small changes (e.g., adversarial noise, brightness shifts).

¢ Theoretical Challenge: U-Net lacks certified robustness
guarantees—a theoretical framework to ensure stable outputs under
bounded input perturbations.

> Implication: This limits its safe deployment in clinical decision-
making.

@ 5. Lack of Theoretical Justification for Architectural Choices

s Examples: Why are two 3 %3 convolutions used per block? Why
use symmetric architecture between encoder and decoder?

% Challenge: These choices are empirically motivated, not derived
from principled optimization or information-theoretic criteria.

€ 6. No Optimality Guarantee in Segmentation Accuracy

s Observation: U-Net minimizes per-pixel cross-entropy or Dice loss.

¢ Theoretical Issue: These losses are surrogates and may not
correspond to true segmentation performance (e.g., loU, boundary
precision).

% Open Problem: How to design loss functions that are both
theoretically consistent and aligned with segmentation metrics?

>

%
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Project MONAI

« MONALI is a freely available, community-supported PyTorch-based framework for deep +
learning in healthcare, providing purpose-specific AI model architectures, transformations \/] w j\
and utilities that streamline the development and deployment of medical AI models.

* Multiple aspects are carefully considered for challenges in real data: Medical Open Network
* The design considers the accompanying metadata that indicates the underlying physical for Artificial Intelliaence
interpretations of the data acquisition process and relevant annotations . g
* Low-level data processing components are simple and robust to handle the data variability and  Empowering healthcare innovation through open-source Al frameworks
hlghly ﬂexible requirements . that bridge research and clinical deployment
* High-level workflows are also introduced in addition to the exposed low-level component APIs. ‘ s ’ ‘ el ’ ‘ ey ’
/ FOUNDATIONAL COMPONENTS: independent domain-specialised APIs compatible with PyTorch programs \
Data Readers & writers Loss functions Networks, Transforms
Cache-based datasets, Support of various formats: Segmentation, regression, 3 . Spatial, intensity, 10, utilities,
patch-based datasets, NIfTI, PNG, NPY, CSV,... classification dlffere, ntlable mOdU|es compose with 3™ party adaptor
enhancedldatioz er Network with 2D/3D, Gaussian filtering,
CRF, squeeze & excitation, warping
CSRC Inference modules Visualisations ) Optimizers
C++/CUDA extensions siiding windows, sallency Infer Tensorboard integration, Metrics LR finder, layerwise LR, Cardoso. M. J.. Li. W.. Brown. R.. Ma. N.. Kerfoot
‘ Jupyter Notebook integration MeanDice, ROCAUC, FROC, Hausdorff Novograd E. Wané, Y. 1’\/Iur’rey,’B., Myl"one’nko,’ A.: Zhao, C’.,

Yang, D., Nath, V., He, Y., Xu, Z., Hatamizadeh, A.,
Myronenko, A., Zhu, W., Liu, Y., Zheng, M., Tang,
Y., ... Feng, A. (2022). MONAI: An open-source
framework for deep learning in healthcare (No.
Iteration, epoch-based metrics stats. trackers arXiv:2211.02701). arXiv.

as event handlers of the engines https://doi.org/10.48550/arXiv.2211.02701

MONAI WORKFLOWS: for ease of robust training & evaluation of research experiments

Workflow engines Workflow event handlers
Model checkpoint saving/loading, validation pipelines, LR scheduling,
metrics report generation, network output saving, transform inverter
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Project MONAI

* Transforms

PyTorch Training Loop

for epoch in range(max_epochs):

network.train()

for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = network(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()

network.eval()
with torch.no_grad():
for val_inputs, val_labels in val_loader:
val_outputs = network(val_inputs)
metric(y_pred=val_outputs, y=val_labels)

metric = metric.aggregate().item()
print("Validation result:", metric)

* Loss functions
* Network architectures
e Dataset and IO
* Training, inference engines and event handlers:
 Visualization and utilizes
Reference General Purpose
AHNet SegResNet AutoEncoder
BasicUNet SegResNetVAE  Regressor
DenseNet SENet Classifier
DINTS Transchex Discriminator
DynUNet UNETR Critic
EfficientNet  ViT FullyConnectedNet
HighResNet  ViTAutoEnc VarFullyConnectedNet
RegUNet VNet Generator
ResNet SwinUNETR UNet
VarAutoEncoder

ﬁ C GILLINGS SCHOOL OF
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MONAI Training Loop

evaluator = SupervisedEvaluator(

)

val_data_loader=val_loader,
network=network,
key_val_metric={ "metric": metric 1},

trainer = SupervisedTrainer(

)

max_epochs=num_epochs,
train_data_loader=train_loader,

network=network,

optimizer=optimizer,
loss_function=loss_function,
train_handlers=[ValidationHandler(1,evaluator)],

trainer.run() # do the training run for 10 epochs




L.oss Functions in MONAI

import numpy as np
from matplotlib import pyplot as plt
import torch
from torch.nn import CrossEntropyloss
from monai.losses import (
linspace(-1, 1, W
FocalLOSSJ linspace(-1, 1, H
Diceloss = np.meshgrid(x, y
Tverskyloss,
radius = 8.5
HausdorffDTLoss, circle = xox¥#2 + yy*s2 <= radius*+2
mask_true_idx = torch.from_numpy(circle).long

D:i.CECEI_OSSJ mask_true_idx = mask_true_idx.repeat(B, 1, 1
. mask_true = one_hot(mask_true_idx|:, None
DiceFocalloss

) square_size = radius * 2
square = (np.abs(xx) <= radius) & (np.abs(yy) <= radius
from monai.networks.utils import one_hot mosk_pred = torch. fron_nunpy(square) - float()
- mask_pred = mask_pred.repeat(B, 1, 1
mask_pred = torch.stack([1-mask_pred, mask_pred], dim=1
mask_pred_logits = np.log((mask_pred + 1e-8) / (1 - mask_pred + 1e-8

np.random.seed(1234)
torch.manual_seed(1234)

print(mask_pred.shape, mask_true_idx[:, None, ...]|.shape, mask_true.shape

CE_loss = CrossEntropylLoss

focal_loss = Focalloss({use_softmax=True
dice_loss = Diceloss(softmax=True
jaccard_loss = Diceloss(softmax=True
tversky_loss = TwverskylLoss(softmax=True
hausdorff_loss = HausdorffDTLoss
dice_ce_loss = DiceCELoss(softmax=True
dice_focal_loss = DiceFocalloss
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L.oss Functions in MONAI

mask_true_logits = torch.log((mask_true + 1e-8) / (1 - mask_true + 1e-8

loss_ce = CE_loss(mask_pred_logits, mask_true_idx)
loss_focal = focal_loss(mask_pred_logits, mask_true) loss_ce = CE_loss(mask_true_logits, mask_true_idx
loss dice = dice loss(mask pred logits e ) loss_focal = focal_loss(mask_true_logits, mask_true

- N : - - T ' : loss_dice = dice_loss(mask_true_logits, mask_true
loss_jaccard = jaccard_loss(mask_pred_logits, mask_true) Tt 3 = e e ey,
loss_tversky = tversky_loss(mask_pred_logits, mask_true) loss_tversky = tversky_loss(mask_true_logits, mask_true
loss_hausdorff = hausdorff_loss(mask_pred_logits, mask_true) loss_hausdorff = hausdorff_loss(mask_true_logits, mask_true
loss_dice_ce = dice_ce_loss(mask_pred_logits, mask_true) e e e
. . ) ) . : . loss_dice_focal = dice_focal_loss(mask_true_logits, mask_true
loss_dice_focal = dice_focal_loss(mask_pred_logits, mask_true)
print(f"Cross Entropy Loss: {loss_ce}") print(fCross Entropy Loss: {loss_ce}
print(f"Focal Loss: {loss_focal}") print(f*Focal Loss: {lsss_focal)
print(f"Dice Loss: {loss_dice}") pr:_mt e Ross {lnss‘dmf:}

e , - print(f“Jaccard Loss: {loss_jaccard}
print(f"Jaccard Loss: {loss_jaccard}") L e e T
print(f"Tversky Loss: {loss_tversky}") print(f"Hausdorff Loss: {loss_hausdorff}'
print(f"Hausdorff Loss: {loss_hausdorff}") print(f"Dice CE Loss: {loss_dice_ce}
print(f"Dice CE Loss: {loss_dice_ce}") print(f“Dice Focal Loss: {loss_dice_focal)
print(f"Dice Focal Loss: {loss_dice_focal}")

@UNC GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH



Training Models with MONAI

import os

from enum import Enum

from matplotlib import pyplot as plt

from matplotlib import colors

from random import shuffle

import numpy as np

from tgdm.notebook import tgdm, trange

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

class Animals(Enum

_rgb(data, max_num=None):
Some images are grayscale or rgba. For simplicity, remove them
loader = LoadImaged("im
out

port torch

monai.transforms import Ll

EnsureChannelFirstd for 1 in data:

Compose if os.path.getsize(i["i

DivisiblePadd im = loader(i)|

Lambdad if im.ndim 3 and im.shape[-1]
LoadImaged out.append(i

Resized if max_num is not None and len(out max_num

Rotate98d return out

ScaleIntensityd return out

om monai.networks.utils import eval_mode

om monai.data import Dataset, DatalLoader f get_data(animal, max_num=None

monai.networks.nets import DenseNet121 files = glob(os.path.join(data_path, "PetImages’, animal.name.capitalize
monai.data.utils import pad_list_data_collate data [{"image": i, "label®: animal.value} for i in files]

monai.visualize impor shuffle(data
GradCAMpp data = remove_non_rgb(data, max_num
OcclusionSensitivity return data
SmoothGrad .
GuidedBackpropGrad

GuidedBackpropSmoothGrad ) _ )
cats, dogs = [get_data(i, max_num=568) for i in Animg

om monai.utils import set_determinism all data = cats + dogs

om monai.apps import download_and_extract shuffle(all_data
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Training Models with MONAI

batch_size = 8
divisible_factor = 28
transforms = Compose

LoadImaged("image"

EnsureChannelFirstd( " image"”
ScaleIntensityd( "image

Rotated@d( "image k=3

DivisiblePadd( "image”, k=divisible_factor

ds = Dataset(all_data, transforms
dl = Dataloader
ds
h_size=batch_size
ffle=True
rkers=4
1=pad_list_data_collate
ast=True

True label

@UNC GILLINGS SCHOOL OF
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model = DenseNet121(spatial_dims=2 1_channels=3, out_channels=2, pretrained=True).to(device

optimizer = torch.optim.Adam(model.parameters(), le-5

def criterion(y_pred, y):
return torch.nn.functional.cross_entropy(y_pred, y, reduction="sum")

def get_num_correct(y_pred, y):
return (y_pred.argmax(dim=1) == y).sum().item()

max_epochs = 2
for epoch in trange(max_epochs, desc="Epoch"
epoch_loss = 6
acc = 0
for data in dl:
inputs, labels = datal"image"].to(device), datal"label"].to(device
optimizer.zero_grad|
outputs = model(inputs)

train_loss = criterion(outputs, labels)
acc += get_num_correct(outputs, labels)

train_loss.backward|(
optimizer.step()
epoch_loss += train_loss.item()
epoch_loss /= len(dl) * batch_size
acc /= len(dl) * batch_size
print(f"Epoch {epoch+1}, loss: {epoch_loss:.3f}, acc:




Interpretability with MONALI

target_layer = "class_layers.relu

gradcampp = GradCAMpp(model

occ_sens = OcclusionSensitivity
model

s=target_layer

size=32

- =batch_size
T AT
erbose=False

def saliency(model, d
ims =
titles =
log_scales =
img = torch.as_tensor(d["image None] . to(device
pred_logits = model(img
pred_label = pred_logits.argmax(dim=1).item
pred_prob = int(torch.nn.functional.softmax(pred_logits, dim=1)[8, pred_label

ims.append(torch. moveaxis(img, 1 1
titles.append(f"Pred: {Animals(pred_label).name} ({pred_prob}%)
log_scales.append(False

occ_map, _ = occ_sens(img
ims.append(occ_map[B, pred_label]|None]
titles.append(“"0Occ. sens.
log_scales.append(False

res_cam_pp = gradcampp(x=img, class_idx=pred_label)([8
ims.append( res_cam_pp

titles.append("GradCAMpp"

log_scales.append(False

Pred: dog (89%)
/ N\ CE &l Occ. sens.
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item

num_examples = 2

rand_data = np.random.choice(ds

ce=False, size=num_examples

tr = tqdm(rand_data

for

row, d in enumerate(tr
tr.set_description(f"img shape: {d['image'].shape[1:]}"
ims, titles, log_scales = saliency(model, d
if row == 0:
num_cols = len(ims
subplot_shape = [num_examples, num_cols
figsize = [i # 5 for i in subplot_shape =1
fig, axes = plt.subplots(*subplot_shape, figsize=figsize
add_row(ims, titles, log_scales, row, axes, num_examples

.tight_layout

Occ. sens.

GradCAM
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