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The Sequence-to-sequence Model
Neural Machine Translation

Stanford 

CS224n 



Sequence-to-sequence Model
Sequence-to-Sequence Overview
• A general encoder-decoder architecture.

• Encoder: maps input to a neural representation.

• Decoder: generates output from the neural representation.

• When both input and output are sequences: seq2seq model.

Seq2Seq Applications:  Sequence-to-sequence 
is versatile!
❖ Machine Translation: French ---→English

❖ Summarization: long text ----→ concise summary

❖ Dialogue: previous utterances ---→ next response

❖ Parsing: input text---→ parse tree (as a sequence)

❖ Code Generation: natural language --→ Python code

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

In the visualization, each 

pulse from the encoder or 

decoder represents an RNN 

processing its input and 

updating its hidden state 

based on current and past 

inputs.



Neural Machine Translation
Sequence-to-Sequence as a Conditional Language Model

Like any language model, the decoder predicts the next word in the target sequence Y.

It is conditional because predictions are made based on both:

❖  Previously generated target tokens.

❖The full source sequence X (via the encoder).

This allows the model to generate context-aware translations or responses.

The context vector turned 

out to be a bottleneck for 

these types of models. It 

made it challenging for 

the models to deal with 

long sentences.

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/



Limitations of  RNNs for Long Sequences
Long-distance dependencies are hard to 

learn:

❖ Distant word pairs require O sequence length 

steps to interact.

❖ Leads to vanishing or exploding gradients.

RNNs are inherently sequential:

➢ Forward/backward passes require 

O(sequence length) dependent operations.

➢  Each hidden state of RNN must be 

computed in order.

These challenges motivated the development of 

attention-based and transformer models.

Stanford 

CS224n 



A major solution was proposed in Bahdanau et al. (2014) 
and refined by Luong et al. (2015). They introduced a 
mechanism called Attention. Attention allows the model 
to focus on the most relevant parts of the input sequence 
when generating each output token. This led to substantial 
improvements in machine translation systems.  It laid the 
groundwork for modern architectures like Transformers.

Attention: A Key Breakthrough

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/



Transformer: Encoder and Decoder Layers

Encoder:
❖ Inputs pass through a self-attention layer, allowing each 

token to attend to others in the sequence.
❖ Followed by a feed-forward neural network, applied 

identically to each position.
Decoder:
❖ Contains a self-attention layer and a feed-forward layer.
❖ Additionally includes an encoder-decoder attention layer to 

focus on relevant encoder outputs.
This design enables both dynamic focus and parallelization.

https://jalammar.github.io/illustrated-transformer/
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Attention Timeline

This timeline highlights the evolution of deep learning 
and natural language processing. Starting in the 1990s 
with rule-based methods, RNNs, and LSTMs, it 
progressed to the introduction of simple attention 
mechanisms in 2014. 

The Transformer era began in 2017 with the 
groundbreaking paper "Attention is All You Need," 
leading to a rapid adoption in NLP with models like 
BERT and GPT by 2018. From 2018 to 2020, 
Transformers expanded into fields like vision (ViTs) and 
protein folding (AlphaFold-2). The generative era began 
in 2021-2022 with models like Codex, GPT-X, and 
DALL-E. 

By spring 2025, Transformers power massive models like 
ChatGPT, DeepSeek and open new applications in diverse 
areas, with exciting prospects for the future.

(Yang & Hashimoto, 2025)



Word Embeddings in NLP
Before diving into the attention mechanism, recall a common preprocessing step in NLP. Words are typically 
represented as dense vectors called word embeddings. These embeddings are stored in an embedding matrix W𝑬, 
where d is the embedding dimension and n is the vocabulary size. Embeddings provide the foundation for 
queries, keys, and values in attention.

https://www.youtube.com/watch?v=wjZofJX0v4M

https://www.youtube.com/watch?v=wjZofJX0v4M


Word Vector Embedding
• The model tends to settle on a set of embeddings where directions in the space have a kind of 

semantic meaning.

• One classical example is that, the difference between vectors of “man” and “woman” is very 
similar to that between “king” and “queen”. Consequently, we can simply find the embedding of a 
female monarch by taking “king”, adding the difference “woman” – “man” and search such an 
embedding.

https://www.youtube.com/watch?v=wjZofJX0v4M

https://www.youtube.com/watch?v=wjZofJX0v4M


Queries, Keys and Values

• Define by 𝐷 = { 𝑘1, 𝑣1 , … , 𝑘𝑚, 𝑣𝑚 } a dataset of 𝑚 tuples of keys and values and denote 𝑞 
a query. Then we can define the attention over 𝐷 as 𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 𝑞, 𝐷 = σ𝑖=1

𝑚 𝑎 𝑞, 𝑘𝑖 𝑣𝑖 
where 𝑎 𝑞, 𝑘𝑖 𝑣𝑖 ∈ ℝ are scalar nonnegative attention weights.

• The name “attention” derives from the fact that operation pays particular attention to the 
terms for which the weight 𝛼 is significant. As such, the attention over 𝐷 generates a linear 
combination of values contained in the database.

• To ensure that weights 𝛼(𝑞, 𝑘𝑖) sum up to 1, one can normalize them via 𝛼 𝑞, 𝑘𝑖 =
𝛼 𝑞,𝑘𝑖

σ𝑗 𝛼 𝑞,𝑘𝑗
. 

To further ensure that weights are also nonnegative, one can resort to the exponentiation via 

softmax operation 𝛼 𝑞, 𝑘𝑖 =
exp(𝑎(𝑞,𝑘𝑖))

σ𝑗 exp(𝑎(𝑞,𝑘𝑗))
.



Queries, Keys and Values: Analogy

• Imagine you’re looking for information on a specific 
topic (query) in a library system.

• Each book in the library has a summary (key) that 
helps identify if it contains the information you’re 
looking for.

• Once you find a match between your query and a 
summary, you access the book to get the detailed 
information (value) you need.

• Here in attention, we do a “soft-match” across multiple 
values. That is, we get into from multiple books 
(“Book1 is most relevant, then book2, the book3…”)



Attention Scoring Functions

• We refer to 𝑎 𝑞, 𝑘𝑖  before the softmax 
operation as the attention scoring functions. The 
mechanism Computing the output of attention 
pooling as a weighted average of values, where 
weights are computed with the attention scoring 
function 𝑎 and the softmax operation. 



Nadaraya–Watson Kernel Estimator
• The similarity kernels have already been used in regression and classification via kernel density 

estimation.

• At their core, Nadaraya-Watson estimators rely on some similarity kernel 𝛼 𝑞, 𝑘  relating queries 𝑞 

to keys 𝑘. Some common kernels include 𝑎 𝑞, 𝑘 = exp(−
1

2
𝑞 − 𝑘

2
) (Gaussian), 𝑎 𝑞, 𝑘 =

1 𝑖𝑓 𝑞 − 𝑘 ≤ 1 (Boxcar) and 𝑎 𝑞, 𝑘 = max(0,1 − | 𝑞 − 𝑘 |) (Epanechikov).

• For example, we can pick key 𝑘 = 0 and will yield following graphs:



Nadaraya–Watson Kernel Estimator

• All of these kernels lead to the equation for regression and classification alike: 𝑓 𝑞 = σ𝑖
𝑎 𝑞,𝑘𝑖

σ𝑗 𝑎 𝑞,kj
v𝑖. 

Such Nadaraya-Watson kernel regression is an early precursor of the current attention mechanisms.



Attention Mechanisms: Overview



Attention Mechanisms: Overview



Query: Illustration

https://www.youtube.com/watch?v=eMlx5fFNoYc

• Consider the sentence: A fluffy blue creature roamed the verdant forest.

• Imagine the situation, where each noun like “creature” is asking the question: “Hey, are there any adjectives 

sitting in front of me?

• Then the word “blue” would answer: “Yes, I am an adjective and I am in that position!”

• This question can be encoded in the query vector, which has a much smaller dimension than the embedding space.

https://www.youtube.com/watch?v=eMlx5fFNoYc


Key: Illustration

https://www.youtube.com/watch?v=eMlx5fFNoYc

• Keys can be interpreted as potentially answering the queries, which also has a much smaller 
dimension than the whole embedding space.

• As an example, the key matrix would map the adjectives like “fluffy” to vectors that are closely 
aligned with the query produced by the word “creature”, leading to some large positive dot 
products between the query and the key.

https://www.youtube.com/watch?v=eMlx5fFNoYc


Value: Illustration

https://www.youtube.com/watch?v=eMlx5fFNoYc

• Unlike query and key, value vector lives in the same, very high dimensional space as the 
embeddings.

• For example, here we add large proportions of the re-scaled value vectors for “fluffy” and “blue” to 
the original context-free embedding of “creature”, we get a refined vector that has contextually-
rich meaning, like a “fluffy blue creature”.

https://www.youtube.com/watch?v=eMlx5fFNoYc


Convenience Functions

• To deals with string of variable lengths more easily, one often pad shorter sequences with 
dummy tokens “< 𝑏𝑙𝑎𝑛𝑘 >”.

• Masked softmax operation: Since we do not want the attention model to attend to these 

blanks, this operation limit σ𝑖=1
𝑛 𝛼 𝑞, 𝑘𝑖 𝑣𝑖 to σ𝑖=1

𝑙 𝛼 𝑞, 𝑘𝑖 𝑣𝑖 where 𝑙 ≤ 𝑛 is the length of 
actual sentence.

Illustration: Consider a minibatch of two 

examples of size 2 × 4, where their valid 

lengths are 2 and 3 respectively:



Scaled Dot-Product Attention
• Scaled Dot-Product Attention is a key component of the 

Transformer architecture, widely used in modern deep 
learning models such as BERT and GPT. The formula is as 
follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘

𝑉

• Scaled Dot-Product Attention possess the following key 
advantages:

• Efficiency: It relies on simple matrix multiplications and 
scaling, making it highly efficient and suitable for parallel 
computation on GPUs/TPUs.

• Scalability: It performs well on large-scale datasets and is 
the foundation of many state-of-the-art models.

• Flexibility: It can handle sequences of different lengths, as 
the attention mechanism dynamically computes the 
relationships between queries and keys.



Additive Attention (Bahdanau Attention )

• Additive Attention, also known as Bahdanau Attention, was introduced in the context of RNN-
based sequence-to-sequence models. It computes the attention weights by passing the 
concatenation of the query (Q) and key (𝐾) through a feedforward neural network with a tanh 
activation function, followed by a learned weight vector 𝑤𝑣. The attention distribution is obtained 
by applying a softmax function to the output of this network. The formula is as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑤𝑣
𝑇 ⋅ tanh 𝑊𝑞𝑄 + 𝑊𝑘𝐾 𝑉

• Additive Attention has certain advantages:

• Flexibility: It can model complex relationships between queries and keys due to the use of a learnable 
feedforward network.

• Interpretability: The attention weights are often more interpretable in certain tasks.

• However, the additional parameters and computations compared to Scaled Dot-Product Attention 
limits creates computational cost. It is also less suitable for large-scale parallel computation.



Attention: Implementation

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘

𝑉𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑤𝑣
𝑇 ⋅ tanh 𝑊𝑞𝑄 + 𝑊𝑘𝐾 𝑉
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Self-Attention and Learnable Query

Aspect Self-Attention Learnable Query

Query Definition Q=K=V=X (input data itself) Q is independent and learnable

Input Dependency Input size determines query size Query size is fixed and independent

Flexibility Suitable for variable-length inputs
Suitable when fixed-length output 
is needed

Use Case
Typically used for internal 
relationships in input data (like 
word dependencies)

Often used when fixed-size 
representation is needed, 
regardless of input size

Example
Transformer encoder, where all 
tokens attend to each other

Object detection, where fixed 
number of queries are learned to 
detect objects



Self-Attention: Motivation
• Suppose the following sentence is an input sentence we want to translate: The animal didn’t cross 

the street because it was too tired. What does “it” in the sentence refer to? Is it referring to the 
street or the animal? It’s a simple question to a human, but not as simple to an algorithm.

• The self-attention mechanism enables the model to associate “it” with “animal”.

As we are encoding the word “it” in encoder 

#5, which is the top encoder in the stack, part 

of the attention mechanism was focusing on 

"The Animal", and baked a part of its 

representation into the encoding of “it”.

The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time. 
(jalammar.github.io)

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


Self-Attention
• Self-attention: Every token is attending to each other token, that is routing the values in different 

proportions to create each output.

• A self-attention block takes 𝑛 inputs, each of dimension 𝑑 × 1, and returns 𝑛 output vectors of the same size. 
Given a sequence of input tokens 𝑥1, … , 𝑥𝑛 where any 𝑥𝑖 ∈ ℝ𝑑, its self attention outputs a sequence of same 
length 𝑦1, . . , 𝑦𝑛 ∈ ℝ𝑑.

𝑣𝑖 = 𝛽𝑣 + Ω𝑣𝑥𝑖

𝑦𝑖 = ෍
𝑗

𝑎(𝑥𝑗, 𝑥𝑖) 𝑣𝑖



Self-Attention: Details
• The first step is to create three vectors from each of encoder’s input vectors. These vectors are created by 

multiplying the embedding by three matrices that we trained during the training process (usually smaller in 
dimension than the embedding vector).

The Illustrated Transformer – Jay Alammar – Visualizing machine learning one 
concept at a time. (jalammar.github.io)

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


Self-Attention: Details
• The second step is to calculate the scoring function and then divide it by the square root of the 

dimension of the key vectors. 



Self-Attention: Details

• The third step is to multiply each value 
vector by the softmax score and sum up 
the weighted value vectors.

• The resulting vector is the one we can send 
along to the feed-forward neural network.

• In the actual implementation, such 
calculation is done in matrix form for faster 
processing.



Self-Attention: Matrix Calculation

• Query, key and value matrices are calculated 
through matrix multiplication.

𝑄 = 𝑊𝑄𝑋 = 𝛽𝑞1𝑇 + Ω𝑞𝑋

𝐾 = 𝑊𝐾𝑋 = 𝛽𝑘1𝑇 + Ω𝑘𝑋

𝑉 = 𝑊𝑉𝑋 = 𝛽𝑣1𝑇 + Ω𝑣𝑋

𝑌 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇 𝑉



Self-Attention: Equivariance and Invariance

Sketch

Definition Theorem



RNN, CNN, and Self-Attention
RNNs are best for capturing sequential dependencies but struggle with long-range patterns.

CNNs excel at local spatial features and parallel processing but are not well-suited for sequence data.

Self-Attention provides flexibility in capturing long-range dependencies and global contexts but is 

computationally expensive for very long sequences.

Aspect RNNs CNNs Self-Attention

Primary Purpose
Sequential data 
processing

Spatial data processing
Capturing global 
relationships and 
dependencies

Data Handling
Temporal and ordered 
sequences

Local and spatial features
Long-range and global 
dependencies

Model Type
Recurrent neural 
networks

Convolutional neural 
networks

Attention-based, often in 
transformers

Core Mechanism
Recurrence and hidden 
states

Convolutions with 
filters/kernels

Query-Key-Value 
attention mechanism



Comparing RNNs, CNNs and Self-Attention

• RNN: 𝑑 dimensional hidden state

• O(𝑛𝑑2) computational complexity

• 𝑂(𝑛) sequential operations

• 𝑂(𝑛) maximal path length

• CNN: Given a sequence of length 𝑛, kernel size 𝑘 and numbers of input and output channels 𝑑.

• 𝑂(𝑘𝑛𝑑2) computational complexity

• 𝑂(1) sequential operations

• 𝑂
𝑛

𝑘
 maximal path length

• Self-Attention: queries, keys and values are all 𝑛 × 𝑑

• 𝑂(𝑛2𝑑) computational complexity  →  prohibitively slow and improved by later works

• 𝑂 1  sequential operations

• 𝑂 1  maximal path length  →   easier to capture long range dependencies



Comparing RNNs, CNNs and Self-Attention

(Johnson, 2022)



From Self-Attention to Transformers

• The basic concept of self-attention can be used to develop a very powerful type of sequence model, 
called a Transformer.

• But to make this actually work, we need to develop a few additional components to address some 
functional limitations.

• Masked encoding: How to prevent attention lookups into the future? Ensures causality in 
autoregressive models.

• Multi-head Attention: Allows querying multiple positions at each layer. Increases model capacity to 
capture complex patterns.

• Positional encoding: Address lack of sequence information, especially for images and videos. 
Provides sequence order awareness, crucial for text, images, and videos.

The combination of these techniques makes Transformers robust and efficient for sequence modeling.



Masked Attention

 Implementation: Add a mask matrix M:

𝑆𝑐𝑜𝑟𝑒𝑠 =
𝑄𝐾𝑇

𝑑𝑘

,  𝑀𝑎𝑠𝑘 = ቊ
0, 𝑝𝑎𝑠𝑡 

−∞, 𝑓𝑢𝑡𝑢𝑟𝑒

𝑀𝑎𝑠𝑘𝑒𝑑 𝑆𝑐𝑜𝑟𝑒𝑠 = 𝑆𝑐𝑜𝑟𝑒𝑠 + 𝑀𝑎𝑠𝑘

(Levine, 2021) 

 Problem: During training, self-attention might access future

tokens, leading to data leakage.

 Solution: Use a mask to block attention from future positions.



Multi-Head Attention
• In practice, given the same set of queries, keys and values we may want out model to combine 

knowledge from different behaviors of the same attention mechanism, such as capturing 
dependencies of various ranges (e.g., shorter-range vs. longer-range) within a sequence. Thus, it 
may be beneficial to allow our attention mechanism to jointly use different representation 
subspaces of queries, keys and values.

• Instead of performing a single attention pooling, queries, keys, and values can instead be 
transformed with ℎ independently learned linear projections. These ℎ projected queries, keys and 
values are fed into attention pooling in parallel.

• This design is called multi-head attention, where each of the ℎ attention pooling outputs is a head.



Multi-Head Attention
• Give a query 𝑞 ∈ ℝ𝑑𝑞, a key k ∈ ℝ𝑑𝑘 and a value 𝑣 ∈ ℝ𝑑𝑣, each attention head ℎ𝑖 is computed as ℎ𝑖 =

𝑓 𝑊𝑖
𝑞

𝑞, 𝑊𝑖
𝑘 𝑘, 𝑊𝑖

𝑣 𝑣 ∈ ℝ𝑝𝑣 where 𝑊𝑖
𝑞

∈ ℝ𝑝𝑞×𝑑𝑞, 𝑊𝑖
𝑘 ∈ ℝ𝑝𝑘×𝑑𝑘 and 𝑊𝑖

𝑣 ∈ ℝ𝑝𝑣×𝑑𝑣 are 

learnable parameters and 𝑓 is attention pooling such as additive attention or scaled dot product 
attention. 

• The feed-forward layer is not expecting multiple matrices. Therefore, the output is another linear 

transformation via learnable parameters 𝑊𝑜 ∈ ℝ𝑝𝑜×𝑀𝑝𝑣 of concatenation of 𝑀 heads: 𝑊𝑜

ℎ1

…
ℎ𝑀

∈ ℝ𝑝𝑜.



Multi-Head Attention
Multi-head attention expands the model’s ability to focus on different positions, as well as gives the 
attention layer multiple “representation subspaces”, thus improving the expressivity of the model.



Multi-Head Attention



Multi-Head Attention: Example
As we encode the word “it”, one attention head is focusing most on “the animal”, while another is focusing on “tired” 
-- in a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".

However, once all attention heads are to be considered, things can get started to be harder for interpretation.



Positional Embedding
• Unlike RNNs, which recurrently process tokens of a sequence one-by-one, self-attention ditches sequential 

operations in favor of parallel computation. 

• However, self-attention by itself does not preserve the order of sequence, that is, it is equivariant to 
permutations of the inputs. What should we do to account for the order of words in the input sequence when it 
really matters?

 

• The dominant approach for preserving information about the order of tokens is to represent this to the model 
as an additional input associated with each token. These inputs are called positional embedding, and can 
either be learned or a fixed a priori.

(Levine, 2021) 



Positional Embedding

• The naïve positional encoding would just append 𝑡 to the input: 𝑥𝑡 = 𝑥𝑡
𝑡

. However, it would 

not be a great idea, because the absolute position is less important than the relative position.

❖ Therefore, we want to represent position in a way 
that tokens with similar relative position will have 
similar position encoding.

❖ What about using frequency-based representations?



Positional Embedding: Example

• One typical scheme for fixed positional 
encodings are based on sine and cosine 
functions.

• Suppose that 𝑋 ∈ ℝ𝑛×𝑑  contains the 𝑑 -
dimensional embeddings for 𝑛 tokens of a 
sequence. The positional encoding outputs 
𝑋 + 𝑃 using a positional embedding matrix 
P ∈ ℝ𝑛×𝑑 of the same shape, whose element 
on the 𝑖th row and the (2𝑗)th or (2𝑗 + 1)th 
column is given by

     𝑝𝑖,2𝑗 = sin
𝑖

1000
2𝑗
𝑑

, 𝑝𝑖,2𝑗+1 = 𝑐𝑜𝑠
𝑖

1000
2𝑗
𝑑



Positional Embedding: Example
• In the positional embedding matrix 𝑃, rows correspond to positions within a s sequence and 

columns represent different positional encoding dimensions. 

• In the example below, we can see that the 6th and the 7th columns of positional embedding matrix 
have a higher frequency than the 8th and the 9th columns. 



Positional Embedding: Example

“even-odd” indicator

“first half-second half indicator” indicator



Positional Embedding



Alternative Positional Embeddings
Vision Transformer 
Patch-Based Tokens:

 Image is split into patches and embedded as tokens.

 A 2D coordinate (x, y ) is mapped to position 

embeddings.

2D Positional Embeddings:
 Often a learnable embedding for each patch index.

 Alternatively, sinusoidal in each spatial dimension, 

then combined.

 Why It Works:
 Preserves spatial relationships for tasks like 

recognition, detection.

 Vision Transformers handle global and local contexts 

effectively.

Learnable Positional Embeddings:
 Treat position embeddings as trainable parameters.

 No mathematical constraint, but less interpretable.

Relative Positional Encoding:
 Encodes the difference between positions.

 Helps with tasks where relative order matters (e.g., 

text generation).

 Rotary Positional Encoding:
 Efficiently integrates positional information into 

attention.

 Particularly effective for long-sequence tasks.
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Why Transformers?

Parallel Computation + Short Path Length:

 Self-attention can handle all tokens in parallel.

 Minimal path length for global dependencies, vital for deep

architectures.

Transformer Dominance in NLP:

 Nearly all state-of-the-art language tasks use Transformer 

based models.

 Default approach: ”Grab a large pretrained Transformer”

(BERT, GPT, T5, etc.).

 Vision Transformer (ViT):

 Patch-based input turned into token embeddings.

 Now a go-to model for image recognition, detection, and

segmentation.

Islam, S., Elmekki, H., Elsebai, A., Bentahar, J., Drawel, N., Rjoub, G., & Pedrycz, W. (2024). A

 comprehensive survey on applications of transformers for deep learning tasks. Expert Systems with Applications, 241, 122666.



Why Transformers?

Before Transformers After Transformers

(Bertasius, 2024)



From Attention Mechanism to Transformer
• If we have attention, do we even need recurrent connections?

• Can we transform our RNN into a purely attention-based model?

Citation: 173883+

Neurips 2017



Transformer: A High-Level Look
• Transformer is composed of an encoder and a 

decoder.

• The input and output sequence embeddings are added 
with positional encoding before being fed into the 
encoder and the decoder.

• The encoder is a stack of multiple Transformer layers, 
used to transform the text embeddings into a 
representation that can support a variety of tasks.

• The decoder is also a stack of multiple Transformer 
layers, used to predict the next token to continue the input 
text. It also inserts a sub-layer, known as the encoder-
decoder attention.

https://jalammar.github.io/illustrated-transformer/

https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-

works-step-by-step-b49fa4a64f34/



Tokenization and Vocabulary Construction

 Goal: 
Convert raw text into model-readable units (tokens).

Common Methods:
 Whitespace splitting (simple but limited).

 Word-level tokenization 

(vulnerable to out-of-vocabulary words).

 Subword tokenization (BPE)

(compromise between letters and full words).

Importance: Effective tokenization impacts model

performance.

 Definition: The vocabulary is the set of all tokens recognized
by the tokenizer.
Size:

 Typically a user-defined hyperparameter (e.g., 30k, 50k tokens).
 Larger vocab covers more words but uses more memory.

Handling Rare Words:
 Full-word approach leads to frequent OOV (out-of-vocabulary)

issues.
 Subword approaches store partial words, enabling composition 

of unknown words.
 Example: BERT uses a WordPiece vocabulary of 30k tokens.

Whitespace Splitting Example:
 Input: "Hello world!"
 Tokens: ["Hello", "world!"]
 Issue: Punctuation remains 

attached to "world!"

Word-Level Example:
 Often attempts to separate punctuation

 from words.
 Tokens: ["Hello", "world", "!"]
 OOV Problem: If "Hello" isn’t in the vocab,

 it becomes. "<UNK>".

BPE: 
 Example 1: "unbelievable"
 If "unbelievable" is rare, split into 

subwords:  Tokens: ["un", "believ", "able"]
 Example 2: "low-frequent-words"
 If "-" is a token, might see:  Tokens: 

["low", "-", "frequent", "-", "words"]



Illustration of  BPE
  Initial Characters: The passage is split into single letters +

whitespace (e.g., for space). Frequencies are tallied.
 Iteration 1: Merge Most Common Pair 

❖E.g., merging s and e into the new token se.
❖Token counts for s and e decrease accordingly.
❖  Constraint: Cannot merge across words (no merging if last
char is whitespace).

 Subsequent Iterations:
➢  Continue merging the most frequently adjacent pair, e.g. e
and _, forming e_.
➢Over many iterations, tokens become a mix of letters,
fragments, and common words.

 Vocabulary Growth and Shrink:
 As merges occur, the vocabulary expands with new fragments,

then contracts as merges become less frequent.
 In practice, we stop once we reach a predefined vocabulary 

size.
 Real-World Use: Large corpora, punctuation, uppercase

letters all handled as separate input characters, with a final
vocab determined by the token count limit

Prince (2024)



Transformer Layer (Block)

 Input: D × N matrix of word embeddings, where D is the

embedding dimension and N the sequence length.

 Multi-Head Attention:

❖ Each token can attend to every other token.

❖ Output dimension is D × N.

❖ Residual connection: add the original inputs back.

 LayerNorm:

➢ Applied to each column (token) independently.

➢ Normalizes across the embedding dimension.

 Fully Connected Feed-Forward:

✓ Same MLP applied to each column.

✓ Residual connection again.

 Final LayerNorm:

❑ Normalizes outputs across D for each token.

 Result: Output is a D × N matrix with updated token

representations.



Transformer Layer: Residual Connection

• Residual connection is a simple but powerful technique 
from computer vision.

• Observation: Deep neural networks are surprisingly bad 
at learning the identity function.

• Therefore, directly passing “raw” embeddings to the 
next layer would be very helpful!

𝑥𝑙 = 𝑓 𝑥𝑙−1 + 𝑥𝑙−1

• This prevents the network from “forgetting” or 
distorting important information as it is processed by 
many layers.



Transformer Layer: Layer Normalization

• Problem: Deep neural networks often suffer from internal 
covariate shift, where the distribution of inputs to each layer 
changes during training, making optimization difficult.

• Solution: Reduce variation by normalizing to zero mean and 
standard deviation of one within each layer.

Layer norm is not applied to an entire transformer layer, but just to 

the embedding vector of a single token.



Position-wise Feed-Forward Networks
• The position-wise feed-forward 

network transforms the representation 
at all the sequence positions using the 
same MLP. This is why we call it 
position-wise.

https://www.youtube.com/watch?v=wjZofJX0v4M

https://www.youtube.com/watch?v=wjZofJX0v4M


Putting it All Together

(Johnson, 2022)

• Self-attention is the only interaction between vectors.

• Layer normalization and MLP work independently per vector.

• The structure is highly scalable and highly parallelizable.

In practice, we often put the layer normalization inside the residual attention, 

which tend to give more stable training and is commonly used in practice.



Encoder
• The Transformer encoder consists of multiple identical Transformer layers that process the input 

sequence in parallel. Each layer refines the input representation by capturing dependencies across all 
positions. (𝑁 = 6 in the paper Attention is all you need).

• The encoder outputs a contextualized representation for each token, which serves as input to the decoder.

The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept 
at a time. (jalammar.github.io)

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


Encoder: Implementation



Transformer Decoder



Decoder: Masked Self-Attention

• The Transformer decoder is also composed of multiple 
layers and generates the output sequence step by step. In 
the decoder self-attention, queries, keys and values are 
all from the outputs of the previous decoder layer. 

• However, each position in the decoder is allowed only 
to attend to all positions in the decoder up to that 
position. This masked attention preserves the 
autoregressive property, ensuring that the prediction 
only depends on those output tokens that have been 
generated.



Decoder: Cross-Attention
• Cross-attention in the decoder allows it to incorporate 

information from the encoder’s output. 

• Queries are from the outputs of the decoder’s self-

attention sublayer (decoder’s hidden states). 

• The keys and values are from the Transformer 

encoder outputs.

• In reality, cross-attention is also multi-headed.

• Such design enables the model to align generated tokens 

with relevant input features dynamically.

https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34/



Decoder: Final Layer

• The Linear layer is a simple fully connected 

neural network that projects the vector 

produced by the stack of decoders, into a much, 

much larger vector called a logits vector.

• The softmax layer then turns those scores into 

probabilities (all positive, all add up to 1.0).

• The cell with the highest probability is chosen, 

and the word associated with it is produced as 

the output for this time step.



Decoder: Implementation
To preserve autoregression in the decoder, the masked self-attention specifies a valid length so that any 

query only attends to all positions in the decoder up to the query position.



Combine Encoder and Decoder Values: 
Animation



Transformer: Putting it All Together

(Levine, 2021) 

A Transformer is a sequence of Transformer layers.
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Transformers are Everywhere Now!

Robotics, Simulations, Physical Tasks
Playing Games

Biology + Healthcare



Transformers are Everywhere Now!

Vision: Generating Images & Video

Audio: Speech + Music

Vision: Analyzing Images & Videos

Text and Language



Categorization of  Transformer variants



X-Transformers



Why Transformers?

• Downsides:

• Attention computations are technically 𝑂 𝑁2

• Somewhat more complex to implement (positional encodings, etc.)

• Benefits:

• Much better long-range connections

• Much easier to parallelize

• In practice, can make it much deeper than RNN.

• The benefits seem to vastly outweigh the downsides, and Transformers work much better than RNNs and LSTMs in 
many cases. Arguably, Transformer is one of the most important sequence modeling improvements of the past decade.



Why Transformers?

(Levine, 2021) 



Pretraining and Fine-Tuning

Definition: Train a model on a large, general-purpose dataset.

Objective:

 Capture grammar, semantics, and world knowledge.

 Develop universal language representations.

Benefits:

 Model gains broad patterns (e.g., BERT, GPT, etc.).

 Reduces the amount of data needed for future tasks.

 Often uses large corpora (Wikipedia, BookCorpus, etc.).

Examples:

 Masked language modeling (BERT).

 Next token prediction (GPT).

Definition: Further training a pretrained model on a smaller,
task-specific dataset.
Goal:

 Leverage general knowledge from pretraining.
 Specialize for a target task (classification, QA, NER, etc.).

Advantages:
 Requires far less data than training from scratch.
 Faster convergence, lower computational cost.
 Often leads to state-of-the-art performance on downstream

tasks.
Process:

 Load pretrained weights, replace final layer with task-specific 
output.

 Train on the smaller labeled dataset for a few epochs.



Attention/Transformers for Vision

Idea #1: Add attention to existing CNNs

• Start from standard CNN architecture (e.g. ResNet)

• Add Self-Attention blocks between existing ResNet blocks

Zhang et al, ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al, ”Non-local Neural Networks”, CVPR 2018

Key Idea:
 Introduce long-range self-attention into GANs for image

generation.

 Traditional conv-based GANs rely on spatially local features.

 SAGAN allows any feature location to influence the generation

of high-resolution details.

Results on ImageNet:
 Inception score boosted from 36.8 to 52.52.

 Frechet Inception Distance (FID) reduced from 27.62 to 18.65.

 Visualization shows generator attends to object-like shapes,

not just local patches.



Attention/Transformers for Vision

Idea #2: Replace convolution entirely

Hu et al, “Local Relation Networks for Image Recognition”, ICCV 2019; 
Ramachandran et al, “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019

Beyond Convolutions:

 Convolutions excel at local feature extraction.

 Self-attention is especially beneficial in later layers and long-range 

dependencies require content-based interactions (e.g., self-attention, non-

local blocks).

Key question: Can self-attention fully replace spatial convolutions?

 Replacing Convs with Self-Attention:

 Modify ResNet by swapping each spatial convolution for a

self-attention module.

 Gains on ImageNet: outperforms baseline with 12% fewer

FLOPs and 29% fewer parameters.

 On COCO detection, pure self-attention matches baseline

mAP with 39% fewer FLOPs and 34% fewer parameters.

 



Attention/Transformers for Vision

Unfortunately, the performance is not 
satisfactory:

• Lots of tricky details

• Hard to implement

• Only marginally better than ResNets



Attention/Transformers for Vision

Idea #3: Standard Transformer on Pixels

• Treat an image as a set of pixel values, and then 
feed it as input to standard Transformer

• Problem: Too much memory usage! An 𝑅 × 𝑅 
image requires 𝑅4 elements per attention matrix. 
Then for a 128 × 128 image with 48 layers, 16 
heads per layer, it would take 768GB for attention 
matrices!

Chen et al, “Generative Pretraining from Pixels”, ICML 2020

 Idea: Apply a similar auto-regressive Transformer to pixels
without explicit 2D priors.

 Setup:
 Trained on low-resolution ImageNet in a purely auto-

regressive  manner. No 2D convolutions, treats images as 1D 
sequences.

 Results on CIFAR-10:
 96.3% accuracy with a linear probe, beating a supervised 

Wide  ResNet.
 99.0% accuracy when fully fine-tuned, matching top 

supervised pretrained models.
Self-Supervised Benchmarks on ImageNet:

 Demonstrates strong learned representations even 
without
explicit image patches.



Vision Transformers (ViT)
Idea #4: Standard Transformer on Patches

Dosovitskiy et al, “An Image is Worth 16x16 Words: 
Transformers for Image Recognition at Scale”, ICLR 2021

(Johnson, 2022)

In practice, we take 224x224 input image, divide into 14x14 grid of 16x16 pixel
patches . Each attention matrix then takes around 150 KB.



Vision Transformers (ViT)

• In the field of vision, the reliance on CNN is not 
necessary and a pure transformer applied directly can 
perform very well on image classification tasks.

• Vision Transformer(ViT) try to do fewest possible 
modification by splitting image into patches and 
provide the sequence of linear embeddings of these 
patches as input.

• Unlike prior works, ViT doesn’t introduce specific 
inductive biases into architecture except the initial 
patch extraction step. Instead, image is treated as a 
sequence of patches and is processed by a standard 
Transformer encoder

• Convolutional inductive bias is useful for smaller 
datasets; while for larger ones, learning the relevant 
patterns is even beneficial.



Vision Transformers (ViT)

B = Base
L = Large
H = Huge

/32, /16, /14 is 
patch size; 
smaller patch size is 
a bigger model
(more patches)

• When trained on ImageNet, ViT models perform worse than ResNets.

• If you pretrain on JFT and finetune on ImageNet, large ViTs outperform large ResNets.

• ViT can make more efficient use of GPU/TPU (tensor processing unit) hardware, as 

matrix multiplication is more hardware-friendly than convolution.



Improving ViT: Distillation (DeiT)
Data-efficient Image Transformer (DeiT) is an improved version of the ViT, designed to achieve high performance 
with smaller datasets and less computational cost. 

DeiT is trained entirely on ImageNet-1k by leveraging knowledge distillation. It introduces a distillation token that 
learns from a pre-trained teacher model (e.g., a CNN), allowing the Transformer to benefit from the teacher's soft 
labels and achieve better generalization. 

Additionally, DeiT also employs advanced data augmentation and efficient training strategies, enabling faster 
convergence and competitive performance without the need for external data.

Touvrom et al, “Training data-efficient image transformers & distillation through 
attention”, ICML 2021



Scaling (ViT-22B)
Three main modifications to the original ViT:

• Instead of sequentially applying self-attention and 
MLP blocks, put them in parallel for additional 
parallelization.

• Query/Key normalization to ensure stable gradient.

• Omit bias term for 𝑄𝐾𝑉 projections to accelerate 
utilization

Dehghani, Mostafa, et al. "Scaling vision transformers to 22 billion 
parameters." International Conference on Machine Learning. PMLR, 2023.



Swin Transformer
Swin Transformer highlights how a carefully adapted Transformer architecture—with local windows, shifting, and 

hierarchical stages—can match or exceed CNN performance in classification, detection, and segmentation, paving 

the way for broader adoption of Transformers as a universal backbone in computer vision.

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision . 2021.

❖ Hierarchical Feature Representation: Splits the input image into patches and constructs feature maps of 

progressively lower resolution.  This design enables the model to handle multi-scale visual entities effectively 

and to integrate seamlessly with common dense prediction frameworks (e.g., FPN, U-Net).

❖ Shifted Window Partitioning between consecutive layers lets each window see content from neighboring 

windows in previous layers, boosting modeling power while keeping efficiency.



Swin Transformer

Strong Performance Across Vision Tasks

❖ Image Classification: Achieves top-tier accuracy on 

ImageNet (e.g., 87.3% top-1 with Swin-L).

❖ Object Detection: Improves box AP and mask AP on 

COCO, surpassing prior SOTA by a significant margin (e.g., 

+2.7 AP).

❖ Semantic Segmentation: Attains new best mIoU on 

ADE20K, showing broad applicability beyond classification.

The shifted windows bridge the windows of the preceding 

layer, providing connections among them that significantly 

enhance modeling power.



MLP-Mixer: An All-MLP Architecture

Tolstikhin et al, “MLP-Mixer: An all-MLP architecture for vision”, 
NeurIPS 2021

Input image is divided into non-overlapping patches –

similar to ViT.

 Each patch is linearly projected, forming a 

patches(x)channels table, X.

 MLP-Mixer separates mixing of features into two 

kinds of MLP layers:

 Token-Mixing MLP: Operates across patches (rows 

of X^⊤).

 Channel-Mixing MLP: Operates across feature 

channels (rows of X ).

 Each layer is a simple MLP with skip connections 

and LayerNorm – repeated L times. 

However, its initial result on ImageNet is not very 

compelling, which gets better when using JFT for 

pretraining. There are many follow-ups to this work.



DETR: Object Detection with Transformers
• DEtection TRansformer (DETR) is a novel object detection framework that simplifies the traditional pipeline by directly 

predicting a set of bounding boxes using a Transformer model. 

• DETR uses a bipartite matching approach to match predicted boxes to ground-truth boxes. Specifically, it employs the 
Hungarian algorithm to find the optimal one-to-one matching between predictions and ground truths, ensuring each 
prediction is assigned to a unique ground-truth box. 

• The model is then trained to regress the box coordinates and classify objects based on this matching. This end-to-end 
approach eliminates the need for hand-designed components like anchors and non-maximum suppression (NMS), making 
DETR both simpler and more efficient while achieving competitive performance on object detection tasks.

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020



Masked-attention Mask Transformer for 
Universal Image Segmentation

A universal image segmentation  that outperforms specialized architectures, while still easy to train on every task.

Cheng, Bowen, et al. "Masked-attention mask transformer for universal image 
segmentation." Proceedings of the IEEE/CVF conference on computer vision and 

pattern recognition. 2022.

❖ Masked attention in decoder to restrict attention to localized 

features centered around predicted segments, which can be either 

objects or regions depending on specific semantic.

❖ Use multi-scale high-resolution features to help model to segment 

small objects/regions.

❖ Optimization improvements such as switching the order of self and 

cross attention, making query features learnable and removing 

dropouts.



Key Takeaways of  ViTs
• ViTs are an evolution, not a revolution. We can still fundamentally solve the same problems as with 

CNNs.
• Inductive biases of CNNs might not be as harmful as  previously claimed (even in big-data regimes), and they 

might even benefit Transformers (e.g., Swin Transformer). 
• The flexibility of Transformers is helpful when considering multimodal data. 
• Don’t give in to the hype but instead critically evaluate each paper based on the empirical evidence. 
• Pay attention to hidden implementation details (e.g., optimization, training schedule, data augmentation, etc.). 
• Learn to appreciate simple yet effective ideas. 
• Consider the big picture of each paper (e.g., potential future impact of the paper).
• Attention is NOT all you need (but it can still be useful). 
• Having said this, currently, the model choice still largely depends on the task that we want to solve. 

Han, Kai, et al. "A survey on vision transformer." IEEE transactions on pattern analysis and machine intelligence 45.1 (2022): 87-110.



BERT: Encoder-Only Model
• Bidirectional Encoder Representations from Transformers (BERT) is an encoder-only Transformer design that 

uses a vocabulary of 30,000 tokens. Input tokens are converted to 1024-dimensional word embeddings and 
passed through 24 transformer layers, each containing a self-attention mechanism with 16 heads.  The queries, 
keys, and values for each head are of dimension. 

• BERT exploits transfer learning. During pretraining, parameters are learned using self-supervision from a 
large corpus of text. The goal here is for the model to learn general information about the statistics of 
language. In the fine-tuning stage, the resulting network is adapted to solve a particular task using a smaller 
body of supervised training data.

Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).



BERT: Pretraining

• In the pre-training stage, the network is trained 
using self-supervision. The self-supervision 
task consists of predicting missing words from 
sentences from a large internet corpus.

• Such prediction forces the Transformer 
network to understand some syntax. For 
example, it may learn that the adjective “red” 
is often found before nouns like “house” or 
“car” but never before a verb like “scout”.

• It can also learn superficial common sense 
about the world. For example, after training, 
the model will assign a higher probability to 
the missing word “train” before “station” than 
it would to the world “peanut”.

• However, the degree of “understanding” this 
type of model can ever have is limited.



BERT: Finetuning
• In the fine-tuning stage, the model parameters are adjusted to specialize the network to a particular task.                          

An extra layer is appended onto the transformer network to convert the output vectors to the desired output format.

• Examples include text classification, word classification and text span prediction.



GPT3: Decoder-Only Model
GPT-3 (Generative Pre-trained Transformer 3):

 Released by OpenAI in 2020, with up to 175B parameters.

 Primarily a decoder-only Transformer for language modeling.

Context-Only Generation:

 Takes in prompt text and generates the next tokens auto-regressively.

 Admits no separate encoder & no bidirectional attention over input tokens.

 Key Strengths:

 Zero-shot and few-shot learning abilities.

 Extremely large scale leads to surprising emergent capabilities.

Training Data:
 499B tokens from diverse sources

 (Common Crawl, WebText2,  Books).

Scaling Laws:
 Larger model + more data + more compute = improved

results (Kaplan et al. 2020).

 GPT-3 extends to near trillion parameter regime feasibility.



GPT3: Decoder-Only Model
Standard Transformer Blocks:

 Self-attention layers (causal/masked).

 Feed-forward MLP sub-layer, layer normalization, 

residual connections.

https://www.youtube.com/watch?v=wjZofJX0v4M

No Encoder Module:
 Input text is fed directly to the decoder stack (positional

embeddings + token embeddings).

 Output hidden states map to next-token probabilities.

Specifically, GPT3 models the language by constructing an autoregressive language model. 

https://www.youtube.com/watch?v=wjZofJX0v4M


Flamingo: a Visual Language Model
 Developed by DeepMind to enable language models to 

interpret and generate text grounded in images.
 Extends the idea of large language models (LLMs) into the 

visual domain.

Core Architecture: 
❖Visual Encoder + Language Model:

 Flamingo uses a CNN or Vision Transformer (ViT) to 
embed images.

 Connects to a LLM backbone (e.g.,   GPT-style) via cross-
attention layers.
❖Perceiver Resampler (DeepMind approach):

 Adapts the visual features into a compact set of tokens fed
into the language model.

 Minimizes overhead when dealing with high-res images.
❖Decoder-Only LM:

 Flamingo extends the LM with cross-attention blocks to
handle image-conditioned text generation.

Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for few-shot learning."
Advances in neural information processing systems 35 (2022): 23716-23736.



ViperGPT
ViperGPT: A novel system for performing reasoning 
on visual data.
LLM-Generated Python Code:

 ViperGPT uses a LLM (like GPT) to generate small 
Python snippets.

 These snippets call specialized vision functions (e.g., 
detection, segmentation, classification) to gather info.
Execution + Re-evaluation:

 The code runs in a sandbox, returning results to the 
LLM.

 The model integrates these results to refine or correct 
its approach, forming a loop of reasoning.

Surís, Dídac, Sachit Menon, 

and Carl Vondrick. "Vipergpt: 
Visual inference via python 

execution for 

reasoning." Proceedings of 
the IEEE/CVF International 

Conference on Computer 
Vision. 2023.

Architecture Overview: 
 Language Model Brain: Proposes code to interpret or

transform image data.

 Vision Backend: Toolset of image-processing APIs for

detection, OCR, bounding boxes, etc.

 Execution Environment: Python interpreter running the

LLM-generated code.

 Feedback Loop: Model reads code outputs, decides next

step (rewrite code, answer, etc.).



Unified-IO 2
• The first autoregressive multi-modal model that is 

capable of understanding and generating image, text, 
audio and action.

• Processes all modalities with a single unified 
encoder-decoder Transformer, which is made possible 
after encoding various inputs and outputs into 
sequences of tokens.

• Texts and actions are tokenized using byte-pair 
encoding from LLaMA by Meta.

• Images are encoded using pre-trained ViT.

• Audios are encoded up to 4.08 seconds of audio 
into a spectrogram, which is then encoded with a 
pre-trained Audio Spectrogram Transformer 
(AST).

Lu, Jiasen, et al. "Unified-IO 2: Scaling Autoregressive Multimodal Models with Vision Language Audio and Action." Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition. 2024.



The Rise of  Large Language Models (LLM)
• Scaled up versions of Transformer architecture, e.g. billions/trillions of parameters

• Typically trained on massive amounts of “general” textual data (e.g. web corpus)

• Training objective is typically “next token prediction”: 𝑃(𝑊t+1|𝑊𝑡, 𝑊𝑡−1, … , 𝑊1)

• Emergent abilities as they scale up (e.g. chain-of-thought reasoning)

• Heavy computational cost (time, money, GPUs)

• Larger general ones: “plug-and-play” with few or zero-shot learning

• Train once, then adapt to other tasks without needing to retrain

• E.g. in-context learning and prompting

• Why do LLMs work so well? What happens as you scale up?

• Potential explanation: emergent abilities!

• An ability is emergent if it is present in larger but not smaller models

• Not have been directly predicted by extrapolating from smaller models

• Performance is near-random until a certain critical threshold, then improves heavily



Scaling up Transformers

(Johnson, 2022)



Scaling Laws & Beyond Scaling
• With Transformers, language modeling performance improves smoothly as we increase model size, training 

data, and compute resources in tandem.

• This power-law relationship has been observed over multiple orders of magnitude with no sign of slowing!

• While scaling is a factor in emergent abilities, it is not the only factor! E.g. new architectures (DeepSeek, as 
discussed later), higher-quality data, and improved training procedures, could enable emergent abilities on 
smaller models

https://www.youtube.com/watch?v=eMlx5fFNoYc

https://www.youtube.com/watch?v=eMlx5fFNoYc


GPT4 vs. Gemini
• Supervised learning on large dataset, then RLHF.

• GPT-4 trained on both images and text

• Discuss humor in images, summarize screenshot text, etc.

• GPT-4 is "more reliable, creative, and able to handle much 

more nuanced instructions than GPT-3.5”

• Much longer context windows of 8,192 and 32,768 tokens

• Does exceptionally well on standardized tests

• No technical details of GPT-4 released

• Based on a Mixture-of-Experts (MoE) model

• Goal: have several models/“experts” work together to

• solve a problem, each expert may be specialized for a 

task/purpose

• Combination of multiple small Neural networks known 

as “Experts” which are trained and capable of handling 

particular data and performing specialized tasks.

• “Gating network” which predicts which response is best 

suited to address the request.



Reinforcement Learning with Human 
Feedback (RLHF) and ChatGPT
• RLHF: Technique that trains a “reward model” 

directly from human feedback.

• Uses the model as a reward function to optimize 

an agent’s policy using reinforcement learning 

(RL) through an optimization algorithm.

• Ask humans to rank instances of the agent’s 

behavior, e.g. which produced response is better.

(Feng, Garg, Bunnapradist, & Lee, 2024)

• ChatGPT is finetuned on GPT-3.5, which 

is a series of models trained on a mix of 

text and code using instruction tuning 

and RLHF

• Taken the world by storm!



Chain of  Thought (CoT) Reasoning

• Chain-of-thought (CoT) - series of 

intermediate reasoning steps

• Shown to improve LLM performance on 

complex reasoning tasks

• Inspired by human thought process: 

decompose multi-step problems

• Also provides an interpretable window 

into behavior of the model (how it arrived 

at an answer, where it goes wrong in its 

reasoning path)

• CoT exploits the fact that deep down in 

the model's weights, it knows more about 

the problem than just prompting it to get a 

response

Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language 

models." Advances in neural information processing systems 35 (2022): 24824-
24837.
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Theoretical Properties
Transformers have demonstrated remarkable empirical success but face unresolved theoretical challenges relating to:

❖ Their exact expressive power and limitations.

❖ Computational complexity and how to handle extremely long sequences.

❖ Optimization behaviors (loss landscapes, generalization, implicit bias).

❖ Interpretability and attention mechanics not always equaling causal explanation.

❖ Integrating multiple modalities robustly, with quantifiable performance bounds.

Building a rigorous mathematical foundation for these areas is an active field of research, aimed at closing the gap 

between the extraordinary practical performance of Transformers and our incomplete theoretical understanding of why 

and when they excel.

 Representation Limits: How do Transformers compare to

universal approximators (e.g., RNNs, CNNs)?

 Positional Encoding: Is sinusoidal or learned encoding 

fully capturing sequence structure?

  Loss Landscape: Highly high-dimensional, and stability 

for deep Transformer stacks is not fully understood.

 Generalization Bounds: Empirical scaling laws show bigger

data + bigger models = better results, but no rigorous proofs.

 Implicit Biases: Transformers, like other networks, exhibit

hidden inductive biases from gradient descent – yet these

remain partially unexplained.

 Masked LM / Next-Token Prediction: Why do these tasks

alone suffice to learn so many language/vision capabilities?

 Empirical success vs. theoretical backing – little clarity 

on*why* it transfers so well to so many downstream tasks.

 Scaling Laws: Observed empirically, but not proven in

general.
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