Bios 740- Chapter 7. Transformer and Attention
Mechanism

Acknowledgement: Many thanks to Mr. Mingchen Hu for preparing some of these slides and to Dr.
Xiao Wang for sharing his slides. | also drew on material from the lecture presentations of Stanford
CS224n, UNC COMP 590/790, and content generated by ChatGPT.
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The Sequence-to-sequence Model

Neural Machine Translation

Target sentence (output)
Encoding of the source sentence. A
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Provides initial hidden state . . :
<END>
for Decoder RNN. he‘ h”: me' W’th‘ 5 . - _END
=< T: x ; x|* x
© H 5] (g0} . C
\ el: € c|l: €
= ol I o) . B0 O
= © 7 ] 1 © )
o ) o| (o o] o|: |0 o|: (@ 8
= o o [o]]| |0 ol : |0 ol: )0 Q
3 o[ (o[ o[Tl® ytimyl o[ Tle @
S o (o |o]||® i|@] ile® of ilo =
= 3 : g
o l T . I 2 ] B I P
L : H Z
! , v B \ | v
il v a . chaae <START> he hit me with a pie
\ J
Y
Source sentence (input) Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.
Encoder RNN produces Note: This diagram shows test time behavior: decoder Stanford
an encoding of the output is fed in === + as next step’s input CS224n
source sentence.
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Sequence-to-sequence Model

Sequence-to-Sequence Overview Seq2Seq Applications: sequence-to-sequence
» A general encoder-decoder architecture. is versatile!

* Encoder: maps input to a neural representation. % Machine Translation: French ---->English

» Decoder: generates output from the neural representation. “» Summarization: long text ----—=> concise summary

« When both input and output are sequences: seq2seq model. <+ Dialogue: previous utterances ---—> next response

“» Parsing: input text---—-> parse tree (as a sequence)

*» Code Generation: natural language --—-> Python code

HHE SISR i In the visualization, each

pulse from the encoder or
decoder represents an RNN
processing its input and
updating its hidden state
based on current and past
inputs.

[ Je suis étudiant ]—b ENCODER DECODER ]

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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Neural Machine Translation

Sequence-to-Sequence as a Conditional Language Model

Like any language model, the decoder predicts the next word in the target sequence Y.
It is conditional because predictions are made based on both:

< Previously generated target tokens. P(yl) = P(yi|x) P(yelyr, ) P(yslyr, v, ) . Plyrlyns . Yr-1,2)
+¢ The full source sequence X (via the encoder). \ Y% /
This allows the model to generate context-aware translations or responses. Probability of next target word, given

rget words so far and source sentence x

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

Encoder
RNN

Je suis étudiant

The context vector turned
out to be a bottleneck for
these types of models. It

= made it challenging for
the models to deal with
long sentences.

Encoding Stage Decoding Stage

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seqg-models-with-attention/
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Limitations of RNNNs for Long Sequences

Encoding of the Long-distance dependencies are hard to
source sentence. Iearn:
Target sentence (output) % Distant word pairs require O sequence length
( ¢ \ steps to interact.
he hit me with a  pie <END> +» Leads to vanishing or exploding gradients.

RNNs are inherently sequential:
» Forward/backward passes require

= 7 O(sequence length) dependent operations.
o 0 .
. S » Each hidden state of RNN must be
E > computed in order.
E Z These challenges motivated the development of
attention-based and transformer models.
il a m entarté <START> he hit me with a  pie
\ )
Y

Source sentence (input)
Stanford Problems with this architecture?
CS224n
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Attention: A Key Breakthrough

Neural Machine Translation

A major solution was proposed in Bahdanau et al. (2014) SEQUENCE T0 SEQUENCE NODEL WITH TTENTION

and refined by Luong et al. (2015). They introduced a e ey e
mechanism called Attention. Attention allows the model e

to focus on the most relevant parts of the input sequence .|

when generating each output token. This led to substantial
improvements in machine translation systems. It laid the
groundwork for modern architectures like Transformers.

Attention at time step 4

Je suis étudiant

Encoder
hidden
state

hidden
J e state #1

: ‘ su | S hidden

state #2

étudiant s

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seg-models-with-attention/
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Transformer: Encoder and Decoder Layers

OUTPUT[I am a student]

p . Encoder:
s ™ e D . .
ENCODER . DECODER ¢ Inputs pass through a self-attention layer, allowing each
L S . J
- * \ - - N token to attend to others in the sequence.
ENCODER DECODER 0S .
¢ . ) . . J ** Followed by a feed-forward neural network, applied
i ENCODER | f . ) identically to each position.
) ) ’ ) ) “| Decoder:
~ ™ (" ™
] ENCODER ] { DECODER J| % Contains a self-attention layer and a feed-forward layer.
4 4 - . .
r ) i N[ % Additionally includes an encoder-decoder attention layer to
ENCODER DECODER
- T / - I / focus on relevant encoder outputs.
' ) ' ) . . . . .
ENCODER DECODER This design enables both dynamic focus and parallelization.
. g - o,
? /_ENCODER ? ? ? \
INPUT [Je suis étudiant] DECODER { [ ]
Feed Forward
Feed Forward J
ENCODER N t t 1
( Feed Forward J [ Encoder-Decoder Attention ] 1 1 1
[} A [ Self-Attention ]
[ Self-Attention J ( Self-Attention \ z 3 Y ~J
: : " ' ! . I . I x» [
https://jalammar.github.io/illustrated-transformer/ Je suls studiant
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Attention Timeline

This timeline highlights the evolution of deep learning
and natural language processing. Starting in the 1990s
with rule-based methods, RNNs, and LSTMs, it
progressed to the introduction of simple attention
mechanisms in 2014.

The Transformer era began in 2017 with the
groundbreaking paper "Attention is All You Need,"
leading to a rapid adoption in NLP with models like
BERT and GPT by 2018. From 2018 to 2020,
Transformers expanded into fields like vision (ViTs) and
protein folding (AlphaFold-2). The generative era began
in 2021-2022 with models like Codex, GPT-X, and
DALL-E.

By spring 2025, Transformers power massive models like
ChatGPT, DeepSeek and open new applications in diverse
areas, with exciting prospects for the future.

1990s

2014

2017

2018

2018-2020

2021-2022

2024

Prehistoric Era

Rule-based methods, parsing, RNNs, LSTMs

Simple attention mechanisms

Beginning of transformers

Attention is all you need

Explosion of transformers in NLP

BERT, GPT-3

Explosion into other fields

Explosion into other fields: ViTs, Alphafold-2.

Start of Generative Era

Codex, Decision Transformers, GPT-X, DALL-E

Present Day

Huge models, more applications: Chat-GPT, GPT-4, Gemini,
Llama and open-source LLMs, Whisper, Robotics Transformer,
Stable Diffusion, Sora, and so much more...!

Future (?!)

(Yang & Hashimoto, 2025)



Before diving into the attention mechanism, recall a common preprocessing step in NLP. Words are typically
represented as dense vectors called word embeddings. These embeddings are stored in an embedding matrix Wg,
where d is the embedding dimension and n is the vocabulary size. Embeddings provide the foundation for

queries, keys, and values in attention.

All words, ~ 50k

aah
aardvark

olf

abacterial
abacus
abalone
abandon

All words, ~ 50

zygoid
73 494 +70 -97

zygomatic
6.2 +88 +47 -02 -54 -49 -88 .-+ -37 +39 -24 -63 -94 -86

Embedding matrix

https://www.youtube.com/watch?v=wiZofJX0v4M



https://www.youtube.com/watch?v=wjZofJX0v4M

« The model tends to settle on a set of embeddings where directions in the space have a kind of

 One classical example is that, the difference between vectors of and IS very
similar to that between “king” and “queen”. Consequently, we can simply find the embedding of a
female monarch by taking “king”, adding the difference and search such an
embedding.

E(queen) - E(king) ~ E(woman) - E(man) E(queen) ~ E(king)+ E(woman) - E(man)

E(king)

LAKINg)

j E(man)
E(queen) j

E(woman)

E(woman)



https://www.youtube.com/watch?v=wjZofJX0v4M

Queries, Keys and Values

» Define by D = {(kq,vq), ..., (kiy, v;,) } 2 dataset of m tuples of keys and values and denote g
a query. Then we can define the attention over D as Attention(q, D) = Y12, a(q, ki) v;
where a(q, k;)v; € R are scalar nonnegative attention weights.

* The name “attention” derives from the fact that operation pays particular attention to the
terms for which the weight « is significant. As such, the attention over D generates a linear
combination of values contained in the database.

* To ensure that weights a(q, k;) sum up to 1, one can normalize them via a(q, k;) = %.
J ]

To further ensure that weights are also nonnegative, one can resort to the exponentiation via

- N — _exp(alqki))
softmax operation a(q, k;) T expa(ak,)
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Queries, Keys and Values: Analogy

* Imagine you’re looking for information on a specific Attention
topic (query) in a library system. Keys weights Values Output

U‘{qﬁk} - - T1

1

» Each book in the library has a summary (key) that
helps identify if it contains the information you’re
looking for.

g k) -] v,

» Once you find a match between your query and a
summary, you access the book to get the detailed
information (value) you need.

I
/

* Here in attention, we do a “soft-match” across multiple
values. That is, we get into from multiple books
(“Book1 1s most relevant, then book2, the book3...”)

Il
=
I
L
I

Attention
QUEW q PUU”I’IQ
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Attention Scoring Functions

« We refer to a(q,k;) before the softmax

operation as the attention scoring functions. The Aert O Outout
mechanism Computing the output of attention sc?:';in;" Attention p

pooling as a weighted average of values, where i
weights are computed with the attention scoring e A
—»@{ — Values

function a and the softmax operation.

Examples include:
» Dot product: a(q, k) =q"k;
» Scaled dot product: a(g, k;) = 2
> Additive attention: a(q, k) = vl tanh(Wiq + Wak;)

WETILJOS
I
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Nadaraya—Watson Kernel Estimator

« The similarity kernels have already been used in regression and classification via kernel density
estimation.

* At their core, Nadaraya-Watson estimators rely on some similarity kernel a(q, k) relating queries g
to keys k. Some common kernels include a(g, k) = exp(—% llg — K| |2) (Gaussian), a(q, k) =
1if |lg — k|| < 1 (Boxcar) and a(q, k) = max(0,1 — [|q — kl||) (Epanechikov).

» For example, we can pick key k = 0 and will yield following graphs:

1.0

0.8

0.6

0.4 1

0.2

0.0

—2 o 2 —2 0 2 —2 0 2 —2 0 2
Gaussian Boxcar Constant Epanechikov
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Nadaraya—Watson Kernel Estimator

k) o
‘Yialak) v
Such Nadaraya-Watson kernel regression is an early precursor of the current attention mechanisms.

« All of these kernels lead to the equation for regression and classification alike: f(q) = .

i ;‘.‘ — vy hat N | ,’ — vy hat
-—=y ' -==y -==y ‘ -== Y
o] 2 4 0 2 4 0 2 4 4] 2 4
Sigma 0.1 Sigma 0.2 Sigma 0.5 Sigma 1
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Attention Mechanisms: Overview

Given:

> n query vectors gy, ..., g, € RY > f(qj, ki) is often the embedded Gaussian similarity:

> m key vectors ki, ..., kn € RY -
» m value vectors vy, ..., vy € RP f(qj) ki) = €Xp (9(%') ¢(k:))

The attention mechanism outputs n vectors o1,...,0, € Rt

o > 9( ) quj,gb(k) Wkk
0j = Ezf(q_i?ki)g(vi) > g(vi) = Wy,
i=1

> C=3"", f(qj, ki) normalizes the scores
where f(q;, ki) measures similarity and g(v;) is a linear

transformation. This setup lets each output vector depend on all input vectors.
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Attention Mechanisms: Overview
=[q1, 0, . .. Qn] c RIXN Dimensions:

: e > W, € R"™? (queries mapped to R")
— dxm q
B :kl’ ko, ... km] € R > W, € R (keys mapped to R")
V =1[v1,v2,...,Vm] € R » W, € R9*P (values mapped to R9)

0 = W,V -softmax ((Wick) (W4Q)) ~H
Q

> softmax(-) normalizes similarity scores along each column.
. . — rR-o
» Ensures attention weights sum to 1 for each query. | — =EEEEE
» Qutput matrix 0 = [oy,...,0,] € RI*. K= ==i==
Softmax EEEEE =

> Each o; is a weighted combination of transformed value

Vectors.
» Qutput count matches number of queries.

T
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Consider the sentence: A fluffy blue creature roamed the verdant forest.

Imagine the situation, where each noun like “creature” is asking the question: “Hey, are there any adjectives
sitting in front of me?

Then the word “blue” would answer: “Yes, I am an adjective and I am in that position!”

This question can be encoded in the query vector, which has a much smaller dimension than the embedding space.

https://www.youtube.com/watch?v=eMIx5fFNoYc

alfluffy|blue|creature verdant forest
I

— —

Es E Eg

lu @ Q bm

— —

Qs

Any adjectives
in front of me?

Embedding space Query/Key space

12,288-dimensional 128-dimensional

“Creature”
yosition 4

Any adjectives
before position 47



https://www.youtube.com/watch?v=eMlx5fFNoYc

« Keys can be interpreted as potentially answering the queries, which also has a much smaller
dimension than the whole embedding space.

* As an example, the key matrix would map the adjectives like “fluffy” to vectors that are closely
aligned with the query produced by the word “creature”, leading to some large positive dot
products between the query and the key.

creature

!

E
8)

4

Embedding space Query/Key space

12,288-dimensional 128-dimensional

“Fluffy”

position 2

Adjective at
position 2

https://www.youtube.com/watch?v=eMIx5fFNoYc



https://www.youtube.com/watch?v=eMlx5fFNoYc

« Unlike query and key, value vector lives in the same, very high dimensional space as the
embeddings.

 For example, here we add large proportions of the re-scaled value vectors for “fluffy”” and “blue” to
the original context-free embedding of “creature”, we get a refined vector that has contextually-
rich meaning, like a “fluffy blue creature™.

eeeeeee

https://www.youtube.com/watch?v=eMIx5fFNoYc



https://www.youtube.com/watch?v=eMlx5fFNoYc

Convenience Functions

 To deals with string of variable lengths more easily, one often pad shorter sequences with
dummy tokens “< blank >.

» Masked softmax operation: Since we do not want the attention model to attend to these
blanks, this operation limit Y™, a(q, k;)v; to 3i_,a(q, k;)v; where | < n is the length of
actual sentence.

def masked_softmax(X, valid_lens):
"""Perform softmax operation by masking elements on the last axis."""

def _seguence_mask[)(_‘ _ valid_len, value=8): |||UStratIOn COI’]SIdeI‘ a m|n|batCh Of tWO
maxlen = X.size(1)

mask = torch.arange((maxlen), dtype=torch.float32, examples Of Size 2 X 4-, Where thelr Valld

device=X.device)[None, :] < valid_len[:, None]

X[~mask] = value lengths are 2 and 3 respectively:

return X

if valid_lens is None:
return nn.functional.softmax(X, dim=-1)
else:
Shape = Xoshape o .. tensor([[[@.4448, .5552, .00, 0.0000],
valid_lens = torch.repeat_interleave(valid_lens, shape[1]) [0.4032, ©.5968, 0.0000, 0.0000]],
else:
valid_lens = valid_lens.reshape(-1)

masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3]))

[[0.2795, ©.2805, 0.4400, 0.0000],
[0.2798, 0.3092, 0.4110, 0.0000]]])

X = _sequence_mask(X.reshape(-1, shape[-1]), valid_lens, value=-1e6)
return nn.functional.softmax(X.reshape(shape), dim=-1)
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Scaled Dot-Product Attention

« Scaled Dot-Product Attention is a key component of the
Transformer architecture, widely used in modern deep
learning models such as BERT and GPT. The formula is as
follows:

. QK"
Attention(Q,K,V) = softmax |4

Nem

« Scaled Dot-Product Attention possess the following key
advantages:

« Efficiency: It relies on simple matrix multiplications and
scaling, making it highly efficient and suitable for parallel
computation on GPUs/TPUEs.

« Scalability: It performs well on large-scale datasets and is
the foundation of many state-of-the-art models.

« Flexibility: It can handle sequences of different lengths, as
the attention mechanism dynamically computes the
relationships between queries and keys.

ﬁUNC GILLINGS SCHOOL OF
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Why scale by +/d,?

> Elements of g; k; have variance dj if g;, k; are independent
with unit variance.

» Without scaling, large dot products push softmax into regions
with small gradients.

» Scaling by +/dj normalizes the variance:
g k
Var(g' k) = dy = = has unit variance

Vi

This stabilizes gradients during training and improves convergence.




Additive Attention (Bahdanau Attention )

 Additive Attention, also known as Bahdanau Attention, was introduced in the context of RNN-
based sequence-to-sequence models. It computes the attention weights by passing the
concatenation of the query (Q) and key (K) through a feedforward neural network with a tanh
activation function, followed by a learned weight vector w,,. The attention distribution is obtained
by applying a softmax function to the output of this network. The formula is as follows:

Attention(Q,K,V) = softmax(w,” - tanh(W,Q + WiK))V
 Additive Attention has certain advantages:

« Flexibility: It can model complex relationships between queries and keys due to the use of a learnable
feedforward network.

« Interpretability: The attention weights are often more interpretable in certain tasks.

« However, the additional parameters and computations compared to Scaled Dot-Product Attention
limits creates computational cost. It is also less suitable for large-scale parallel computation.

ﬁUNC GILLINGS SCHOOL OF
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Attention: Implementation

Attention(Q,K,V) = Softmax(va - tanh(WqQ + WkK))V Attention(Q,K,V) = softmax| — |V

sebess Sl T L I LRl | class DotProductAttention(nn.Module):
Additive attention. o ' .
def __init__(self, num_hiddens, dropout, **kwargs): Scaled dot product attention.
super (AdditiveAttention, self).__init__(**kwargs) def init (self dFODOUtEZ
self .W_k = nn.LazylLinear (num_hiddens, bias=False) e N .. ‘\ ‘
self.W_q = nn.Lazylinear (num_hiddens, bias=False) super().__1n1t__()
self.w_v = nn.LazylLinear(1, bias=False) self.dropout = nn.Dropout(dropout)
self.dropout = nn.Dropout(dropout) ' ’

forward(self, queries, keys, values, valid_lens):
queries, keys = self.W_qg(queries), self.W_k(keys)

features queries.unsqueeze(2) + keys.unsqueeze(1) ) . . i
features = torch.tanh(features) f forward(self, queries, keys, values, valid_lens=None):

d = queries.shape[-1]

scores = self.w_v(features).squeeze(-1) - ; ( VY / (d)
self . attention_weights = masked_softmax(scores, valid_lens) et tOI.-Ch ' bmm \queries, keyS ' tranSpc,-)Se (1, 2 )) ! .math ' Sgrt \ d )
self.attention_weights = masked_softmax(scores, valid_lens)

‘ ) ) , : return torch.bmm(self.dropout(self.attention_weights), values)
return torch.bmm(self.dropout(self.attention_weights), values) '
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2 Self-Attention and Positional Encoding
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Self-Attention and Learnable Query

Self-Attention: Learnable Query:
> Q=K=V =X e Rdxn » K=V =X, Q is trainable and independent of X
» Computes internal correlations: » Qutput size is fixed, independent of input size:
0 = W, X - softmax((WiX) " (W, X)) 0 = W, X - softmax((W,X) ' Q)
Aspect Self-Attention Learnable Query
Query Definition Q=K=V=X (input data itself) Qisindependent and learnable
Input Dependency Input size determines query size Query size is fixed and independent
Flexibility Suitable for variable-length inputs ?mtable when fixed-length output
is needed
Typically used for internal Often used when fixed-size
Use Case relationships in input data (like representation is needed,
word dependencies) regardless of input size
Object detection, where fixed
Transformer encoder, where all .
Example number of queries are learned to

tokens attend to each other

detect objects
- GILLINGS SCHOOL OF
E-UNC ‘ GLOBAL PUBLIC HEALTH



Self-Attention: Motivation

 Suppose the following sentence is an input sentence we want to translate: The animal didn’t cross
the street because it was too tired. What does “it” in the sentence refer to? Is it referring to the
street or the animal? It’s a simple question to a human, but not as simple to an algorithm.

* The self-attention mechanism enables the model to associate ““it” with “animal”.

BUNC

Layer:| 5 $| Attention: | Input - Input %

B
The_ The_
animal_ animal_
didn_ didn_
t &
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ il |
was_ was_
too_ too_
tire tire
d d

The lllustrated Transformer — Jay Alammar — Visualizing machine learning one concept at a time.

As we are encoding the word “it” in encoder
#5, which is the top encoder in the stack, part
of the attention mechanism was focusing on
"The Animal", and baked a part of its
representation into the encoding of “it”.

(jalammar.github.io)
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https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Self-Attention

« Self-attention: Every token is attending to each other token, that is routing the values in different
proportions to create each output.

A self-attention block takes n inputs, each of dimension d X 1, and returns n output vectors of the same size.
Given a sequence of input tokens x;, ..., x,, where any x; € R%, its self attention outputs a sequence of same
length y4, .., vy, € R%.

O== *.' N ':r 7
.}é S .‘ IA\‘."‘VA'.
—— %%

O== SRR
O ' "A’.‘A .\\A&

Inputs ~ Values  Outputs Inputs ~ Values  Outputs Inputs ~ Values  Outputs Inputs Vlues Outputs Value weights
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Self-Attention: Details

» The first step is to create three vectors from each of encoder’s input vectors. These vectors are created by
multiplying the embedding by three matrices that we trained during the training process (usually smaller in
dimension than the embedding vector).

Input Thinking Machines
p " - .
Embedding x: AN
X =
Queries o [T - wo
X WK K
X =
Keys kO] ke[ T 1] WK
X WV vV
Values vil [ 11 v 1] WV }
X —1 1 =

The lllustrated Transformer — Jay Alammar — Visualizing machine learning one
concept at a time. (jalammar.github.io)
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https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Self-Attention: Details

» The second step is to calculate the scoring function and then divide it by the square root of the
dimension of the key vectors.

Input Thinking Machines
Embedding X1 X2

Queries a1 q2

Keys K1 k2

Values V1 V2

Score g1 e ki=112 g1 * k2 =96
Divide by 8 (v/dy ) 14 12
Softmax 0.88 0.12
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Self-Attention: Details

* The third step is to multiply each value
vector by the softmax score and sum up
the weighted value vectors.

 The resulting vector is the one we can send
along to the feed-forward neural network.

 In the actual implementation, such
calculation is done in matrix form for faster
processing.

GILLINGS SCHOOL OF
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Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ( Vd; )

Softmax

Softmax
X
Value

Sum

Thinking
x [
qr [T
@ [
vi O]
q1-k1=
vi [
z: [

Machines

x2 [P
q: [

. [
v O

q1ok2=

zz [




Self-Attention: Matrix Calculation

* Query, key and value matrices are calculated
through matrix multiplication.

Q = WQ X = :8 qlT 4 'QqX a ! Self-attention \
K =WgX = Bp1” + Q. X D
V=w,X=p,1T + QX AR N
Y = Softmax(QKT)V Q=4,1" +Q,X N
N N N
Attention,
. . Softmax [K” Q) 5
Q KT
vV
Input, Keys, Output,
coftma ( . ) X K=8,1" + uX V - Softmax [K”Q]
X
\/a N
D
Values,
\_ V=4,1"+0,X 4
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Self-Attention: Equivariance and Invariance

Definition Theorem
» T.(X)= XPy is a spatial permutation. ~ » Self-attention is equivariant:
» Invariant: A(T;(X)) = A(X)

» Attention with learned query is invariant:

Sketch AQ(Tx(X)) = AQ(X)

> Let X € R9*", P, € R™" a permutation matrix.
» T.(X) = XP; applies the permutation to columns.
» Compute attention on XP;:

0" = W, XPy - softmax(( Wi XPy) T (W XPy))

» Since softmax is equivariant and dot products are
permutation-consistent:

0 = (W, X - softmax((Wi X) " (W,X)))Pr = OP;
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RNN, CNN, and Self-Attention

RNNs are best for capturing sequential dependencies but struggle with long-range patterns.

CNNs excel at local spatial features and parallel processing but are not well-suited for sequence data.
Self-Attention provides flexibility in capturing long-range dependencies and global contexts but is
computationally expensive for very long sequences.

Aspect RNNs CNNs Self-Attention
. Capturing global
Primary Purpose Sequential data Spatial data processing relationships and

rocessin .
P 8 dependencies

Temporal and ordered Long-range and global

Data Handling Local and spatial features

sequences dependencies
Recurrent neural Convolutional neural Attention-based, often in
Model Type
networks networks transformers
) Recurrence and hidden Convolutions with Query-Key-Value
Core Mechanism . . .
states filters/kernels attention mechanism
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Comparing RNNs; CNNs and Self-Attention

RNN

* RNN: d dimensional hidden state Q’O"O'O"O
« 0(nd?) computational complexity 1 1 3
« 0(n) sequential operations
* 0(n) maximal path length @ @
* CNN: Given a sequence of length n, kernel size k and numbers of input and output channels d.

» 0(knd?) computational complexity

* 0(1) sequential operations

« 0 (%) maximal path length

 Self-Attention: queries, keys and values are all n X d
« 0(n?d) computational complexity — prohibitively slow and improved by later works
« 0(1) sequential operations

« 0(1) maximal path length — easier to capture long range dependencies
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Comparing RNNs, CNNs and Self-Attention

Recurrent Neural Network 1D Convolution Self-Attention

FlEle]
Pl
Elele]

Sat

(| [Ena]

Yi— VY, 7/ V3 /Y, Y1 Y, Ys Yy _@EI:
[k F|[E.]
[Esa]

LT IXIX

X4 X, X3 X, X4 X, X3 X4

—

—-
H
L

FHEHE ]
FHEHE EE]

Works on Ordered Sequences Works on Multidimensional Grids Works on Sets of Vectors
(+) Good at long sequences: After (-) Bad at long sequences: Need to (-) Good at long sequences: after one
one RNN layer, h; "sees” the whole stack many conv layers for outputs self-attention layer, each output
sequence to “see” the whole sequence “sees” all inputs!
(-) Not parallelizable: need to (+) Highly parallel: Each output can (+) Highly parallel: Each output can
compute hidden states sequentially be computed in parallel be computed in parallel

(Johnson, 2022) (-) Very memory intensive
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From Self-Attention to Transformers

 The basic concept of self-attention can be used to develop a very powerful type of sequence model,
called a Transformer.

 But to make this actually work, we need to develop a few additional components to address some
functional limitations.

« Masked encoding: How to prevent attention lookups into the future? Ensures causality in
autoregressive models.

« Multi-head Attention: Allows querying multiple positions at each layer. Increases model capacity to
capture complex patterns.

 Positional encoding: Address lack of sequence information, especially for images and videos.
Provides sequence order awareness, crucial for text, images, and videos.

The combination of these techniques makes Transformers robust and efficient for sequence modeling.
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Masked Attention

» Problem: During training, self-attention might access future
tokens, leading to data leakage.

P Solution: Use a mask to block attention from future positions.

» Implementation: Add a mask matrix M:

KT 0 t
Scores = , Mask = Pas
/dk —oo, future

Masked Scores = Scores + Mask

We can look at these
(not greyed out) words

A

( \
\?"Pgs\

2 « e

[START]

The

For encoding
these words
chef

who

-ﬁﬁ (:: GILLINGS SCHOOL OF
L8 UI J GLOBAL PUBLIC HEALTH

A crude self-attention “language model”:

(Levine, 2021)



Multi-Head Attention

 In practice, given the same set of queries, keys and values we may want out model to combine
knowledge from different behaviors of the same attention mechanism, such as capturing
dependencies of various ranges (e.g., shorter-range vs. longer-range) within a sequence. Thus, it
may be beneficial to allow our attention mechanism to jointly use different representation

subspaces of queries, keys and values.

 Instead of performing a single attention pooling, queries, keys, and values can instead be
transformed with h independently learned linear projections. These h projected queries, keys and
values are fed into attention pooling in parallel.

 This design is called multi-head attention, where each of the h attention pooling outputs is a head.
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Multi-Head Attention

* Give aquery g € R%, a key k € R% and a value v € R%, each attention head h; is computed as h; =
f (Wi(q)q, Wk, Wi(”)v) € RP» where W@ € RPa*da, W0 e RPixdi and W) € RP»*%v are
learnable parameters and f is attention pooling such as additive attention or scaled dot product
attention.

» The feed-forward layer is not expecting multiple matrices. Therefore, the output is another linear

1
transformation via learnable parameters W, € RPo*MP» of concatenation of M heads: W, < ) € RPo,
hym

1 1 f

FC FC FC

-

Queries  Keys Values
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Multi-Head Attention

Multi-head attention expands the model’s ability to focus on different positions, as well as gives the
attention layer multiple “representation subspaces”, thus improving the expressivity of the model.

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ©~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W*° to
R with weight matrices Q/K/V matrices produce the output of the layer
x WOQ
K
Thinking Wo v Qo
Machines Wo Ko
Vo wo
W, Q
* In all encoders other than #0, W1 K Q"
we don't need embedding. W,V K1
We start directly with the output Vi1

of the encoder right below this one

R e eee “es
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Multi-Head Attention

class MultiHeadAttention(Module):

"""Multi-head attention."""

def __init__(self, num_hiddens, num_heads, dropout, bias=False, **kwargs):
super().__init__()
self.num_heads = num_heads
self.attention = DotProductAttention(dropout)
self .W_q = nn.LazylLinear(num_hiddens, bias=bias)
self .W_k = nn.LazylLinear(num_hiddens, bias=bias)
self W_v = nn.Lazylinear(num_hiddens, bias=bias)
self .W_o = nn.Lazylinear(num_hiddens, bias=bias)

def transpose_gkv(self, X):
"""Transposition for parallel computation of multiple attention heads."""

X.reshape(X.shape[8], X.shape[1], self.num_heads, -1)
forward(self, queries, keys, values, valid_lens):

X.permute(@, 2, 1, 3)

return X.reshape(-1, X.shape[2], X.shape[3])

queries = self.transpose_gkv(self.W_qg(queries))
keys = self.transpose_gkv(self.W_k(keys))
values = self.transpose_gkv(self.W_v(values))

transpose_output(self, X):
if valid_lens is not None: """Reverse the operation of transpose_gkv."""
X = X.reshape(-1, self.num_heads, X.shape[1], X.shape[2])

: N ) X = X.permute(9, 2, 1, 3)
valid_lens = torch.repeat_interleave(
valid_lens, repeats=self.num_heads, dim=0) return X.reshape(X.shape[0], X.shape[1], -1)

output = self.attention(queries, keys; values, valid_lens)

output_concat = self.transpose_output(output)
return self.W_o(output_concat)
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Multi-Head Attention: Example

As we encode the word “it”, one attention head is focusing most on “the animal”, while another is focusing on “tired”
-- in a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".

However, once all attention heads are to be considered, things can get started to be harder for interpretation.

Layer:| 5 4| Attention: | Input - Input & Layer: | 5 $| Attention: | Input - Input 3|
-The The The_ The_
animal_ animal_ animal_ animal_
didn_ didn_ didn._
t_ k. S
B— Cross_
the ) the_
stre_et street_
becau_se because_
it : =
= Was
was- too
t?o_ tire
tire d_
d
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Positional Embedding

« Unlike RNNs, which recurrently process tokens of a sequence one-by-one, self-attention ditches sequential
operations in favor of parallel computation.

« However, self-attention by itself does not preserve the order of sequence, that is, it is equivariant to
permutations of the inputs. What should we do to account for the order of words in the input sequence when it

really matters?
what we see:

he hit me with a pie

hit  with me

pie he

what naive self-attention sees: 5

a pie hit me with he

a hit with me he pie

Levine, 2021
he pie me with a hit ( )

The dominant approach for preserving information about the order of tokens is to represent this to the model
as an additional input associated with each token. These inputs are called positional embedding, and can
either be learned or a fixed a priori.
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Positional Embedding

 The naive positional encoding would just append ¢ to the input: x; = (xtt) However, it would
not be a great idea, because the absolute position is less important than the relative position.

| walk my dog every day every single day [ walk my dog ~ The fact that “my dog” is right after “I walk” is
u u the important part, not its absolute position
Index
e : ttional Encodi bri
*» Therefore, we want to represent position in a way Sequence  of token Posikiohal Ehcocting Matrix
that tokens with similar relative position will have
. . . | 0 | Poo Po Pod
similar position encoding. — >
% What about using frequency-based representations? am — 1 Py » Py
a —» 2 » P Po; Pog
Robot — 3 P30 P31 P3q

Positional Encoding Matrix for the sequence ‘I am a robot’
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Positional Embedding: Example

 One typical scheme for fixed positional

encoc_lings are based on sine and cosine Equation Graph Frequency Wavelength
functions. )
« Suppose that X € R™4 contains the d - sin(2t) % 1 1
dimensional embeddings for n tokens of a : /\ “ \ ”
sequence. The positional encoding outputs sin(2 * 2zt) 3\ Y 2 1/2
X + P using a positional embedding matrix e ﬁ —
P € R™*? of the same shape, whose element siny e /22 2
on the ith row and the (2j)th or (2j + 1)th N/
column is given by
sin(ct) ‘Depe\r\ds on ¢ c/2n 2z/c
Pi2j = sin (;z_j)»pi,2j+1 = COS( l ﬂ)
1000d 1000d
> Angular Frequency (wj): > Wavelength ())):
> w; = ; 2 2_-’
I s > ) =2 =27 x 1000 d
J "
» Each increment i — i + 1 increases the argument by w;. » A larger exponent %J yields a larger wavelength.
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Positional Embedding: Example

* In the positional embedding matrix P, rows correspond to positions within a s sequence and
columns represent different positional encoding dimensions.

« In the example below, we can see that the 6! and the 7" columns of positional embedding matrix
have a higher frequency than the 8t and the 9t columns.

> Lower j:

1.0 1 .
» w; ~ 1 for small %’, Aj & 6.28 steps in discrete math.
0.5 - » Rapid oscillations over fewer positions.
» Higher j:
0.0 > w; becomes very small, yielding large A;.
» The sinusoid changes more slowly, capturing coarse-grained
=0.51 position.
» Suppose d = 4, base = 1000, and j = 0, 1.
~1.01 > For j = 0: wp = 1/1000° = 1, so Ao = 2.
0 10 2 30 40 50 60 > For j = 1: w; = 1/10004 = 1/1000%5 = 1//1000,
Row (position) A1 = 2mv/1000.

» Position i/ increments the phase by w;.

» This ensures some encodings oscillate quickly, others slowly.
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Positional Embedding: Example

-] T N B L D S

BUNC

in binary is 000
in binary 1s 001
1n binary 1s 010
1n binary 1s 011
in binary 1s 100
1n binary 1s 101
1n binary 1s 110
in binary is 111

Row (position)

0 20

« yy - _Column (encoding dimension)
even-odd” indicator

-0.5

-1.0

» Monotonically decreasing frequency: In sinusoidal
positional encoding, each higher dimension has a lower
frequency.

> w; = ﬁ decreases with .

10000 d
» Encodes absolute position using increasingly coarse granularity.

» Binary representation analogy:

» High-order bits change less frequently than low-order bits.
» Similarly, high-j dimensions oscillate more slowly in positional
encoding.

» Continuous vs. Binary: Float-based sinusoidal encodings are
more space-efficient and allow fractional offsets.

“first half-second half indicator” indicator
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Positional Embedding

100
75
050

=

o 200 300 400 50

......uurrmmlll|f|'|'|'|'|'l'|'

n'.'|'|l.l.lI |'|||'|" |
|

025
000
-0.25
=0.50

—0.75

» Absolute Position: » Positional Encoding Analogy:

» Different frequencies let the model pinpoint an absolute » In dimension 0, sine wave might oscillate within a handful of

location in the sequence. steps.

» Example: i = 10 vs. i = 100 produce noticeably different » In dimension d — 1, the wave might only complete a fraction of
multi-sinusoidal phases. a single period over the entire sequence.

. - » This layered range of frequencies parallels the layered range of
» Relative Position: y g q P y g

bit flips in binary.
> Key property: For an offset , PE(i + &) can be derived from > Space Efficiency:
PE(i) via a linear transformation (thanks to trig identities). > Instead of storing a discrete bit for each position, the
> Allows model to easily learn relative shifts (e.g., paying '

: . : : : continuous sinusoidal approach uses fewer dimensions to
attention to positions i + 1,/ +2) without separate parameters. g
encode both small and large positional changes.

» Result: The encoding provides both absolute and relative » Facilitates interpolation and generalization across different
cues in a single representation. sequence lengths.
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Alternative Positional Embeddings

Learnable Positional Embeddings:
P Treat position embeddings as trainable parameters.
» No mathematical constraint, but less interpretable.

Relative Positional Encoding:

» Encodes the difference between positions.

P Helps with tasks where relative order matters (e.g.,
text generation).

Rotary Positional Encoding:

P Efficiently integrates positional information into
attention.

» Particularly effective for long-sequence tasks.

ﬁUNC GILLINGS SCHOOL OF
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Vision Transformer

Patch-Based Tokens:

P Image is split into patches and embedded as tokens.
» A 2D coordinate (X, y ) is mapped to position
embeddings.

PE(x,y) = concat(PE(x), PE(y))

2D Positional Embeddings:

P Often a learnable embedding for each patch index.
P Alternatively, sinusoidal in each spatial dimension,
then combined.

Why It Works:

P Preserves spatial relationships for tasks like
recognition, detection.

P Vision Transformers handle global and local contexts
effectively.



Content

3 Transformer Architecture
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Why Transformers?

Audio/Speech
11%

Parallel Computation + Short Path Length:

P Self-attention can handle all tokens in parallel.

» Minimal path length for global dependencies, vital for deep
architectures.

Natural Images
20%

Computer Vision
31%

Medical Images
11%

Transformer Dominance in NLP:
» Nearly all state-of-the-art language tasks use Transformer
based models.

Figure 4: Proportion of transformer application in Top-5 fields

Documents by year

» Default approach: ”Grab a large pretrained Transformer”

(BERT, GPT, T5, etc.). -

Vision Transformer (ViT):

» Patch-based input turned into token embeddings. ¢

» Now a go-to model for image recognition, detection, and

segmentation.
Islam, S., Elmekki, H., Elsebai, A., Bentahar, J., Drawel, N., Rjoub, G., & Pedrycz, W. (2024). A Year

comprehensive survey on applications of transformers for deep learning tasks. Expert Systems with Applications, 241, 122666.
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Why Transformers?

Before Transformers After Transformers
Computer Vision Natural Lang. Proc. Computer Vision  Natural Lang. Proc.  Reinf. Learning
Convolutional NNs (+ResNets) Recurrent NNs (+LSTMs)

Cup
Prtubifis
==

Feature maps T

Speech Translation RL

Deep Belief Nets (+non-DL) Seq2Seq
sal utw

= [ [

|

By, Vi log ma(als)Q(s,a)] - \ViH ),

where Q(3,@) = E, [log(Dy, (5.)) |0 = 8,00 = ]
hellowsalut
i png

(1) CNN image CC-BY-SA by Aphex34 for Wikipedi iki/File:Typical_cnn,
[2] RNN image CC-BY-SA by GChe for Wiki iki ikifFile:The_LSTM_Cellsvg

(Bertasius, 2024)
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From Attention Mechanism to Transformer

e |f we have attention, do we even need recurrent connections?
« Can we transform our RNN into a purely attention-based model?

Attention Is All You Need
Neurips 2017 Ashish Vaswani* Noam Shazeer* Niki Parmar”* Jakob Uszkoreit”
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com
Llion Jones* Aidan N. Gomez" ' Fukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com
Citation: 173883+ Ilia Polosukhin® *

illia.pelosukhin@gmail . com
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Transformer: A High-Level Look

Output
* Transformer is composed of an encoder and a 4 ( i, ]
decoder. Transformer l : ]
Linear
« The input and output sequence embeddings are added [ — ‘
with positional encoding before being fed into the : ( Decoter A
encoder and the decoder.

« The encoder is a stack of multiple Transformer layers, [ e h
used to transform the text embeddings into a Layerom |
representation that can support a variety of tasks.

 The decoder is also a stack of multiple Transformer

- . . Layer Morm
layers, used to predict the next token to continue the input ‘—y-ﬁ
text. It also inserts a sub-layer, known as the encoder- ! )

decoder attention. N\ \ ’
DECODER —

[ Feed Forward J
ENCODER A

i A
[ Feed Forward J ( Encoder-Decoder Attention ] pN

/

\ Position Embaddi
: : ~ nput Target
[ Self-Attention J [ Self-Attention ]
f f

https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-

https://jalammar.github.io/illustrated-transformer/ works-step-by-step-b49fada64f34/
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lEﬂ;I;-Ji[\<I(::: GLOBAL PUBLIC HEALTH




Tokenization and Vocabulary Construction

» Goal: P Definition: The vocabulary is the set of all tokens recognized
Convert raw text into model-readable units (tokens). by the tokenizer.

Common Methods: Size:

P \Whitespace splitting (simple but limited). » Typically a user-defined hyperparameter (e.g., 30k, 50k tokens).
» Word-level tokenization P Larger vocab covers more words but uses more memory.
(vulnerable to out-of-vocabulary words). Handling Rare Words:

» Subword tokenization (BPE) » Full-word approach leads to frequent OOV (out-of-vocabulary)
(compromise between letters and full words). issues.

Importance: Effective tokenization impacts model P Subword approaches store partial words, enabling composition
performance. of unknown words.

P Example: BERT uses a WordPiece vocabulary of 30k tokens.

Whitespace Splitting Example: Word-Level Example: BPE:
P Input: "Hello world!" P Often attempts to separate punctuation » Example 1: "unbelievable"
P Tokens: ["Hello", "world!"] from words. P If "unbelievable" is rare, split into
P Issue: Punctuation remains P Tokens: ["Hello", "world", "!"] subwords: Tokens: ["un", "believ", "able"]
attached to "world!" P OOV Problem: If "Hello" isn’t in the vocab, P Example 2: "low-frequent-words"
it becomes. "<UNK>". > If "-" is a token, might see: Tokens:

["low", "-", "frequent”, "-", "words"]
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Illustration of BPE

» Initial Characters: The passage is split into single letters + ) s siovent 055053, ),
whitespace (e.g., for space). Frequencies are tallied. tosee L le.coudseeseesee
h- |terat|on 1: Merge MOSt Common Pa|r was_the_bottom_of_the_deep_blue_sea_sea_sea_
** E.g., merging s and e into the new token se. |3-3|;8}%||;|1;|;|g|;|;|g|g|g|;|;|;|ry|;|ﬁ;|;| .
+»» Token counts for s and e decrease accordingly. I3
‘:’ Constraint CannOt mel'ge aCI’OSS WOFdS (nO merging |f |aSt b) a_sai\or_went_to_sea_sea_sea_ ﬁ

- - to see what he could see see sce ]
Char IS Whltespace)' ) bu_t_aII:thati_he__cou\d__ﬁce_;ee_:me__
h'- Su bseq uent lterations: was_the_bottom of the deep blue sea_sea sea_

i i i I elselalt|o|h|l|u wlc|s|flilm{n|p|r
» Continue merging the most frequently adjacent pair, e.g. e IﬁlﬁlBIWZIGIEIEWE’I;IBHzm1HTM
and _, forming e_. R '_'d'r'. — %
> Over many iterations, tokens become a mix of letters, C) 5 salor went_to_cca ce3.5c5. Princ€{2024)
fragments, and common words. i
"' VocabUIary GrOWth and Sh r|nk was_the_bottom_of_the_deep_bme_sea_sea_sea_
» As merges occur, the vocabulary expands with new fragments, ﬁIEIE}Tf}wt]I;IEIéI:I;EEM;I;W}TWH
then contracts as merges become less frequent.
P In practice, we stop once we reach a predefined vocabulary
SIZE. - d) see_|sea_|e|b|l|w|a|could_|hat_|he_|o]t|t_|the_|to_|u]a_|d|f|m|n|p|s|salor_|to]
» Real-World Use: Large corpora, punctuation, uppercase [T RRRERE 2 T2 [z 2Rzl 2 [z it ]
letters all handled as separate input characters, with a final : :
vocab determined by the token count limit ¢) |
| see_ | 583 | could_ | he_ | the_ | a | all | blue_‘ bottom_ | but_| deep_| 0f_| sa||0r_‘ that_ | to_‘ was_| went_ | what_|
(Tlel 2 [z e e
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Transformer Layer (Block)

» Input: D x N matrix of word embeddings, where D is the Tansormer ajer

embedding dimension and N the sequence length.
» Multi-Head Attention: v
¢+ Each token can attend to every other token.

¢ Output dimension is D x N.

¢ Residual connection: add the original inputs back.
» LayerNorm:

» Applied to each column (token) independently.

Residual connection Residual connection

AN

)
) L
E=:

P T e
. .

i : _ ) Input Mult-head LayerN Parallel neural LayerN Output
» Normalizes across the embedding dimension. i se|: a:te:::ion S netr:;k:?:r;,) A w
P Fully Connected Feed-Forward:
v' Same MLP applied to each column.
v Residual connection again.
» Final LayerNorm: X + X+ MhSaX]
O Normalizes outputs across D for each token. X <+ LayerNorm|X]
P Result: Output is a D x N matrix with updated token ) Vne{l.....N
representations. L R mlp[x”-_ e

X <+ LayerNorm|X],
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Transformer Layer: Residual Connection

 Residual connection is a simple but powerful technique

class AddNorm(nn.Module

from CompUter vision. ""The residual connection followed by layer normalization."""

« Observation: Deep neural networks are surprisingly bad def __init__(self ; norm_shape, dropout
. . . . super().__1nl1t__

at learning the identity function. self.dropout = nn.Dropout (drapout

* Therefore, directly passing “raw” embeddings to the self.1n = nn.LayerNorm(norn_shape
|
next layer would be very helpful! def forward(self. X Y
x; = f(x;-1) + x4 return self.1n(self.dropout(Y

 This prevents the network from “forgetting” or
distorting important information as it is processed by

many layers. Residual connection =CJ{)
. . All vectors interact :
Residual connections are th each oth Self-Attention
also thought to smooth the with each other ! i J !
IOSS landscape and make [no residuals] [residuals] T 1 1 T
tra|n|ng ea5|er! [Loss landscape visualization, }{1 xZ }(3 )(4
Liet al., 2018, on a ResNet]

ﬁUNC GILLINGS SCHOOL OF
L8 GLOBAL PUBLIC HEALTH




DUNC

Transformer Layer: Layer Normalization

* Problem: Deep neural networks often suffer from internal
covariate shift, where the distribution of inputs to each layer S famiiien
changes during training, making optimization difficult.

« Solution: Reduce variation by normalizing to zero mean and
standard deviation of one within each layer.

Batch norm d-dimensional vectors Layer norm
oy, agt echampeinbeh different dimensions of
d-dim . d
B d o
\ | 1 ) 1 / 1 Layer Normalization
p==Y o 0=y m e p=y 6 o= |- ) (- p)?
B; ?' B; / dz':l : d;( it Residual connection GP

1-dim All vectors inte ra‘ct Self-Attention
- A with each other t t t t
==t 1=t tot ot
Xy Xy X3 X4

Layer norm is not applied to an entire transformer layer, but just to
the embedding vector of a single token.
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Position-wise Feed-Forward Networks

 The position—wise feed-forward ] class PositionWiseFFN(nn.Module):
network transforms the representation """The positionwise feed-forward network.""’
at all the sequence positions using the S e e G SR I S S R
same MLP. This is Why we call it self.densel = nn.LazyLinear(ffn_num_hiddens)
itinN\A/i self.relu = nn.RelLU()
p03|t|on WISE. self.dense2 = nn.LazyLinear(ffn_num_outputs)

def forward(self, X):
return self.dense2(self.relu(self.densel(X)))

cle

RN

rest| | thinker [off [all

en.tlon MLP independently MILP MILP MILP MILP
Multilayer on each vector t 1 { t
SRerceptron ][] |
ol e e e T e 2 L Layer Normalization
§ Residual connection :(J:r)
All vectors interact Sl
with each other t t t 1
f I ! 1
X4 X, X3 X,

8

https://www.youtube.com/watch?v=wiZof)JX0v4M
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https://www.youtube.com/watch?v=wjZofJX0v4M

Putting it All Together

 Self-attention is the only interaction between vectors.
 Layer normalization and MLP work independently per vector.
« The structure is highly scalable and highly parallelizable. ¢

MLP MLP MLP MLP

Y1 Y2 Y3 Vs
4 3 3 4 T [ t T
| | | | I
Layer Normalization Layer Normalization
(11> By
(£
| | T | h
MLP | |MLP |MLP| | MLP Self-Attention
t t : t | t
L Layer Normalization
Layer Normalization $ t 4
— |
{% t t t t
1 1 1 1
Self-Attention
X X X X
L i i t f | 1 2 3 4
1 t 1 1
1 1 1 1
X1 X X * In practice, we often put the layer normalization inside the residual attention,

which tend to give more stable training and is commonly used in practice.
Johnson, 2022
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Encoder

« The Transformer encoder consists of multiple identical Transformer layers that process the input
sequence in parallel. Each layer refines the input representation by capturing dependencies across all
positions. (N = 6 in the paper Attention is all you need).

» The encoder outputs a contextualized representation for each token, which serves as input to the decoder.

OUTPUT . . .
| [ Loam e St“de”t] » Input: D X Nenc matrix of embeddings (or projected tokens).
- - p L ) » Self-Attention Layer:
q FNCODER ) " DECODER ) » Each token attends to every other token in the source.
( ENC:)DER ) r DEC;DER ) » Multi-head mechanism for capturing diverse relationships.
\ - J \ - J » Residual connection + LayerNorm keep gradients stable.
] ENCODER | | DECODER | » Feed-Forward Layer:
- L . ) L . » Position-wise MLP applied to each token's embedding.
. ENCODER ) \ DECODER ) » Another residual connection + LayerNorm.
) ) .
ENCODER DECODER > StaCklng Layers'
: 3 : : 3 : » Typically L identical encoder layers.
ENCODER DECODER » Output is D X Nene, providing contextualized embeddings for
\. ) J each source token.
INPUT [ Je  suis étudiant] The lllustrated Transformer — Jay Alammar — Visualizing machine learning one concept

at atime. (jalammar.github.io)
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https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Encoder: Implementation

X i a / \ . class TransformerEncoder (Encoder):
class TransformerEncoderBlock(nn 'MOdu:II'?;"_ ' def __init__(self, vocab_size, num_hiddens, ffn_num_hiddens,

The Transformer encoder block. num_heads, num_blks, dropout, use_bias=False):
def __init__(self, num_hiddens, ffn_num_hiddens, num_heads, drope mm?rfy__ﬂﬁi__;
C— self.num_hiddens = num_hiddens
ugeTblastalse;. selfemb i nn.Embedding(vocab_size, num_hiddens)
super().__1n1it__() self.pos_encoding—=—RositionalEncoding(num_hiddens, dropout)
self.attention = MultiHeadAttention(num_hiddens, num_heads, self.blks = nn.Sequential()

q t bias) for i in range(num_blks):

. ropout, use_blas) self.blks.add_module("block"+str(i), TransformerEncoderBlock
self.addnorm1 = AddNorm(num_hiddens, dropout) num_hiddens, ffn_num_hiddens, num_heads, dropout, use_bias))
self.ffn = PositionWiseFFN(ffn_num_hiddens, num_hiddens)

self.addnorm2 = AddNorm(num_hiddens, dropout)

forward(self, X, valid_lens):

forwardl‘-SEJ'f' X, valid_lens): . . X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
Y = self.addnorm1(X, self.attention(X, X, X, valid_lens)) self.attention_weights = [None] * len(self.blks)
return self.addnorm2(Y, self.ffn(Y)) for i, blk in enumerate(self.blks):
- ' X = blk(X, valid_lens)
self.attention_weights|
i] = blk.attention.attention.attention_weights
return X
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Transformer Decoder

» Decoder Sublayers:

1. Masked Self-Attention: Targets attending to themselves (past
tokens).

2. Cross-Attention: Queries from the decoder, Keys and Values
from encoder.

3. Feed-Forward Network: Applies position-wise transformations
to each token.

» Residuals 4+ LayerNorm:

» Each sublayer uses skip connections and normalization.
» Ensures stable training and consistent dimensionality.

» Qutcome:

» Decoder hidden states are enriched with relevant source info.
» Final step: linear layer + softmax for next-token prediction.

Thinking Machines
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( Softmax
( Linear
., 4
P > DECODER #2
§ #
,*( Add & Normalize )
E L}
s
E ( Feed Forward ) ( Feed Forward )
O eaensreerehere e e
A B * *
! a i
: I,'P( . Add & Normalize : )
..... .'"'( Encoder-Decoder Attention )
A —— ST LI LI )
:Jp( . Add & Normalize . )
E ( Self-Attention )




Decoder: Masked Self-Attention

» The Transformer decoder is also composed of multiple
layers and generates the output sequence step by step. In OUTPUT[ | am student]
the decoder self-attention, queries, keys and values are
all from the outputs of the previous decoder layer.

ENCODER
L
ENCODER
4
ENCODER
L
ENCODER
4
ENCODER
4
ENCODER

f

INPUT [je suis étudiant]

DECODER
7y
DECODER
Iy
DECODER
3
DECODER
3
DECODER
7y
DECODER

« However, each position in the decoder is allowed only
to attend to all positions in the decoder up to that
position. This masked attention preserves the
autoregressive property, ensuring that the prediction
only depends on those output tokens that have been
generated.

R

S N
A W S, W W W

(N )
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Decoder: Cross-Attention

« Cross-attention in the decoder allows it to incorporate [Emderﬁ ﬂ""‘"’""ﬂ \
information from the encoder’s output.

* Queries are from the outputs of the decoder’s self-
attention sublayer (decoder’s hidden states).

« The keys and values are from the Transformer L
encoder outputs. gl

 In reality, cross-attention is also multi-headed. Dy S——

 Such design enables the model to align generated tokens Enc-6 Out
with relevant input features dynamically.

[START]
je

suis

etudiant
[END]

bb 4

gl Dec-1 Out

-------------

1

am E

a ?

[START]
|
am

a

by 4y
1

N

by 44

student

Spnt [ Decoder-1 J
[END]
https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34/

e GILLINGS SCHOOL OF
HUNC

GLOBAL PUBLIC HEALTH




Decoder: Final Layer

« The Linear layer is a sir_nple fully connected Which word in our vocabulary
neural network that projects the vector is associated with this index? am
produced by the stack of decoders, into a much,
much larger vector called a logits vector. Get the index of the cell 5
« The softmax layer then turns those scores into with the high(eas't vn?Llie]
probabilities (all positive, all add up to 1.0). .
» The cell with the highest probability is chosen, log_probs  [TTTT] TTTTTTTTTTT] 1
and the word associated with it is produced as - 012345 A . vocab_size
the output for this time step.
( Softmax )
/N '
To date, the cleverest thinker of all time wad logits  [HENENTENNNSNNNNNES &
- the Il 8.82% 012345 ~ Vocab_size
??7? probably W 4.37% +
( Linear )
*
Decoder stack output LI
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Decoder: Implementation

To preserve autoregression in the decoder, the masked self-attention specifies a valid length so that any
query only attends to all positions in the decoder up to the query position.

class TransformerDecoderBlock(nn.Module) : class TransformerDecoder(Decoder) :
def __init__(self, vocab_size, num_hiddens, ffn_num_hiddens, num_heads,
def __init__(self, num_hiddens, ffn_num_hiddens, num_heads i): num_blks, dropgut]:
super().__init__() () ini ()

\ : super().__init_
self.i =1 . . ) self .num_hiddens = num_hiddens
self attention1 = MultiHeadAttention(num_hiddens, num_heads, -
dropout) ' — . . .
. . : self. embeddlng -Embedding(vocab_size, num_hiddens)
Sei;'aggnogw1 é AdﬂN;{mHnuzggiddiqs.:dropﬁgga head self.pos_encoding = PositionmalEncading(num_hiddens, dropout)
se -.attentlions = Multlnhea ention| nUITI_dl ens -. num_neadas, self.blks = nn. Sequentialf )
ropout) i - y -
for i in range(num_blks) :

1f . add 2 = AddN ( hidd , d t) . .
EZIf.?fnn?rﬁositionﬂ?éZFE“T%f: nsgshidggﬁgu rom e R self.blks.add_module("block"+str(i), TransformerDecoderBlock(
i — ' - num_hiddens, ffn_num_hiddens, num_heads, dropout, i))

self addnorm3 = AddNorm(num_hiddens, dropout) . : .
self .dense = nn.LazylLinear(vocab_size)

def forward(self, X, state): e _ )
enc_outputs, enc_valid_lens = state[8], state[1] init_state(self, enc_outputs, enc_valid_lens):

if state[2][self.i] is None: return [enc_outputs, enc_valid_lens, [None] * self.num_blks]
key_values = X
else: forward(self, X, state):
key_values = torch.cat((state(2][self.i], X), dim=1) X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
state[2][self.i] = key_values self._attention_weights = [[None] * len(self.blks) for _ in range (2)]
if self.training: for i, blk in enumerate(self.blks):

batch_size, num_steps, _ = X.shape X, state = blk(X, state)
dec_valid_lens = torch.arange(

1, num_steps + 1, device=X.device).repeat(batch_size, 1) self._attention_weights[0]|

else: i] = blk.attention1.attention.attention_weights

dec_valid_lens = None

self . _attention_weights[1]]
i] = blk.attention2.attention.attention_weights
return self.dense(X), state

X2 = self.attention1(X, key_values, key_values, dec_valid_lens)
Y = self.addnorml(X, X2)

Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens) @property
Z = self.addnorm2(Y, Y2) def attention_weights(self):

return self.addnorm3(Z, self.ffn(Z)), state return self._attention_weights
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Combine Encoder and Decoder Values:
Animation

Decoding time step: 1@3 456 OUTPUT |
Decoding time step:®2 3456 OUTPUT
4 s 3
( \) Kencdec Venr:dec ( Linear + Softmax )
( Linear + Softmax ) 01 0O Ormd @ @ T
ENCODER ' DECODER
ENCODERS DECODERS
[} [}
ENCODER ] [ DECODER J \ /)
. / EMBEDDING * * * *
EMBEDDING witHTimMe LT [CETOTT [CEET 110
witHTive LD OO0 [T SIGNAL
SIGNAL
EMBEDDINGS [T [ [ 11
EMBEDDINGS 111 O OO
INPUT  Je suis  étudiant PREVIOUS |
INPUT Je suis étudiant OUTPUTS
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Transformer: Putting it All Together

A Transformer is a sequence of Transformer layers.

Output D der d d iti t
Iti-head attention keys and values Provebiites SCOTEY FRCOTEs ONE posTon At e
multi- \ . \
kf,l? B -,kf,m o ’”f,l?--- :-’Uf,m time with masked attention
6 layers, each with d =512 -
- i P! idual tion with LN
_ (R5d& Nom J=— residual connection wi
hy = LayerNormn(a; + hy) | bt = WEReLU(WEa! + b%) + b
passed to next layer £ + 1 \ Foward_J = W2 14y T 0q 2
¢ ’ I, ¢ ’ Yo residual connection with LN
_ - orm "
hy = WyReLU(Wy@, +b) + by [ Fesd atonton. | 4 multi-head cross attention
2-layer neural net at each position | Forward : Nx
_ residual connection with LN
at = LayerNorm(h! ™! + af) ™ | (Adde Nom) e ||
Multi-Head Multi-Head |
essentially a residual connection with LN tm_te”B &ﬂg ) same as encoder only masked
\ / \ [r—
: . pi—1 Positional Positional
IHPUt' h’% Encoding ®_® ¢ Encoding
: Input Output .
output: a; Embedding Embedding (Levine, 2021)
concatenates attention from all heads T
Inputs Outputs
{shifted right)
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Content

4 Transformer Applications
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Transformers are Everywhere Now!

cook shrimp

£ - -
c wipe wine call elevator high five
Robotics, Simulations, Physical Tasks
Dermatology
\ =]
Mammaography i
= Medical
-l Lo e Question
- Answering
Genomics 8 all
— Medical Visual
\\ Question
— Answering
= _J
Radiograph Medical Image
) Ciassification
Med-PaLM M L
L = 1] Radiology
Report
Summarization F ey 841 LOND
- I ALMEEST
. Radioclogy
e Report
Gy == Generation
Radioclogy =
Report
= Sy Genomic
& = ﬂdéﬁp Variant Calling
Medical
Knowledge !
Pathology

Biology + Healthcare

MuiltiMedBench modalities and tasks
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Transformers are Everywhere Now!

ChatGPT &)

@ Whatareyou?

I'm a large language model & O .
trained by OpenAl. I'm a form e n W h
of artificial intelligence that p I S e r

} has been designed to

process and generate
human-like language.
@ Areyouhuman?

I'mnot a human and | don’t & /‘
have the ability to think or
feelin the same way that a
person does.
Text and Language

- VisionTAnalyzing Images & Videos
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Categorization of Transformer variants

f Module-level \: |

I | e e e B b e b S s e e . 1
: activation functions | ( I ) i Arch-level :
| enlarge capacity = | —»  Add & Norm : :
: dropping FFN module | ? : @ T— R |
! 1 | 1
| : S I | cross-block connectivity :
1 pl acement i POSlthI]-WlSC 1 = = 7 .
i ) , FEN I Adaptive Computation Time :
I substitutes - ! . !
I e : : recurrence & hierarchy !
: POk s ! —f : alternative architectures '
i & | —»  Add & Norm XL Wiin il
[ sparse attention I S e e e R e e e e R e s e e
: linearized attention : f e S S S R

3 1

: query prototyping ! Multi-Head , PIMs :
I memory compression | | Attention | :
I |

I low rank self-attention : A | Encoder- :
| attention with prior : LJ : Encoder Decoder Decoder :
1 - e 1 | 1
v . improved multi-head ¥y | — VES— VI—— :
& 4 T A e ,

. 1 | . .
: absolt-n,te posmon ! [Posmon.al WM? ! Applications !
: relative position ! ; !
I otherrepresentations | | . y . . Multi- |
beddin Text Vision Audio
E implicit representations | [ doken Ea g ] ! modal i
] [
\ 7 ]

< J
___________________________ T T A ———————————

Inputs
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Module
Level

X-Transformers

Star-Transformer[43], Longformer[10], ETC[1], BigBird[163], Sparse Transformer[17] ]

BP-Transformer[158], Image Transformer[94], Axial Transformer[54]

Routing Transformer[111], Reformer[66], SAC[78], Sparse Sinkhorn Attention[132] J

—(Linea:ized )—(Linear Transformer[62], Performer[18, 19], RFA[95], Delta Net[113] )

—(Prototype )—(Clustered Attention[138], Informer[170] j

Memory -
MCA[84], Set Transformer[70], Linformer[142] j

—(Low-ra.nk )—(Low-ran.k Attention[45], CSALR[16], Nystrémformer [152] )

— Attention |

—(Local Transformer[156], Gaussian Transformer[42] )

“ﬂredictjve Attention Transformer[143], Realformer[51], Lazyformer[159] )
Attention CAMTL[9%]

—(Average Attention[164], Hard-Coded Gaussian Attention[161], Synthesizer[131])

Li et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119]
Collaborative MHA[21]

Multi-head —(Adaptive Attention Span[126], Multi-Scale Transformer[44] )
—(Dynarnic Routing[40, 74] )

—{(Absolute )—@ERT[zs], Wang et al. [139], FLOATER[SS])

; Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24]
{Position ] DeBERTa[SO]
Encoding
—(Other Rep. )—(TUPE[()S], Roformer[124] )

—(Imp]jcit Rep)—(Complex Embedding[140], R-Transformer [144], CPE[20] )
—(Placement )—(post-LN[zs, 83, 137], pre-LN[6, 17, 67, 136, 141] )
—(LayerNorm}—(Substitutes )—(AdaNorm[153], scaled fo normalization[93], PowerNorm[121] )

—(Norm-free )—(ReZero-Transformer[S] )

—(Activ. Func.)—@wish[we], GELU[14, 28], GLU[113] )

- Enlarge Product-key Memory[69], Gshard[71], Switch Transformer[Sﬁ],}
N R
Capacity

Expert Prototyping[155], Hash Layer[110]

M(Aﬂ-mtenﬁon layer[127], Yang et al. [157] J
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—(Lighweight Hﬁte Transformer(148], Funnel Transformer[23], DeLighT[91] )

= Realformer{51], Predictive Attention Transformer{143], Transparent Attention[8]
Feedback Transformer [34]
UT(26], Conditional Computation Transformer(7], DeeBERT([150], PABEE[171], Li et al. [79],
Sun et al. [129]

Arch. J
Level -
Transformer-XL[24], Compressive Transformer(103], Memformer(147]
Recurrence 2
Divide & - Yoshida et al. [160], ERNIE-Doc[30]
Conquer Miculicich et al. [92], HIBERT[166], Liu and Lapata [86], Hi-Transformer[145]
TENER[154], TNT[44]
A(Alt. Arch, )—@T[IZB], Macaron Transformer[89], Sandwich Transformer[99], MAN[35], DARTSformer|167] )
MBERT[%], RoBERT[87), Bighird[163] j
PreTrain |—{Decoder —{GPT{101) GPT-2{102), GPT:3{12] )
—(Enc.Dec. )—(BART[H], T5[104], Switch Transformer[BﬁD
—(NI.P )—(BERT[ZS],ET[IZE]], Transformer-XL[24], Compressive Transformer(103], TENER[154] )
—(CV )—(Image Transformer(94], DETR[13], ViT[33], Swin Transformer[88], ViViT[3] )
App.
—M—(Speech Transformer[31], Streaming Transformer(15], Reformer-TTS[57], Music Transformer|56]

{Mulimodal }—{VisuaBERT[5], VLBERT[125], VideoBERT[128], M{s1], Chimerade], DALL-E[107], Cogiew(2s]




Why Transformers?

* Downsides:
- Attention computations are technically O(N?)
« Somewhat more complex to implement (positional encodings, etc.)

* Benefits:
* Much better long-range connections
* Much easier to parallelize
* In practice, can make it much deeper than RNN.

» The benefits seem to vastly outweigh the downsides, and Transformers work much better than RNNs and LSTMs in
many cases. Arguably, Transformer is one of the most important sequence modeling improvements of the past decade.
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Why Transformers?

In practice, this means we can use Fank Summarization
larger models for the same cost

larger model = better performance ,
previous state of the art seq2seq model

much faster training

Model Test perplexity ROUGE-L

Model BLEU Training C¢st (FLOPs)

Mode seq2seq-attention, L = 500 5.04952 12.7

EN-DE EN-FR EN-DE | EN-FR ey B b

ByteNet [18] 23.75 Tm".\:fﬂnner'ED. L = 500 2.4&45 34.2
Deep-An + PosUnk [39] ’ 39.2 1.0- ]020 Tmmfnnner—D. L = 4000 222216 33.6
GNMT +RL [38] : 24.6 3-992 23. 1019 14 5 1020 TﬂlllSﬁ)n"t’r-DMCA. no MﬂE-I(l)'(’I: L = 11000 2.05159 36.2
C S28 25.16 4046 96-1 18 1.5:=1 20 Tmn.\'fnnm’r-DMCA, MDE-’Zx, L= 11000 1.92871 379
Moonl; [32][9] 26.03 4056 28 3 1810 lg : 1820 Transfamrer-DMCA, MoE-256, L = 7500 1.90325 388
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%

GNMT + RL Ensemble [38] 2630  41.16 1.8-10% | 1.1-10*

ConvS2S Ensemble [9] 2636 41.29 7.7-10*° ¥ 1.2-10*

Transformer (base model) 273 38.1 3.3.1018

Transformer (big) 284 418 2.3 -101?

lower is better (this metric is similar to 1/likelihood)

/

great translation results

Liu et al. Generating Wikipedia by summarizing
Vaswani et al. Attention Is All You Need. 2017. long sequences. 2018.

(Levine, 2021)
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Pretraining and Fine-Tuning

Definition: Train a model on a large, general-purpose dataset. Definition: Further training a pretrained model on a smaller,

Objective: task-specific dataset.

P Capture grammar, semantics, and world knowledge. Goal:

» Develop universal language representations. P Leverage general knowledge from pretraining.

Benefits: P Specialize for a target task (classification, QA, NER, etc.).

» Model gains broad patterns (e.g., BERT, GPT, etc.). Advantages:

» Reduces the amount of data needed for future tasks. P Requires far less data than training from scratch.

P Often uses large corpora (Wikipedia, BookCorpus, etc.).  ® Faster convergence, lower computational cost.

Examples: P Often leads to state-of-the-art performance on downstream

» Masked language modeling (BERT). tasks.

P Next token prediction (GPT). Process:
P Load pretrained weights, replace final layer with task-specific
output.

P Train on the smaller labeled dataset for a few epochs.
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Attention/Transformers for Vision

Idea #1: Add attention to existing CNNSs

« Start from standard CNN architecture (e.g. ResNet)
« Add Self-Attention blocks between existing ResNet blocks

9 “AUOO EXE
I

9 "AUOO EXE

+9 ‘AUOD EXE
I

+9 ‘AUOCD EXE

+9 ‘AUOD EXE
I

9 “AUOD XS

Key ldea:
» Introduce long-range self-attention into GANs for image 18] S | TRV T 1 ) S P8 ST
generation.
P Traditional conv-based GANSs rely on spatially local features.
» SAGAN allows any feature location to influence the generation i)
of high-resolution details. | | e _—
convolution Ixlconv !
Results on ImageNet: M i map
P Inception score boosted from 36.8 to 52.52. @ﬂﬂ fself-aﬂenﬁon
» Frechet Inception Distance (FID) reduced from 27.62 to 18.65. ﬁH LB )
» Visualization shows generator attends to object-like shapes, s
not just local patches. wow " L1]
Zhang et al, "Self-Attention Generative Adversarial Networks”, ICML 2018 ),
Wang et al, ”Non-local Neural Networks”, CVPR 2018 iy
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Attention/Transformers for Vision

Idea #2: Replace convolution entirely N o

Beyond COI’]VO| ut| ons: product of conv kernel with receptive field in input
P Convolutions excel at local feature extraction.

P Self-attention is especially beneficial in later layers and long-range
dependencies require content-based interactions (e.g., self-attention, non-
local blocks).

Key question: Can self-attention fully replace spatial convolutions?
P Replacing Convs with Self-Attention: Input: CxHx W Output: €/ x HxW
» Modify ResNet by swapping each spatial convolution for a

v

self-attention module.
P Gains on ImageNet: outperforms baseline with 12% fewer -
FLOPs and 29% fewer parameters. Keys: Rx RxDg
» On COCO detection, pure self-attention matches baseline "a'“e““""l" ¢ 1
MAP with 39% fewer FLOPs and 34% fewer parameters. Attention
Input: CxHxW Output: C'x Hx W

Hu et al, “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al, “Stand-Alone Self-Attention in Vision Models”, NeurlPS 2019
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Attention/Transformers for Vision

stage| output ResNet-50 LR-Net-50 (7x7, m=8)
. 1x1, 64
resl | 112x112| 7x7 conv, 64, stride 2 7x7 LR, 64, stride 2
3x3 max pool, stride 2 | 3 X3 max pool, stride 2
1x1, 64 [ 1x1,100 |
- res2 | 56x56
Unfortunately, the performance is not 3x3conv, 64 |x3| | 7x7LR,100 |x3
Satlsfactory: L ].)'(]., 256 | ! ].X], 256 1
] ] 1x1, 128 1x1,200
* Lots of tricky details res3| 28x28 | | 3x3conv, 128 | x4 | 7x7LR,200 |x4
e Hard to implement | IxLst2 ) ] IxBSIZ ]
] 1x1, 256 1x1, 400
* Only marginally better than ResNets resd | 14x14 | | 3x3conv,256 |x6 | 7x7LR,400 | X6
| 1x1,1024 | | 1x1,1024
[ 1x1,512 ] [ 1x1,800 |
resS5| 7x7 3x3conv, 512 | x3 7x7LR, 800 | x3
| 1x1,2048 | | 1x1,2048
w1 global average pool global average pool
=
1000-d fc, softmax 1000-d fc, softmax
# params 25.5x10° 23.3x10°
FLOPs 4.3x10° 4.3x10°
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Attention/Transformers for Vision

Idea #3: Standard Transformer on Pixels
 Treat an image as a set of pixel values, and then

feed it as input to standard Transformer P Idea: Apply a similar auto-regressive Transformer to pixels
without explicit 2D priors.
* Problem: Too much memory usage! An R X R > Setup:

- - 4 - -
Image requires R elements per attention matrix. » Trained on low-resolution ImageNet in a purely auto-
Then fora 128 x 128 Image with 48 Iayers, 16 regressive manner. No 2D convolutions, treats images as 1D

heads per layer, it would take 768GB for attention  soquences.

matrlceS! | P Results on CIFAR-10:
b (s Ll J i P 96.3% accuracy with a linear probe, beating a supervised

1
w T @ s e e
: 000000000 P 99.0% accuracy when fully fine-tuned, matching to
k . 000000000 000000000 000000000 G i Y Y & top
" — supervised pretrained models.

N .@““ 000000000 () inetune Self-Supervised Benchmarks on ImageNet:
Y ' P Demonstrates strong learned representations even
.““““ “0““”

; without
Il i - N | I I

explicit image patches.
Target Target C;t Dog
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Chen et al, “Generative Pretraining from Pixels”, ICML 2020




Vision Transformers (ViT)

ldea #4: Standard Transformer on Patches

In practice, we take 224x224 input image, divide into 14x14 grid of 16x16 pixel
patches . Each attention matrix then takes around 150 KB.

Linear projection
to C-dim vector

of predicted

Output vectors class scores
Exact same as T f
NLP Transformer! ransrormer

embedding: learned D-
dim vector per position

Linear projection to Q |:|

Add positional Special extra input:
|:| |:| |:| I classification token
+ + +

(D dims, learned)

d

I
/

D-dimensional vector

N input patches, each
of shape 3x16x16 i

(Johnson, 2022) Dosovitskiy et al, “An Image is Worth 16x16 Words:

Transformers for Image Recognition at Scale”, ICLR 2021
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Vision Transformers (ViI)

 In the field of vision, the reliance on CNN is not

necessary and a pure transformer applied directly can Vision Transformer (ViT) “‘ﬂﬂﬂﬂmlef Encoder
perform very well on image classification tasks. »
-
« Vision Transformer(ViT) try to do fewest possible %‘;\
modification by splitting image into patches and — MLP
provide the sequence of linear embeddings of these
patches as input. Tratsfoetee Bogoder Norm
* Unlike prior works, ViT doesn’t introduce specific

sequence of patches and is processed by a standard * B leanable
[class] embedding Linear Projection of Flattened Patches

T '

Transformer encoder

Norm

« Convolutional inductive bias is useful for smaller
datasets; while for larger ones, learning the relevant
patterns is even beneficial.

I
|

I

|

|

|

|

: |

|

!

inductive biases into architecture except the initial :
patch extraction step. Instead, image is treated as a Mg | Ml Head

|

|

|

!

|

I

Embedded
Patches
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Vision Transformers (ViI)

When trained on ImageNet, VIT models perform worse than ResNets.
If you pretrain on JFT and finetune on ImageNet, large ViTs outperform large ResNets.
VIT can make more efficient use of GPU/TPU (tensor processing unit) hardware, as

matrix multiplication is more hardware-friendly than convolution.

=]
=

B = Base 85
L = Large
H = Huge

/32, /16, /14 is
patch size;

smaller patch size is
a bigger model
(more patches)

ImageNet Topl Accuracy [%]
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BiT © ViT-L/32
] e o ViT-B/32 VIT-L/16
| ® ViT-B/16  ( ViT-H/14
ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Linear 5-shot ImageNet Top1 [%]

|
<

(=23
==

h
=

£
<

d
[==2
1

.
ViT-L/16 -+-ViT-B/32 -# ResNet50x1 (BiT)
-e-ViT-L/32 -*-ViT-b/32 -®ResNetl52x2 (BiT)

10M ©30M  100M  300M
Number of JFT pre-training samples



Improving ViT: Distillation (DeiT)

Data-efficient Image Transformer (DeiT) is an improved version of the VIiT, designed to achieve high performance
with smaller datasets and less computational cost.

DeiT is trained entirely on ImageNet-1k by leveraging knowledge distillation. It introduces a distillation token that

learns from a pre-trained teacher model (e.g., a CNN), allowing the Transformer to benefit from the teacher's soft
labels and achieve better generalization.

Additionally, DeiT also employs advanced data augmentation and efficient training strategies, enabling faster
convergence and competitive performance without the need for external data.

: Trai c
b e -0s S e e
- g P(dog) = 0.1 Py Cat et
4 Loss o4 ICN| T~eDeiT-B2
L = X Lgistin + (1 — )\)ECE- S .\_\‘\\. ‘ “~ Jper-sa
. _ 582} _a- EfficientNet — | %
Step 2: Train a ', P(cat) =0.1 KL Divergence Loss § . \\.\
student ViT to match P(dog) =0.9 T S | —e ours A
e 0] —— ~ ~ :
ImageNet predictions ~ 80 e .
from the teacher CNN | Cross §
(and match GT labels) ol P(cat) =0.2 —> Entropy <— ol e 78 M-8
P(dog) =0.8 Dog \
Loss ) .
.VIT-L BO
= 50 100 200 500 1000 2500
Touvrom et al, “Training data-efficient image transformers & distilla Edistill — 7'2 . KL(pT ||p5)) images/s

attention”, ICML 2021
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Scaling (ViT-22B)

Three main modifications to the original VIT:

* Instead of sequentially applying self-attention and
MLP blocks, put them in parallel for additional
parallelization.

Table 1: ViT-22B model architecture details.

Name Width Depth MLP Heads Params|[M]

o _ Vil-G 1664 48 8192 16 1843
» Query/Key normalization to ensure stable gradient. ViT-e 1792 56 15360 16 3926
 Omit bias term for QKV projections to accelerate ViT-22B 6144 48 24576 48 21743
utilization
Table 3: Zero-shot transfer results on ImageNet (variants).
o tReohton 222 o, mputResoluton 354X 38 Model IN IN-v2 IN-R IN-A ObjNet Real
ng BT 8 CLIP 762 701 889 772 723 -
00 702 g ALIGN 764 701 922 758 722 -
270 67 613 mm 0 BASIC 857 80.6 957 856 789 -
g 650 mum CoCa 863 807 965 902 8.7 -
3 Q@ 60! 583 LiT-g/14 852 79.8 949 818 825 886
< LiT-e/14 854 80.6 96.1 880 849 884
LiT-22B 859 809 960 90.1 876 886

0 50
Bll6 g4 G/4 e/l4 22B/14 BIl6 g/l4 G4 ell4 22B/14

Dehghani, Mostafa, et al. "Scaling vision transformers to 22 billion
parameters.” International Conference on Machine Learning. PMLR, 2023.
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Swin Transformer

Swin Transformer highlights how a carefully adapted Transformer architecture—with local windows, shifting, and

hierarchical stages—can match or exceed CNN performance in classification, detection, and segmentation, paving

the way for broader adoption of Transformers as a universal backbone in computer vision.

< Hierarchical Feature Representation: Splits the input image into patches and constructs feature maps of
progressively lower resolution. This design enables the model to handle multi-scale visual entities effectively
and to integrate seamlessly with common dense prediction frameworks (e.g., FPN, U-Net).

< Shifted Window Partitioning between consecutive layers lets each window see content from neighboring
windows in previous layers, bogstirvllg modeling Eow[(/evr while keel?ing Mgefficiency.

H W A
CX—X— 2C X — X — 4C X — X — 8C X — X— TTATTT S Vel i
4 4 8 8 16 16 32 32 :' 7! {}1 : ' zz+1€94_ ‘l
— e e m —— e a, e o |
il Stage | § Stage 2 \ 1 Stage 3 % i Stage 4 % : : 1 :
! ! ¥ 1 ! MLP ! MLP
Vg ( fii : 1 ( A i ! : | :
3IXHXW E I g ! %0 i %‘0 - ' I T ; : T 1
g : & Swin i g Swin ¥ g Swin f ? Swin : : LN : 1 LN :
Images [P & S ~» Transformer -:+) 2 [ Transformer -:-? 2 P Transformer | = [ Transformer "P ' A . : A i
= 4 Block T Block S Block |''|=< Block« |, 1 [ 1
2l | g 0| 2 | B i ' i {}4 vl zi+1€9<_ 1
[y E l: A | A~ . i I I | 1
: Lo Ay 9 401 . VAR \ J 1 1 : 1
A A T A T kY v o [WeMSA| | 1| [SWMSA| |
L NN . - A . S PO ...+ S - O gt v e T it I 7 ™ o o i R ! 1 1 I
1
Divide image into 4x4 Merge 2x2 Merge 2x2 Merge 2x2 : L1I:J : : LT\I !
patches and project neighborhoods; neighborhoods; neighborhoods; ! ! | !
to C dimensions now patches are now patches are now patches are v g1 ’ '\ e I
(effectively) 8x8 (effectively) 16x16 (effectively) 32x32 N Se==qm===

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021.
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SWin T]_’ansf() rimmer The shifted windows bridge the windows of the preceding

layer, providing connections among them that significantly
, enhance modeling power.
segmentation

classification  detection ... classification Layer | Layer I+1
T A b ’

P 16x

A local window to
perform self-attention

T o N | B O
M B [L g : _i‘;_ A patch

o -

(a) Swin Transformer (ours) (b) ViT -#-RegNetY -e-EffNet -o-ViT+Distillation (DeiT) -#-Swin

co
o

Strong Performance Across Vision Tasks

“» Image Classification: Achieves top-tier accuracy on
ImageNet (e.g., 87.3% top-1 with Swin-L).

% Object Detection: Improves box AP and mask AP on
COCO, surpassing prior SOTA by a significant margin (e.g.,
+2.7 AP).

% Semantic Segmentation: Attains new best mloU on "

|

Accurady (ImageNet Topl)
(] (] (o]
[ N w
L

co
o

0 2 4 6 8 10 12 14 16 18 20

ADE20K, showing broad applicability beyond classification. Speed {msfimage on V100)
) GILLINGS SCHOOL OF
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MLP-Mixer: An All-MLDP Architecture

- SUNTRPE - FomTTTTTTTTTITTTTS poomertons _____ Spconossons _ Mixer Lager |
Input image is divided into non-overlapping patches — Sip-eoeeions il Vel
- . - Channels
similar to ViT. 'l e Putches vl ', :
. . . . : £ ;__u K - (MLP L }—»[1 £ > |
» Each patch is linearly projected, forming a g R L TX 7 > :
patches(x)channels table, X. k| e o B 5 - I
. « = . Lo i i e e e e e e e e e ) ] i i B e i o i ], o i ) ]t ] i o (] ] ] B J
» MLP-Mixer separates mixing of features into two
kinds of MLP | ] Input: Nx C MLP1:C->C, MLP 2: N -> N,
INGs o " ayers. N patches with apply to each of apply to each of
» Token-Mixing MLP: Operates across patches (rows ¢ channels each the N patches the C channels
of XAT). |
.- A D->D
» Channel-Mixing MLP: Operates across feature ILP to e of
channels (rows of X). thentokens [ mLp || MLP [ ML || mup [ mup | mie |[mie || mie || mie |
» Each layer is a simple MLP_Wlth skip connections Apply (N->N) U 0 0 0 0 0 0 0 1
and LayerNorm — repeated L times. ML to sach of i r———
e, e ey . IX aCross toKens:.
However, its initial result on ImageNet is not very
compelling, which gets better when using JFT for Input vectors N x D
pretraining. There are many follow-ups to this work.
N input patches ‘__

Tolstikhin et al, “MLP-Mixer: An all-MLP architecture for vision”,
NeurlPS 2021
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DETR: Object Detection with Transformers

« DEtection TRansformer (DETR) is a novel object detection framework that simplifies the traditional pipeline by directly
predicting a set of bounding boxes using a Transformer model.

« DETR uses a bipartite matching approach to match predicted boxes to ground-truth boxes. Specifically, it employs the
Hungarian algorithm to find the optimal one-to-one matching between predictions and ground truths, ensuring each
prediction is assigned to a unique ground-truth box.

« The model is then trained to regress the box coordinates and classify objects based on this matching. This end-to-end
approach eliminates the need for hand-designed components like anchors and non-maximum suppression (NMS), making
DETR both simpler and more efficient while achieving competitive performance on object detection tasks.

——————————————— ”—————--————————-———-\-——————-——————————- - - - - - _
i backbone ! encoder | decoder 1 predlctlon heads
I
| setofimage featuresii |
1 class,
: Ei FFN > bok I
|
| 1 no
: ' transformer transformer FEN 7] object

decoder

Boda

4 4 4 4 4 4 4
ooooog--0
object queries

- - - - - — e - - - - - - - —— - D P S e T ——

encoder FEN || class.

box

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020
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Masked-attention Mask Transformer for
Universal Image Segmentation

A universal image segmentation that outperforms specialized architectures, while still easy to train on every task.
% Masked attention in decoder to restrict attention to localized

[mask| ] @EEE
image  query
features features

features centered around predicted segments, which can be either | —
. . . - . I, \
objects or regions depending on specific semantic. —— | (add&mom -
¢ Use multi-scale high-resolution features to help model to segment Decoder | [ I ]
small objects/regions. —Lclass |, FFN;
. . . . . - |
% Optimization improvements such as switching the order of self and @-{mask] 1 | add&' nom_j
cross attention, making query features learnable and removing » ' (selfatenton
dropouts. . - o ! I—|—v x—|—lo
panoptic mstance semantic / |
/ V| [ add &norm  J-
|
| {masked attention]
I VI KT Q
:
| J
|
|
|
|

Universal architectures:

B Mask2Former (ours) [ 1 MaskFormer _ _ _
Cheng, Bowen, et al. "Masked-attention mask transformer for universal image

SOTA specialized architectures: segmentation." Proceedings of the IEEE/CVF conference on computer vision and
SSY Max-DeepLab ~ ZZZ Swin-HTC++ [ BEiT pattern recognition. 2022.
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Key Takeaways of ViTs

* VIiTs are an evolution, not a revolution. We can still fundamentally solve the same problems as with
CNN.

* Inductive biases of CNNs might not be as harmful as previously claimed (even in big-data regimes), and they
might even benefit Transformers (e.g., Swin Transformer).

» The flexibility of Transformers is helpful when considering multimodal data.

* Don’t give in to the hype but instead critically evaluate each paper based on the empirical evidence.

 Pay attention to hidden implementation details (e.g., optimization, training schedule, data augmentation, etc.).

» Learn to appreciate simple yet effective ideas.

 Consider the big picture of each paper (e.g., potential future impact of the paper).

« Attention is NOT all you need (but it can still be useful).

» Having said this, currently, the model choice still largely depends on the task that we want to solve.

2017.6 | Transformer 2020.5 | GPT-3 2020.7 | iGPT End of 2020 | IPT/SETR/CLIP

Solely based on attention A huge transformer with The transformer model for NLP Applications of transformer model

mechanism, the Transformer is 170B parameters, takes a can also be used for image pre- on low-level vision, segmentation

proposed and shows great big step towards general training. and multimodality tasks,

performance on NLP tasks. NLP model. respectively.

O

2018.10 | BERT 2020.5 | DETR 2020.10 | ViT 2021 | ViT Variants
Pre-training transformer models A simple yet effective Pure transformer Variants of ViT models,
begin to be dominated in the framework for high-level vision architectures work well for e.g., DeiT, PVT, TNT, and
field of NLP. by viewing object detection as visual recognition. Swin.

a direct set prediction problem.

Fig. 1. Key milestones in the development of transformer. The vision transformer models are marked in red.

Han, Kali, et al. "Asurvey on vision transformer.” IEEE transactions on pattern analysis and machine intelligence 45.1 (2022): 87-110.
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BERT: Encoder-Only Model

 Bidirectional Encoder Representations from Transformers (BERT) is an encoder-only Transformer design that
uses a vocabulary of 30,000 tokens. Input tokens are converted to 1024-dimensional word embeddings and
passed through 24 transformer layers, each containing a self-attention mechanism with 16 heads. The queries,
keys, and values for each head are of dimension.

« BERT exploits transfer learning. During pretraining, parameters are learned using self-supervision from a
large corpus of text. The goal here is for the model to learn general information about the statistics of
language. In the fine-tuning stage, the resulting network is adapted to solve a particular task using a smaller
body of supervised training data.

ﬁp Mask LM Mask LM \ /@ MAD Starv/End Spam
o e * o

e | TN Il T[SEP] I T1I I“‘ [ TM1 I | TN || T[SEP] I T1I ]"‘ | TM. I
.. - - .- Pt
e -
BERT e T BERT
-- |EN||E[£EP1|| E1'|--- |Em'| H- | Ew ||E[5£P1”E'| Ew
S pn S a1 LT L ey T ey B oy L
EE. EEE. & -! (o) () () - ()
Masked Sentence A Masked Sentence B Question Paragraph
« *
\ Unlabeled Sentence A and B Pair / \\\ DL T /
Pre-training Fine-Tuning

Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding.” arXiv preprint arXiv:1810.04805 (2018).
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BERT: Pretraining

* In the pre-training stage, the network is trained Word Linear +  Probability of
using self-supervision. The self-supervision embeddings Transformer softmax  masked token
task consists of predicting missing words from ’ 1
sentences from a large internet corpus. s>

|

N
™ '

1.——
—_—
b

» Such prediction forces the Transformer e~ [TTT1T]
network to understand some syntax. For e i
example, it may learn that the adjective “red” cmask>=[ [ TTTTT]

|

1s often found before nouns like “house” or i
“car” but never before a verb like “scout”. pulled-quIDID

|
« |t can also learn superficial common sense o TTTTTT]
about the world. For example, after training, '
the model will assign a higher probability to i
the missing word “train” before “station” than station—»|
it would to the world “peanut”. \ 7\

------------ ’

(xK)

N
z
=z
v
é

B s R ey R pREcsl Eaista

T

900000

<
R

sjreapaee
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2Oz

* However, the degree of “understanding” this
type of model can ever have is limited.

stnioeqw
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BERT: Finetuning

* In the fine-tuning stage, the model parameters are adjusted to specialize the network to a particular task.
An extra layer is appended onto the transformer network to convert the output vectors to the desired output format.

« Examples include text classification, word classification and text span prediction.

a) Word MLP + Probability of
embeddings Transformer sigmaoid positive review
B it ———————
sels>—[ T T T T T 11 - i ~-CD)——m
1 [ 1
The—=[ [ [ [T T T ]~ — | ~
i H 1
soup—=T T T T T ] ]: ' ~C o b i (= K -
! = T o ot —
tasted—=i [ T [ [ [ T | =~ i —~
| { 1
like—=[ T T [T [T JH:i = | =
i ! i
socks—'1‘|h_|__|__|__|___|__|__|:— | . e D _j —~
b) Word Linear + Probability of
embeddings Transformer softmax entity type
R e
<cls>—=[TT Ty i —C —~
Zara—i T T T T T T - ~CD———
works—={ T T [T [ 1+ O (< 1) ~( T 1711
1 H ]
atl LLLLLL oOpPe - - 1 O——Ir
Chanel—[TT T T T T i - ~C_ ) ——
! 1 [
=TT T 1T i - : ~( =TT T 1]
Victoria— T T T T [ [}~ 1| g S g —{ e I
e EEF S 8
R E 8
= B =
g =
=]
=
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» Released by OpenAl in 2020, with up to 175B parameters. GPT = 3
» Primarily a decoder-only Transformer for language modeling.

» Takes in prompt text and generates the next tokens auto-regressively.
» Admits no separate encoder & no bidirectional attention over input tokens. TOt‘dl WeightSI 173181291520

» Zero-shot and few-shot learning abilities. Organized 1nto 27.938 matrices

» Extremely large scale leads to surprising emergent capabilities.

» 499B tokens from diverse sources P Larger model + more data + more compute = improved
(Common Crawl, WebText2, Books). results (Kaplan et al. 2020).
P» GPT-3 extends to near trillion parameter regime feasibility.



P Input text is fed directly to the decoder stack (positional

. embeddings + token embeddings).
» Feed-forward MLP sub-layer, layer normalization, ), Output hidden states map to next-token probabilities.

residual connections.

Specifically, GPT3 models the language by constructing an autoregressive language model.

» Self-attention layers (causal/masked).

Beho‘ld* d “.lld P .(ledtme‘ Behold, a wild pi creature,
foraging in its native foraging in its native country

land [ 22%
forest [l 9%
country [ 5% |
habitat | 4%
forests [] 4%
soil § 4%
Transformer = ..o |'2, Transformer =»
woods || 2%
lands | 1%
waters | 1%
woodland | 1%

grass | 1%

https://www.youtube.com/watch?v=wjZofJX0v4M



https://www.youtube.com/watch?v=wjZofJX0v4M

Flamingo: a Visual Language Model

» Developed by DeepMind to enable language models to
interpret and generate text grounded in images.
» Extends the idea of large language models (LLMS) into the

Output: text
I Pretrained and frozen

visual domain. '@ a very serious cat.
Core Architecture: Trained from scratch —
+* Visual Encoder + Language Model: | — n-th GATED XATTN-DENSE

P Flamingo uses a CNN or Vision Transformer (ViT) to Perceiver Perceiver :

embed images. Resampler Resampler _
» Connects to a LLM backbone (e.g., GPT-style) via cross- T T 1st GATED XATTN-DENSE

attention layers.

¢ Perceiver Resampler (DeepMind approach):

P Adapts the visual features into a compact set of tokens fed
into the language model.

» Minimizes overhead when dealing with high-res images.
¢ Decoder-Only LM:

P Flamingo extends the LM with cross-attention blocks to
handle image-conditioned text generation.

Processed text
<image> This is a very cute dog.<image> This is

Interleaved visual/text data

This is a very cute dOg.m This is

Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for few-shot learning."
Advances in neural information processing systems 35 (2022): 23716-23736.
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VipetGPT

ViperGPT: A novel system for performing reasoning

on visual data. Architecture Overview:

LLM-Generated Python Code: » Language Model Brain: Proposes code to interpret or
» ViperGPT uses a LLM (like GPT) to generate small  {ransform image data

Python snippets. b Vision Backend: Toolset of i ing APIs f

» These snippets call specialized vision functions (e.g., 1SIon Backend. T00ISet 0T 1mage-processing Arls Tor
detection, segmentation, classification) to gather info. detection, OCR, bounding boxes, etc.

Execution + Re-evaluation: » Execution Environment: Python interpreter running the

» The code runs in a sandbox, returning results to the || M-generated code.
LLM. » Feedback Loop: Model reads code outputs, decides next

» The model integrates these results to refine or correct :
its approach, forming a loop of reasoning. step (rewrite code, answer, etc.).
Query q Visual InpUt & Query: How many muffins can each kid have for it to be fair? Execution i"k;d_;,at;he;‘.

| dnage_patch.£ind( ") Suris, Didac, Sachit Menon,
and Carl Vondrick. "Vipergpt:
Visual inference via python
execution for

“Which pet is in
the top left?”

l |

Generated Code mufin_patches = ‘
image_patch. find("muffin®) |

def execute_command(image): m o g 3
image_patch = ImagePatch(image) C *4 . !

muffin_patches = image_patch.find("muffin")

ii

; ; i - S . len(muffin_patches)=8
kid_patches = image_patch. £ind("kid") 8 : . " .
ViperGPT Generated Code 7 retum stx(1gn(miEEin_patches) //. len(kid-patehes)) (AL tssicnsr: reasoning." Proceedings of
| N = . o»8/2=4 .
s g . - . the IEEE/CVF International
Code LLM ima g p tch 1 g ePa tch(i ge) / y
T ~ EE ; g _patch. £4nd(" pet ) ! Conference on Computer
Query: Drink with zero alcohol » drink_patches= Vision. 2023.
t n result Q »drink_name = ‘tullamore dew’
API S ificati r >alcoholic = 'yes’
ecincation o def execute_command(image): ‘
a Code Execution ¢ image_patch = ImagePatch(image) 1
drink_patches = image_patch.find("drink") bdrink_name = ‘bacardi’
sth(image) -> torch. Tensor: Python Interpreter for drink_patch in drink_patches: »alcoholic = ‘yes’
def extsts(inage, object_name) -> bool: drink_name = drink_patch.simple_query("What is this?")
' + alcoholic = Lim_query(f"Does the {drink_name} have alcohol?")
API Implementation if alcoholic = "no": ’dﬁ““-“a"'e = (o
; return drink_patch valcoholic =lyes!
return None
»drink_name = ‘dr pepper’
‘ »alcoholic = ‘no’

Result: “shiba Inu”
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Unified-10 2

» The first autoregressive multi-modal model that is
capable of understanding and generating image, text,
audio and action.

» Processes all modalities with a single unified
encoder-decoder Transformer, which is made possible
after encoding various inputs and outputs into
sequences of tokens.

» Texts and actions are tokenized using byte-pair
encoding from LLaMA by Meta.

* Images are encoded using pre-trained ViT.

» Audios are encoded up to 4.08 seconds of audio
Into a spectrogram, which is then encoded with a
pre-trained Audio Spectrogram Transformer
(AST).
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Lu, Jiasen, et al. "Unified-1O 2: Scaling Autoregressive Multimodal Models with Vision Language Audio and Action." Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2024.
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The Rise of Large Language Models (LLM)

« Scaled up versions of Transformer architecture, e.g. billions/trillions of parameters
e Typically trained on massive amounts of “general” textual data (e.g. web corpus)

* Training objective is typically “next token prediction”: P(Wyy1 |We, We_4, ..., W7)
» Emergent abilities as they scale up (e.g. chain-of-thought reasoning)

» Heavy computational cost (time, money, GPUSs)

* Larger general ones: “plug-and-play” with few or zero-shot learning 0
 Train once, then adapt to other tasks without needing to retrain = m
« E.g. in-context learning and prompting ‘

* Why do LLMs work so well? What happens as you scale up?

_ _ o Gemini/Bard  ChatGPT/ GPT-4 Claude 3 Llama 3
 Potential explanation: emergent abilities! (Google) (OpenAl) (Anthropic) (Meta)
« An ability is emergent if it is present in larger but not smaller models
» Not have been directly predicted by extrapolating from smaller models

» Performance is near-random until a certain critical threshold, then improves heavily
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Scaling up Transformers

Sca“ng up Transformers $3,768,320 on Google Cloud (eval price)
mmmm

Transformer-Base 12 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)
RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)
GPT-2 48 1600 ? 1.5B 40 GB

Megatron-LM 72 3072 32 8.3B 174 GB 512x V100 GPU (9 days)
Turing-NLG 78 4256 28 17B‘ ? 256x V100 GPU

GPT-3 96 12,288 96 175B 694GB

?
Gopher 80 16,384 128 280B 10.55TB J4096x TPUv3 (38 days)

(Johnson, 2022)
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« With Transformers, language modeling performance improves smoothly as we increase model size, training
data, and compute resources in tandem.

» This power-law relationship has been observed over multiple orders of magnitude with no sign of slowing!

» While scaling is a factor in emergent abilities, it is not the only factor! E.g. new architectures (DeepSeek, as
discussed later), higher-quality data, and improved training procedures, could enable emergent abilities on
smaller models

Behold, a wild pi creature,

foraging in its native land. In

order not to kill it in any other

way, he has set the lfmd ablaze. And after [ 26%
now you hear the voice of your
father, "The man's going to kill into [ 6%
you now. You have not seen me so many: up 6%

Behold, a wild pi creature,

foraging in its native habitat of

mathematical formulas and

computer code! With its infinite precise [ %
digits and irrational [exact |
tendencies, this strange value [ 12%
creature is beloved by true [ 7%

mathematicians and tech decimal | 3%

enthusiasts alike. Approach with digits [ 3%
. op Transformer = o
caution, for attempting to full | 1%

calculate its exact circumference | 0%

times, yet you have heard my voice. out []4%

through || 2%
Transformer =» = .

on |1%

So he is going to make it worse on a
large scale by going to

decimals | 0%

G P T 3 endless | 0%

numerical | 0%

against | 1%

GPT?2 o
| 1%

and

around | 1% never | 0%

https://www.youtube.com/watch?v=eMIx5fFNoYc



https://www.youtube.com/watch?v=eMlx5fFNoYc

GPT4 vs. Gemini

» Supervised learning on large dataset, then RLHF. « Based on a Mixture-of-Experts (MoE) model
* GPT-4 trained on both images and text « Goal: have several models/“experts” work together to

« Discuss humor in images, summarize screenshot text, etc. « solve a problem, each expert may be specialized for a
« GPT-4is "more reliable, creative, and able to handle much  task/purpose

more nuanced instructions than GPT-3.5” « Combination of multiple small Neural networks known
* Much longer context windows of 8,192 and 32,768 tokens  as “Experts” which are trained and capable of handling
* Does exceptionally well on standardized tests particular data and performing specialized tasks.
* No technical details of GPT-4 released  “Gating network” which predicts which response is best

suited to address the request.
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Reinforcement Learning with Human
Feedback (RLHF) and ChatGPT

 RLHF: Technique that trains a “reward model” * ChatGPT is finetuned on GPT-3.5, which
directly from human feedback. IS a series of models trained on a mix of
» Uses the model as a reward function to optimize text and code using instruction tuning
an agent’s policy using reinforcement learning and RLHF
(RL) through an optimization algorithm. « Taken the world by storm!
 Ask humans to rank instances of the agent’s
behavior, e.g. which produced response is better. g oncoe } Large-scle language model pretrainng

l_ GPT-3 Initial _l Instruction tuning

- ; HUMAN PT3Series  Codexintil """ InstructGPT Initil
REWARD pREDICTOR """"""" Code-davinci-001 Instruct-davinci-beta
FEEDBACK
Code-cushman-001 Text-davinci-001
; |

LM + code training then instruction tuning

PREDICTED
REWARD

Code-davinci-002

GPT-3.5 Series l Supervised instruction tuning
OBSERVATION RLHF 1— Text-davinci-002 —l RLHF
RL ALGORITHM i Text-davinci-003 ChatGPT
ACTION (Feng, Garg, Bunnapradist, & Lee, 2024)
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Chain of Thought (CoT) Reasoning

* Chain-of-thought (CoT) - series of Standard Prompting Chain-of-Thought Prompting
intermediate reasoning steps D D ~

. : Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
Shown to Improve LLM performance on tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
CO mplex reason lng tasks tennis balls does he have now? tennis balls does he have now?

* Inspired by human thought process: A: The answer s 11. r
decompose multi-step problems The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to

e Also provides an interpretable window make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
. . . . do they have?
into behavior of the model (how it arrived e )| Gothey naver o mere: P many appes
at an answer, where it goes wrong in its \_ J

reasoning path)

* CoT exploits the fact that deep down in A The answeris 27. A
the model's weights, it knows more about -
the problem than just prompting it to get a answer is 9. o/

response
Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language
models." Advances in neural information processing systems 35 (2022): 24824-
24837.
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Theoretical Properties

Transformers have demonstrated remarkable empirical success but face unresolved theoretical challenges relating to:
¢ Their exact expressive power and limitations.

% Computational complexity and how to handle extremely long sequences.

s Optimization behaviors (loss landscapes, generalization, implicit bias).

¢ Interpretability and attention mechanics not always equaling causal explanation.

¢ Integrating multiple modalities robustly, with quantifiable performance bounds.

Building a rigorous mathematical foundation for these areas is an active field of research, aimed at closing the gap
between the extraordinary practical performance of Transformers and our incomplete theoretical understanding of why
and when they excel.

P Representation Limits: How do Transformers compare to » Masked LM / Next-Token Prediction: Why do these tasks

universal approximators (e.g., RNNs, CNNs)? alone suffice to learn so many language/vision capabilities?
» Positional Encoding: Is sinusoidal or learned encoding » Empirical success vs. theoretical backing — little clarity
fully capturing sequence structure? on*why* it transfers so well to so many downstream tasks.
P Loss Landscape: Highly high-dimensional, and stability P Scaling Laws: Observed empirically, but not proven in
for deep Transformer stacks is not fully understood. general.

P Generalization Bounds: Empirical scaling laws show bigger
data + bigger models = better results, but no rigorous proofs.
P Implicit Biases: Transformers, like other networks, exhibit
hidden inductive biases from gradient descent — yet these
remain partially unexplained.
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