
Bios 740- Chapter 7. Transformer and Attention
Mechanism

Acknowledgement: Many thanks to Mr. Mingchen Hu for preparing some of these slides and to Dr.

Xiao Wang for sharing his slides. I also drew on material from the lecture presentations of Stanford

CS224n, UNC COMP 590/790, and content generated by ChatGPT.

Content

1 Attention Mechanisms

2 Self-Attention and Positional Encoding

3 Transformer Architecture

4 Transformer Applications

5 Theoretical Properties

0 Introduction

Content

1 Attention Mechanisms

2 Self-Attention and Positional Encoding

3 Transformer Architecture

4 Transformer Applications

5 Theoretical Properties

0 Introduction

The Sequence-to-sequence Model
Neural Machine Translation

Stanford

CS224n

Sequence-to-sequence Model
Sequence-to-Sequence Overview
• A general encoder-decoder architecture.

• Encoder: maps input to a neural representation.

• Decoder: generates output from the neural representation.

• When both input and output are sequences: seq2seq model.

Seq2Seq Applications: Sequence-to-sequence
is versatile!
❖ Machine Translation: French ---→English

❖ Summarization: long text ----→ concise summary

❖ Dialogue: previous utterances ---→ next response

❖ Parsing: input text---→ parse tree (as a sequence)

❖ Code Generation: natural language --→ Python code

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

In the visualization, each

pulse from the encoder or

decoder represents an RNN

processing its input and

updating its hidden state

based on current and past

inputs.

Neural Machine Translation
Sequence-to-Sequence as a Conditional Language Model

Like any language model, the decoder predicts the next word in the target sequence Y.

It is conditional because predictions are made based on both:

❖ Previously generated target tokens.

❖The full source sequence X (via the encoder).

This allows the model to generate context-aware translations or responses.

The context vector turned

out to be a bottleneck for

these types of models. It

made it challenging for

the models to deal with

long sentences.

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Limitations of RNNs for Long Sequences
Long-distance dependencies are hard to

learn:

❖ Distant word pairs require O sequence length

steps to interact.

❖ Leads to vanishing or exploding gradients.

RNNs are inherently sequential:

➢ Forward/backward passes require

O(sequence length) dependent operations.

➢ Each hidden state of RNN must be

computed in order.

These challenges motivated the development of

attention-based and transformer models.

Stanford

CS224n

A major solution was proposed in Bahdanau et al. (2014)
and refined by Luong et al. (2015). They introduced a
mechanism called Attention. Attention allows the model
to focus on the most relevant parts of the input sequence
when generating each output token. This led to substantial
improvements in machine translation systems. It laid the
groundwork for modern architectures like Transformers.

Attention: A Key Breakthrough

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Transformer: Encoder and Decoder Layers

Encoder:
❖ Inputs pass through a self-attention layer, allowing each

token to attend to others in the sequence.
❖ Followed by a feed-forward neural network, applied

identically to each position.
Decoder:
❖ Contains a self-attention layer and a feed-forward layer.
❖ Additionally includes an encoder-decoder attention layer to

focus on relevant encoder outputs.
This design enables both dynamic focus and parallelization.

https://jalammar.github.io/illustrated-transformer/

Content

1 Attention Mechanisms

2 Self-Attention and Positional Encoding

3 Transformer Architecture

4 Transformer Applications

5 Recent Trends in Large Language Model (LLM)

6 Theoretical Properties

0 Introduction

Attention Timeline

This timeline highlights the evolution of deep learning
and natural language processing. Starting in the 1990s
with rule-based methods, RNNs, and LSTMs, it
progressed to the introduction of simple attention
mechanisms in 2014.

The Transformer era began in 2017 with the
groundbreaking paper "Attention is All You Need,"
leading to a rapid adoption in NLP with models like
BERT and GPT by 2018. From 2018 to 2020,
Transformers expanded into fields like vision (ViTs) and
protein folding (AlphaFold-2). The generative era began
in 2021-2022 with models like Codex, GPT-X, and
DALL-E.

By spring 2025, Transformers power massive models like
ChatGPT, DeepSeek and open new applications in diverse
areas, with exciting prospects for the future.

(Yang & Hashimoto, 2025)

Word Embeddings in NLP
Before diving into the attention mechanism, recall a common preprocessing step in NLP. Words are typically
represented as dense vectors called word embeddings. These embeddings are stored in an embedding matrix W𝑬,
where d is the embedding dimension and n is the vocabulary size. Embeddings provide the foundation for
queries, keys, and values in attention.

https://www.youtube.com/watch?v=wjZofJX0v4M

https://www.youtube.com/watch?v=wjZofJX0v4M

Word Vector Embedding
• The model tends to settle on a set of embeddings where directions in the space have a kind of

semantic meaning.

• One classical example is that, the difference between vectors of “man” and “woman” is very
similar to that between “king” and “queen”. Consequently, we can simply find the embedding of a
female monarch by taking “king”, adding the difference “woman” – “man” and search such an
embedding.

https://www.youtube.com/watch?v=wjZofJX0v4M

https://www.youtube.com/watch?v=wjZofJX0v4M

Queries, Keys and Values

• Define by 𝐷 = { 𝑘1, 𝑣1 , … , 𝑘𝑚, 𝑣𝑚 } a dataset of 𝑚 tuples of keys and values and denote 𝑞
a query. Then we can define the attention over 𝐷 as 𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 𝑞, 𝐷 = σ𝑖=1

𝑚 𝑎 𝑞, 𝑘𝑖 𝑣𝑖
where 𝑎 𝑞, 𝑘𝑖 𝑣𝑖 ∈ ℝ are scalar nonnegative attention weights.

• The name “attention” derives from the fact that operation pays particular attention to the
terms for which the weight 𝛼 is significant. As such, the attention over 𝐷 generates a linear
combination of values contained in the database.

• To ensure that weights 𝛼(𝑞, 𝑘𝑖) sum up to 1, one can normalize them via 𝛼 𝑞, 𝑘𝑖 =
𝛼 𝑞,𝑘𝑖

σ𝑗 𝛼 𝑞,𝑘𝑗
.

To further ensure that weights are also nonnegative, one can resort to the exponentiation via

softmax operation 𝛼 𝑞, 𝑘𝑖 =
exp(𝑎(𝑞,𝑘𝑖))

σ𝑗 exp(𝑎(𝑞,𝑘𝑗))
.

Queries, Keys and Values: Analogy

• Imagine you’re looking for information on a specific
topic (query) in a library system.

• Each book in the library has a summary (key) that
helps identify if it contains the information you’re
looking for.

• Once you find a match between your query and a
summary, you access the book to get the detailed
information (value) you need.

• Here in attention, we do a “soft-match” across multiple
values. That is, we get into from multiple books
(“Book1 is most relevant, then book2, the book3…”)

Attention Scoring Functions

• We refer to 𝑎 𝑞, 𝑘𝑖 before the softmax
operation as the attention scoring functions. The
mechanism Computing the output of attention
pooling as a weighted average of values, where
weights are computed with the attention scoring
function 𝑎 and the softmax operation.

Nadaraya–Watson Kernel Estimator
• The similarity kernels have already been used in regression and classification via kernel density

estimation.

• At their core, Nadaraya-Watson estimators rely on some similarity kernel 𝛼 𝑞, 𝑘 relating queries 𝑞

to keys 𝑘. Some common kernels include 𝑎 𝑞, 𝑘 = exp(−
1

2
𝑞 − 𝑘

2
) (Gaussian), 𝑎 𝑞, 𝑘 =

1 𝑖𝑓 𝑞 − 𝑘 ≤ 1 (Boxcar) and 𝑎 𝑞, 𝑘 = max(0,1 − | 𝑞 − 𝑘 |) (Epanechikov).

• For example, we can pick key 𝑘 = 0 and will yield following graphs:

Nadaraya–Watson Kernel Estimator

• All of these kernels lead to the equation for regression and classification alike: 𝑓 𝑞 = σ𝑖
𝑎 𝑞,𝑘𝑖

σ𝑗 𝑎 𝑞,kj
v𝑖.

Such Nadaraya-Watson kernel regression is an early precursor of the current attention mechanisms.

Attention Mechanisms: Overview

Attention Mechanisms: Overview

Query: Illustration

https://www.youtube.com/watch?v=eMlx5fFNoYc

• Consider the sentence: A fluffy blue creature roamed the verdant forest.

• Imagine the situation, where each noun like “creature” is asking the question: “Hey, are there any adjectives

sitting in front of me?

• Then the word “blue” would answer: “Yes, I am an adjective and I am in that position!”

• This question can be encoded in the query vector, which has a much smaller dimension than the embedding space.

https://www.youtube.com/watch?v=eMlx5fFNoYc

Key: Illustration

https://www.youtube.com/watch?v=eMlx5fFNoYc

• Keys can be interpreted as potentially answering the queries, which also has a much smaller
dimension than the whole embedding space.

• As an example, the key matrix would map the adjectives like “fluffy” to vectors that are closely
aligned with the query produced by the word “creature”, leading to some large positive dot
products between the query and the key.

https://www.youtube.com/watch?v=eMlx5fFNoYc

Value: Illustration

https://www.youtube.com/watch?v=eMlx5fFNoYc

• Unlike query and key, value vector lives in the same, very high dimensional space as the
embeddings.

• For example, here we add large proportions of the re-scaled value vectors for “fluffy” and “blue” to
the original context-free embedding of “creature”, we get a refined vector that has contextually-
rich meaning, like a “fluffy blue creature”.

https://www.youtube.com/watch?v=eMlx5fFNoYc

Convenience Functions

• To deals with string of variable lengths more easily, one often pad shorter sequences with
dummy tokens “< 𝑏𝑙𝑎𝑛𝑘 >”.

• Masked softmax operation: Since we do not want the attention model to attend to these

blanks, this operation limit σ𝑖=1
𝑛 𝛼 𝑞, 𝑘𝑖 𝑣𝑖 to σ𝑖=1

𝑙 𝛼 𝑞, 𝑘𝑖 𝑣𝑖 where 𝑙 ≤ 𝑛 is the length of
actual sentence.

Illustration: Consider a minibatch of two

examples of size 2 × 4, where their valid

lengths are 2 and 3 respectively:

Scaled Dot-Product Attention
• Scaled Dot-Product Attention is a key component of the

Transformer architecture, widely used in modern deep
learning models such as BERT and GPT. The formula is as
follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘

𝑉

• Scaled Dot-Product Attention possess the following key
advantages:

• Efficiency: It relies on simple matrix multiplications and
scaling, making it highly efficient and suitable for parallel
computation on GPUs/TPUs.

• Scalability: It performs well on large-scale datasets and is
the foundation of many state-of-the-art models.

• Flexibility: It can handle sequences of different lengths, as
the attention mechanism dynamically computes the
relationships between queries and keys.

Additive Attention (Bahdanau Attention)

• Additive Attention, also known as Bahdanau Attention, was introduced in the context of RNN-
based sequence-to-sequence models. It computes the attention weights by passing the
concatenation of the query (Q) and key (𝐾) through a feedforward neural network with a tanh
activation function, followed by a learned weight vector 𝑤𝑣. The attention distribution is obtained
by applying a softmax function to the output of this network. The formula is as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑤𝑣
𝑇 ⋅ tanh 𝑊𝑞𝑄 + 𝑊𝑘𝐾 𝑉

• Additive Attention has certain advantages:

• Flexibility: It can model complex relationships between queries and keys due to the use of a learnable
feedforward network.

• Interpretability: The attention weights are often more interpretable in certain tasks.

• However, the additional parameters and computations compared to Scaled Dot-Product Attention
limits creates computational cost. It is also less suitable for large-scale parallel computation.

Attention: Implementation

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘

𝑉𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑤𝑣
𝑇 ⋅ tanh 𝑊𝑞𝑄 + 𝑊𝑘𝐾 𝑉

Content

1 Attention Mechanisms

2 Self-Attention and Positional Encoding

3 Transformer Architecture

4 Transformer Applications

5 Theoretical Properties

0 Introduction

Self-Attention and Learnable Query

Aspect Self-Attention Learnable Query

Query Definition Q=K=V=X (input data itself) Q is independent and learnable

Input Dependency Input size determines query size Query size is fixed and independent

Flexibility Suitable for variable-length inputs
Suitable when fixed-length output
is needed

Use Case
Typically used for internal
relationships in input data (like
word dependencies)

Often used when fixed-size
representation is needed,
regardless of input size

Example
Transformer encoder, where all
tokens attend to each other

Object detection, where fixed
number of queries are learned to
detect objects

Self-Attention: Motivation
• Suppose the following sentence is an input sentence we want to translate: The animal didn’t cross

the street because it was too tired. What does “it” in the sentence refer to? Is it referring to the
street or the animal? It’s a simple question to a human, but not as simple to an algorithm.

• The self-attention mechanism enables the model to associate “it” with “animal”.

As we are encoding the word “it” in encoder

#5, which is the top encoder in the stack, part

of the attention mechanism was focusing on

"The Animal", and baked a part of its

representation into the encoding of “it”.

The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time.
(jalammar.github.io)

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Self-Attention
• Self-attention: Every token is attending to each other token, that is routing the values in different

proportions to create each output.

• A self-attention block takes 𝑛 inputs, each of dimension 𝑑 × 1, and returns 𝑛 output vectors of the same size.
Given a sequence of input tokens 𝑥1, … , 𝑥𝑛 where any 𝑥𝑖 ∈ ℝ𝑑, its self attention outputs a sequence of same
length 𝑦1, . . , 𝑦𝑛 ∈ ℝ𝑑.

𝑣𝑖 = 𝛽𝑣 + Ω𝑣𝑥𝑖

𝑦𝑖 = ෍
𝑗

𝑎(𝑥𝑗, 𝑥𝑖) 𝑣𝑖

Self-Attention: Details
• The first step is to create three vectors from each of encoder’s input vectors. These vectors are created by

multiplying the embedding by three matrices that we trained during the training process (usually smaller in
dimension than the embedding vector).

The Illustrated Transformer – Jay Alammar – Visualizing machine learning one
concept at a time. (jalammar.github.io)

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Self-Attention: Details
• The second step is to calculate the scoring function and then divide it by the square root of the

dimension of the key vectors.

Self-Attention: Details

• The third step is to multiply each value
vector by the softmax score and sum up
the weighted value vectors.

• The resulting vector is the one we can send
along to the feed-forward neural network.

• In the actual implementation, such
calculation is done in matrix form for faster
processing.

Self-Attention: Matrix Calculation

• Query, key and value matrices are calculated
through matrix multiplication.

𝑄 = 𝑊𝑄𝑋 = 𝛽𝑞1𝑇 + Ω𝑞𝑋

𝐾 = 𝑊𝐾𝑋 = 𝛽𝑘1𝑇 + Ω𝑘𝑋

𝑉 = 𝑊𝑉𝑋 = 𝛽𝑣1𝑇 + Ω𝑣𝑋

𝑌 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇 𝑉

Self-Attention: Equivariance and Invariance

Sketch

Definition Theorem

RNN, CNN, and Self-Attention
RNNs are best for capturing sequential dependencies but struggle with long-range patterns.

CNNs excel at local spatial features and parallel processing but are not well-suited for sequence data.

Self-Attention provides flexibility in capturing long-range dependencies and global contexts but is

computationally expensive for very long sequences.

Aspect RNNs CNNs Self-Attention

Primary Purpose
Sequential data
processing

Spatial data processing
Capturing global
relationships and
dependencies

Data Handling
Temporal and ordered
sequences

Local and spatial features
Long-range and global
dependencies

Model Type
Recurrent neural
networks

Convolutional neural
networks

Attention-based, often in
transformers

Core Mechanism
Recurrence and hidden
states

Convolutions with
filters/kernels

Query-Key-Value
attention mechanism

Comparing RNNs, CNNs and Self-Attention

• RNN: 𝑑 dimensional hidden state

• O(𝑛𝑑2) computational complexity

• 𝑂(𝑛) sequential operations

• 𝑂(𝑛) maximal path length

• CNN: Given a sequence of length 𝑛, kernel size 𝑘 and numbers of input and output channels 𝑑.

• 𝑂(𝑘𝑛𝑑2) computational complexity

• 𝑂(1) sequential operations

• 𝑂
𝑛

𝑘
 maximal path length

• Self-Attention: queries, keys and values are all 𝑛 × 𝑑

• 𝑂(𝑛2𝑑) computational complexity → prohibitively slow and improved by later works

• 𝑂 1 sequential operations

• 𝑂 1 maximal path length → easier to capture long range dependencies

Comparing RNNs, CNNs and Self-Attention

(Johnson, 2022)

From Self-Attention to Transformers

• The basic concept of self-attention can be used to develop a very powerful type of sequence model,
called a Transformer.

• But to make this actually work, we need to develop a few additional components to address some
functional limitations.

• Masked encoding: How to prevent attention lookups into the future? Ensures causality in
autoregressive models.

• Multi-head Attention: Allows querying multiple positions at each layer. Increases model capacity to
capture complex patterns.

• Positional encoding: Address lack of sequence information, especially for images and videos.
Provides sequence order awareness, crucial for text, images, and videos.

The combination of these techniques makes Transformers robust and efficient for sequence modeling.

Masked Attention

 Implementation: Add a mask matrix M:

𝑆𝑐𝑜𝑟𝑒𝑠 =
𝑄𝐾𝑇

𝑑𝑘

, 𝑀𝑎𝑠𝑘 = ቊ
0, 𝑝𝑎𝑠𝑡

−∞, 𝑓𝑢𝑡𝑢𝑟𝑒

𝑀𝑎𝑠𝑘𝑒𝑑 𝑆𝑐𝑜𝑟𝑒𝑠 = 𝑆𝑐𝑜𝑟𝑒𝑠 + 𝑀𝑎𝑠𝑘

(Levine, 2021)

 Problem: During training, self-attention might access future

tokens, leading to data leakage.

 Solution: Use a mask to block attention from future positions.

Multi-Head Attention
• In practice, given the same set of queries, keys and values we may want out model to combine

knowledge from different behaviors of the same attention mechanism, such as capturing
dependencies of various ranges (e.g., shorter-range vs. longer-range) within a sequence. Thus, it
may be beneficial to allow our attention mechanism to jointly use different representation
subspaces of queries, keys and values.

• Instead of performing a single attention pooling, queries, keys, and values can instead be
transformed with ℎ independently learned linear projections. These ℎ projected queries, keys and
values are fed into attention pooling in parallel.

• This design is called multi-head attention, where each of the ℎ attention pooling outputs is a head.

Multi-Head Attention
• Give a query 𝑞 ∈ ℝ𝑑𝑞, a key k ∈ ℝ𝑑𝑘 and a value 𝑣 ∈ ℝ𝑑𝑣, each attention head ℎ𝑖 is computed as ℎ𝑖 =

𝑓 𝑊𝑖
𝑞

𝑞, 𝑊𝑖
𝑘 𝑘, 𝑊𝑖

𝑣 𝑣 ∈ ℝ𝑝𝑣 where 𝑊𝑖
𝑞

∈ ℝ𝑝𝑞×𝑑𝑞, 𝑊𝑖
𝑘 ∈ ℝ𝑝𝑘×𝑑𝑘 and 𝑊𝑖

𝑣 ∈ ℝ𝑝𝑣×𝑑𝑣 are

learnable parameters and 𝑓 is attention pooling such as additive attention or scaled dot product
attention.

• The feed-forward layer is not expecting multiple matrices. Therefore, the output is another linear

transformation via learnable parameters 𝑊𝑜 ∈ ℝ𝑝𝑜×𝑀𝑝𝑣 of concatenation of 𝑀 heads: 𝑊𝑜

ℎ1

…
ℎ𝑀

∈ ℝ𝑝𝑜.

Multi-Head Attention
Multi-head attention expands the model’s ability to focus on different positions, as well as gives the
attention layer multiple “representation subspaces”, thus improving the expressivity of the model.

Multi-Head Attention

Multi-Head Attention: Example
As we encode the word “it”, one attention head is focusing most on “the animal”, while another is focusing on “tired”
-- in a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".

However, once all attention heads are to be considered, things can get started to be harder for interpretation.

Positional Embedding
• Unlike RNNs, which recurrently process tokens of a sequence one-by-one, self-attention ditches sequential

operations in favor of parallel computation.

• However, self-attention by itself does not preserve the order of sequence, that is, it is equivariant to
permutations of the inputs. What should we do to account for the order of words in the input sequence when it
really matters?

• The dominant approach for preserving information about the order of tokens is to represent this to the model
as an additional input associated with each token. These inputs are called positional embedding, and can
either be learned or a fixed a priori.

(Levine, 2021)

Positional Embedding

• The naïve positional encoding would just append 𝑡 to the input: 𝑥𝑡 = 𝑥𝑡
𝑡

. However, it would

not be a great idea, because the absolute position is less important than the relative position.

❖ Therefore, we want to represent position in a way
that tokens with similar relative position will have
similar position encoding.

❖ What about using frequency-based representations?

Positional Embedding: Example

• One typical scheme for fixed positional
encodings are based on sine and cosine
functions.

• Suppose that 𝑋 ∈ ℝ𝑛×𝑑 contains the 𝑑 -
dimensional embeddings for 𝑛 tokens of a
sequence. The positional encoding outputs
𝑋 + 𝑃 using a positional embedding matrix
P ∈ ℝ𝑛×𝑑 of the same shape, whose element
on the 𝑖th row and the (2𝑗)th or (2𝑗 + 1)th
column is given by

 𝑝𝑖,2𝑗 = sin
𝑖

1000
2𝑗
𝑑

, 𝑝𝑖,2𝑗+1 = 𝑐𝑜𝑠
𝑖

1000
2𝑗
𝑑

Positional Embedding: Example
• In the positional embedding matrix 𝑃, rows correspond to positions within a s sequence and

columns represent different positional encoding dimensions.

• In the example below, we can see that the 6th and the 7th columns of positional embedding matrix
have a higher frequency than the 8th and the 9th columns.

Positional Embedding: Example

“even-odd” indicator

“first half-second half indicator” indicator

Positional Embedding

Alternative Positional Embeddings
Vision Transformer
Patch-Based Tokens:

 Image is split into patches and embedded as tokens.

 A 2D coordinate (x, y) is mapped to position

embeddings.

2D Positional Embeddings:
 Often a learnable embedding for each patch index.

 Alternatively, sinusoidal in each spatial dimension,

then combined.

 Why It Works:
 Preserves spatial relationships for tasks like

recognition, detection.

 Vision Transformers handle global and local contexts

effectively.

Learnable Positional Embeddings:
 Treat position embeddings as trainable parameters.

 No mathematical constraint, but less interpretable.

Relative Positional Encoding:
 Encodes the difference between positions.

 Helps with tasks where relative order matters (e.g.,

text generation).

 Rotary Positional Encoding:
 Efficiently integrates positional information into

attention.

 Particularly effective for long-sequence tasks.

Content

1 Attention Mechanisms

2 Self-Attention and Positional Encoding

3 Transformer Architecture

4 Transformer Applications

5 Theoretical Properties

0 Introduction

Why Transformers?

Parallel Computation + Short Path Length:

 Self-attention can handle all tokens in parallel.

 Minimal path length for global dependencies, vital for deep

architectures.

Transformer Dominance in NLP:

 Nearly all state-of-the-art language tasks use Transformer

based models.

 Default approach: ”Grab a large pretrained Transformer”

(BERT, GPT, T5, etc.).

 Vision Transformer (ViT):

 Patch-based input turned into token embeddings.

 Now a go-to model for image recognition, detection, and

segmentation.

Islam, S., Elmekki, H., Elsebai, A., Bentahar, J., Drawel, N., Rjoub, G., & Pedrycz, W. (2024). A

 comprehensive survey on applications of transformers for deep learning tasks. Expert Systems with Applications, 241, 122666.

Why Transformers?

Before Transformers After Transformers

(Bertasius, 2024)

From Attention Mechanism to Transformer
• If we have attention, do we even need recurrent connections?

• Can we transform our RNN into a purely attention-based model?

Citation: 173883+

Neurips 2017

Transformer: A High-Level Look
• Transformer is composed of an encoder and a

decoder.

• The input and output sequence embeddings are added
with positional encoding before being fed into the
encoder and the decoder.

• The encoder is a stack of multiple Transformer layers,
used to transform the text embeddings into a
representation that can support a variety of tasks.

• The decoder is also a stack of multiple Transformer
layers, used to predict the next token to continue the input
text. It also inserts a sub-layer, known as the encoder-
decoder attention.

https://jalammar.github.io/illustrated-transformer/

https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-

works-step-by-step-b49fa4a64f34/

Tokenization and Vocabulary Construction

 Goal:
Convert raw text into model-readable units (tokens).

Common Methods:
 Whitespace splitting (simple but limited).

 Word-level tokenization

(vulnerable to out-of-vocabulary words).

 Subword tokenization (BPE)

(compromise between letters and full words).

Importance: Effective tokenization impacts model

performance.

 Definition: The vocabulary is the set of all tokens recognized
by the tokenizer.
Size:

 Typically a user-defined hyperparameter (e.g., 30k, 50k tokens).
 Larger vocab covers more words but uses more memory.

Handling Rare Words:
 Full-word approach leads to frequent OOV (out-of-vocabulary)

issues.
 Subword approaches store partial words, enabling composition

of unknown words.
 Example: BERT uses a WordPiece vocabulary of 30k tokens.

Whitespace Splitting Example:
 Input: "Hello world!"
 Tokens: ["Hello", "world!"]
 Issue: Punctuation remains

attached to "world!"

Word-Level Example:
 Often attempts to separate punctuation

 from words.
 Tokens: ["Hello", "world", "!"]
 OOV Problem: If "Hello" isn’t in the vocab,

 it becomes. "<UNK>".

BPE:
 Example 1: "unbelievable"
 If "unbelievable" is rare, split into

subwords: Tokens: ["un", "believ", "able"]
 Example 2: "low-frequent-words"
 If "-" is a token, might see: Tokens:

["low", "-", "frequent", "-", "words"]

Illustration of BPE
 Initial Characters: The passage is split into single letters +

whitespace (e.g., for space). Frequencies are tallied.
 Iteration 1: Merge Most Common Pair

❖E.g., merging s and e into the new token se.
❖Token counts for s and e decrease accordingly.
❖ Constraint: Cannot merge across words (no merging if last
char is whitespace).

 Subsequent Iterations:
➢ Continue merging the most frequently adjacent pair, e.g. e
and _, forming e_.
➢Over many iterations, tokens become a mix of letters,
fragments, and common words.

 Vocabulary Growth and Shrink:
 As merges occur, the vocabulary expands with new fragments,

then contracts as merges become less frequent.
 In practice, we stop once we reach a predefined vocabulary

size.
 Real-World Use: Large corpora, punctuation, uppercase

letters all handled as separate input characters, with a final
vocab determined by the token count limit

Prince (2024)

Transformer Layer (Block)

 Input: D × N matrix of word embeddings, where D is the

embedding dimension and N the sequence length.

 Multi-Head Attention:

❖ Each token can attend to every other token.

❖ Output dimension is D × N.

❖ Residual connection: add the original inputs back.

 LayerNorm:

➢ Applied to each column (token) independently.

➢ Normalizes across the embedding dimension.

 Fully Connected Feed-Forward:

✓ Same MLP applied to each column.

✓ Residual connection again.

 Final LayerNorm:

❑ Normalizes outputs across D for each token.

 Result: Output is a D × N matrix with updated token

representations.

Transformer Layer: Residual Connection

• Residual connection is a simple but powerful technique
from computer vision.

• Observation: Deep neural networks are surprisingly bad
at learning the identity function.

• Therefore, directly passing “raw” embeddings to the
next layer would be very helpful!

𝑥𝑙 = 𝑓 𝑥𝑙−1 + 𝑥𝑙−1

• This prevents the network from “forgetting” or
distorting important information as it is processed by
many layers.

Transformer Layer: Layer Normalization

• Problem: Deep neural networks often suffer from internal
covariate shift, where the distribution of inputs to each layer
changes during training, making optimization difficult.

• Solution: Reduce variation by normalizing to zero mean and
standard deviation of one within each layer.

Layer norm is not applied to an entire transformer layer, but just to

the embedding vector of a single token.

Position-wise Feed-Forward Networks
• The position-wise feed-forward

network transforms the representation
at all the sequence positions using the
same MLP. This is why we call it
position-wise.

https://www.youtube.com/watch?v=wjZofJX0v4M

https://www.youtube.com/watch?v=wjZofJX0v4M

Putting it All Together

(Johnson, 2022)

• Self-attention is the only interaction between vectors.

• Layer normalization and MLP work independently per vector.

• The structure is highly scalable and highly parallelizable.

In practice, we often put the layer normalization inside the residual attention,

which tend to give more stable training and is commonly used in practice.

Encoder
• The Transformer encoder consists of multiple identical Transformer layers that process the input

sequence in parallel. Each layer refines the input representation by capturing dependencies across all
positions. (𝑁 = 6 in the paper Attention is all you need).

• The encoder outputs a contextualized representation for each token, which serves as input to the decoder.

The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept
at a time. (jalammar.github.io)

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Encoder: Implementation

Transformer Decoder

Decoder: Masked Self-Attention

• The Transformer decoder is also composed of multiple
layers and generates the output sequence step by step. In
the decoder self-attention, queries, keys and values are
all from the outputs of the previous decoder layer.

• However, each position in the decoder is allowed only
to attend to all positions in the decoder up to that
position. This masked attention preserves the
autoregressive property, ensuring that the prediction
only depends on those output tokens that have been
generated.

Decoder: Cross-Attention
• Cross-attention in the decoder allows it to incorporate

information from the encoder’s output.

• Queries are from the outputs of the decoder’s self-

attention sublayer (decoder’s hidden states).

• The keys and values are from the Transformer

encoder outputs.

• In reality, cross-attention is also multi-headed.

• Such design enables the model to align generated tokens

with relevant input features dynamically.

https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34/

Decoder: Final Layer

• The Linear layer is a simple fully connected

neural network that projects the vector

produced by the stack of decoders, into a much,

much larger vector called a logits vector.

• The softmax layer then turns those scores into

probabilities (all positive, all add up to 1.0).

• The cell with the highest probability is chosen,

and the word associated with it is produced as

the output for this time step.

Decoder: Implementation
To preserve autoregression in the decoder, the masked self-attention specifies a valid length so that any

query only attends to all positions in the decoder up to the query position.

Combine Encoder and Decoder Values:
Animation

Transformer: Putting it All Together

(Levine, 2021)

A Transformer is a sequence of Transformer layers.

Content

1 Attention Mechanisms

2 Self-Attention and Positional Encoding

3 Transformer Architecture

4 Transformer Applications

5 Theoretical Properties

0 Introduction

Transformers are Everywhere Now!

Robotics, Simulations, Physical Tasks
Playing Games

Biology + Healthcare

Transformers are Everywhere Now!

Vision: Generating Images & Video

Audio: Speech + Music

Vision: Analyzing Images & Videos

Text and Language

Categorization of Transformer variants

X-Transformers

Why Transformers?

• Downsides:

• Attention computations are technically 𝑂 𝑁2

• Somewhat more complex to implement (positional encodings, etc.)

• Benefits:

• Much better long-range connections

• Much easier to parallelize

• In practice, can make it much deeper than RNN.

• The benefits seem to vastly outweigh the downsides, and Transformers work much better than RNNs and LSTMs in
many cases. Arguably, Transformer is one of the most important sequence modeling improvements of the past decade.

Why Transformers?

(Levine, 2021)

Pretraining and Fine-Tuning

Definition: Train a model on a large, general-purpose dataset.

Objective:

 Capture grammar, semantics, and world knowledge.

 Develop universal language representations.

Benefits:

 Model gains broad patterns (e.g., BERT, GPT, etc.).

 Reduces the amount of data needed for future tasks.

 Often uses large corpora (Wikipedia, BookCorpus, etc.).

Examples:

 Masked language modeling (BERT).

 Next token prediction (GPT).

Definition: Further training a pretrained model on a smaller,
task-specific dataset.
Goal:

 Leverage general knowledge from pretraining.
 Specialize for a target task (classification, QA, NER, etc.).

Advantages:
 Requires far less data than training from scratch.
 Faster convergence, lower computational cost.
 Often leads to state-of-the-art performance on downstream

tasks.
Process:

 Load pretrained weights, replace final layer with task-specific
output.

 Train on the smaller labeled dataset for a few epochs.

Attention/Transformers for Vision

Idea #1: Add attention to existing CNNs

• Start from standard CNN architecture (e.g. ResNet)

• Add Self-Attention blocks between existing ResNet blocks

Zhang et al, ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al, ”Non-local Neural Networks”, CVPR 2018

Key Idea:
 Introduce long-range self-attention into GANs for image

generation.

 Traditional conv-based GANs rely on spatially local features.

 SAGAN allows any feature location to influence the generation

of high-resolution details.

Results on ImageNet:
 Inception score boosted from 36.8 to 52.52.

 Frechet Inception Distance (FID) reduced from 27.62 to 18.65.

 Visualization shows generator attends to object-like shapes,

not just local patches.

Attention/Transformers for Vision

Idea #2: Replace convolution entirely

Hu et al, “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al, “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019

Beyond Convolutions:

 Convolutions excel at local feature extraction.

 Self-attention is especially beneficial in later layers and long-range

dependencies require content-based interactions (e.g., self-attention, non-

local blocks).

Key question: Can self-attention fully replace spatial convolutions?

 Replacing Convs with Self-Attention:

 Modify ResNet by swapping each spatial convolution for a

self-attention module.

 Gains on ImageNet: outperforms baseline with 12% fewer

FLOPs and 29% fewer parameters.

 On COCO detection, pure self-attention matches baseline

mAP with 39% fewer FLOPs and 34% fewer parameters.

Attention/Transformers for Vision

Unfortunately, the performance is not
satisfactory:

• Lots of tricky details

• Hard to implement

• Only marginally better than ResNets

Attention/Transformers for Vision

Idea #3: Standard Transformer on Pixels

• Treat an image as a set of pixel values, and then
feed it as input to standard Transformer

• Problem: Too much memory usage! An 𝑅 × 𝑅
image requires 𝑅4 elements per attention matrix.
Then for a 128 × 128 image with 48 layers, 16
heads per layer, it would take 768GB for attention
matrices!

Chen et al, “Generative Pretraining from Pixels”, ICML 2020

 Idea: Apply a similar auto-regressive Transformer to pixels
without explicit 2D priors.

 Setup:
 Trained on low-resolution ImageNet in a purely auto-

regressive manner. No 2D convolutions, treats images as 1D
sequences.

 Results on CIFAR-10:
 96.3% accuracy with a linear probe, beating a supervised

Wide ResNet.
 99.0% accuracy when fully fine-tuned, matching top

supervised pretrained models.
Self-Supervised Benchmarks on ImageNet:

 Demonstrates strong learned representations even
without
explicit image patches.

Vision Transformers (ViT)
Idea #4: Standard Transformer on Patches

Dosovitskiy et al, “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale”, ICLR 2021

(Johnson, 2022)

In practice, we take 224x224 input image, divide into 14x14 grid of 16x16 pixel
patches . Each attention matrix then takes around 150 KB.

Vision Transformers (ViT)

• In the field of vision, the reliance on CNN is not
necessary and a pure transformer applied directly can
perform very well on image classification tasks.

• Vision Transformer(ViT) try to do fewest possible
modification by splitting image into patches and
provide the sequence of linear embeddings of these
patches as input.

• Unlike prior works, ViT doesn’t introduce specific
inductive biases into architecture except the initial
patch extraction step. Instead, image is treated as a
sequence of patches and is processed by a standard
Transformer encoder

• Convolutional inductive bias is useful for smaller
datasets; while for larger ones, learning the relevant
patterns is even beneficial.

Vision Transformers (ViT)

B = Base
L = Large
H = Huge

/32, /16, /14 is
patch size;
smaller patch size is
a bigger model
(more patches)

• When trained on ImageNet, ViT models perform worse than ResNets.

• If you pretrain on JFT and finetune on ImageNet, large ViTs outperform large ResNets.

• ViT can make more efficient use of GPU/TPU (tensor processing unit) hardware, as

matrix multiplication is more hardware-friendly than convolution.

Improving ViT: Distillation (DeiT)
Data-efficient Image Transformer (DeiT) is an improved version of the ViT, designed to achieve high performance
with smaller datasets and less computational cost.

DeiT is trained entirely on ImageNet-1k by leveraging knowledge distillation. It introduces a distillation token that
learns from a pre-trained teacher model (e.g., a CNN), allowing the Transformer to benefit from the teacher's soft
labels and achieve better generalization.

Additionally, DeiT also employs advanced data augmentation and efficient training strategies, enabling faster
convergence and competitive performance without the need for external data.

Touvrom et al, “Training data-efficient image transformers & distillation through
attention”, ICML 2021

Scaling (ViT-22B)
Three main modifications to the original ViT:

• Instead of sequentially applying self-attention and
MLP blocks, put them in parallel for additional
parallelization.

• Query/Key normalization to ensure stable gradient.

• Omit bias term for 𝑄𝐾𝑉 projections to accelerate
utilization

Dehghani, Mostafa, et al. "Scaling vision transformers to 22 billion
parameters." International Conference on Machine Learning. PMLR, 2023.

Swin Transformer
Swin Transformer highlights how a carefully adapted Transformer architecture—with local windows, shifting, and

hierarchical stages—can match or exceed CNN performance in classification, detection, and segmentation, paving

the way for broader adoption of Transformers as a universal backbone in computer vision.

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision . 2021.

❖ Hierarchical Feature Representation: Splits the input image into patches and constructs feature maps of

progressively lower resolution. This design enables the model to handle multi-scale visual entities effectively

and to integrate seamlessly with common dense prediction frameworks (e.g., FPN, U-Net).

❖ Shifted Window Partitioning between consecutive layers lets each window see content from neighboring

windows in previous layers, boosting modeling power while keeping efficiency.

Swin Transformer

Strong Performance Across Vision Tasks

❖ Image Classification: Achieves top-tier accuracy on

ImageNet (e.g., 87.3% top-1 with Swin-L).

❖ Object Detection: Improves box AP and mask AP on

COCO, surpassing prior SOTA by a significant margin (e.g.,

+2.7 AP).

❖ Semantic Segmentation: Attains new best mIoU on

ADE20K, showing broad applicability beyond classification.

The shifted windows bridge the windows of the preceding

layer, providing connections among them that significantly

enhance modeling power.

MLP-Mixer: An All-MLP Architecture

Tolstikhin et al, “MLP-Mixer: An all-MLP architecture for vision”,
NeurIPS 2021

Input image is divided into non-overlapping patches –

similar to ViT.

 Each patch is linearly projected, forming a

patches(x)channels table, X.

 MLP-Mixer separates mixing of features into two

kinds of MLP layers:

 Token-Mixing MLP: Operates across patches (rows

of X^⊤).

 Channel-Mixing MLP: Operates across feature

channels (rows of X).

 Each layer is a simple MLP with skip connections

and LayerNorm – repeated L times.

However, its initial result on ImageNet is not very

compelling, which gets better when using JFT for

pretraining. There are many follow-ups to this work.

DETR: Object Detection with Transformers
• DEtection TRansformer (DETR) is a novel object detection framework that simplifies the traditional pipeline by directly

predicting a set of bounding boxes using a Transformer model.

• DETR uses a bipartite matching approach to match predicted boxes to ground-truth boxes. Specifically, it employs the
Hungarian algorithm to find the optimal one-to-one matching between predictions and ground truths, ensuring each
prediction is assigned to a unique ground-truth box.

• The model is then trained to regress the box coordinates and classify objects based on this matching. This end-to-end
approach eliminates the need for hand-designed components like anchors and non-maximum suppression (NMS), making
DETR both simpler and more efficient while achieving competitive performance on object detection tasks.

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

Masked-attention Mask Transformer for
Universal Image Segmentation

A universal image segmentation that outperforms specialized architectures, while still easy to train on every task.

Cheng, Bowen, et al. "Masked-attention mask transformer for universal image
segmentation." Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition. 2022.

❖ Masked attention in decoder to restrict attention to localized

features centered around predicted segments, which can be either

objects or regions depending on specific semantic.

❖ Use multi-scale high-resolution features to help model to segment

small objects/regions.

❖ Optimization improvements such as switching the order of self and

cross attention, making query features learnable and removing

dropouts.

Key Takeaways of ViTs
• ViTs are an evolution, not a revolution. We can still fundamentally solve the same problems as with

CNNs.
• Inductive biases of CNNs might not be as harmful as previously claimed (even in big-data regimes), and they

might even benefit Transformers (e.g., Swin Transformer).
• The flexibility of Transformers is helpful when considering multimodal data.
• Don’t give in to the hype but instead critically evaluate each paper based on the empirical evidence.
• Pay attention to hidden implementation details (e.g., optimization, training schedule, data augmentation, etc.).
• Learn to appreciate simple yet effective ideas.
• Consider the big picture of each paper (e.g., potential future impact of the paper).
• Attention is NOT all you need (but it can still be useful).
• Having said this, currently, the model choice still largely depends on the task that we want to solve.

Han, Kai, et al. "A survey on vision transformer." IEEE transactions on pattern analysis and machine intelligence 45.1 (2022): 87-110.

BERT: Encoder-Only Model
• Bidirectional Encoder Representations from Transformers (BERT) is an encoder-only Transformer design that

uses a vocabulary of 30,000 tokens. Input tokens are converted to 1024-dimensional word embeddings and
passed through 24 transformer layers, each containing a self-attention mechanism with 16 heads. The queries,
keys, and values for each head are of dimension.

• BERT exploits transfer learning. During pretraining, parameters are learned using self-supervision from a
large corpus of text. The goal here is for the model to learn general information about the statistics of
language. In the fine-tuning stage, the resulting network is adapted to solve a particular task using a smaller
body of supervised training data.

Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

BERT: Pretraining

• In the pre-training stage, the network is trained
using self-supervision. The self-supervision
task consists of predicting missing words from
sentences from a large internet corpus.

• Such prediction forces the Transformer
network to understand some syntax. For
example, it may learn that the adjective “red”
is often found before nouns like “house” or
“car” but never before a verb like “scout”.

• It can also learn superficial common sense
about the world. For example, after training,
the model will assign a higher probability to
the missing word “train” before “station” than
it would to the world “peanut”.

• However, the degree of “understanding” this
type of model can ever have is limited.

BERT: Finetuning
• In the fine-tuning stage, the model parameters are adjusted to specialize the network to a particular task.

An extra layer is appended onto the transformer network to convert the output vectors to the desired output format.

• Examples include text classification, word classification and text span prediction.

GPT3: Decoder-Only Model
GPT-3 (Generative Pre-trained Transformer 3):

 Released by OpenAI in 2020, with up to 175B parameters.

 Primarily a decoder-only Transformer for language modeling.

Context-Only Generation:

 Takes in prompt text and generates the next tokens auto-regressively.

 Admits no separate encoder & no bidirectional attention over input tokens.

 Key Strengths:

 Zero-shot and few-shot learning abilities.

 Extremely large scale leads to surprising emergent capabilities.

Training Data:
 499B tokens from diverse sources

 (Common Crawl, WebText2, Books).

Scaling Laws:
 Larger model + more data + more compute = improved

results (Kaplan et al. 2020).

 GPT-3 extends to near trillion parameter regime feasibility.

GPT3: Decoder-Only Model
Standard Transformer Blocks:

 Self-attention layers (causal/masked).

 Feed-forward MLP sub-layer, layer normalization,

residual connections.

https://www.youtube.com/watch?v=wjZofJX0v4M

No Encoder Module:
 Input text is fed directly to the decoder stack (positional

embeddings + token embeddings).

 Output hidden states map to next-token probabilities.

Specifically, GPT3 models the language by constructing an autoregressive language model.

https://www.youtube.com/watch?v=wjZofJX0v4M

Flamingo: a Visual Language Model
 Developed by DeepMind to enable language models to

interpret and generate text grounded in images.
 Extends the idea of large language models (LLMs) into the

visual domain.

Core Architecture:
❖Visual Encoder + Language Model:

 Flamingo uses a CNN or Vision Transformer (ViT) to
embed images.

 Connects to a LLM backbone (e.g., GPT-style) via cross-
attention layers.
❖Perceiver Resampler (DeepMind approach):

 Adapts the visual features into a compact set of tokens fed
into the language model.

 Minimizes overhead when dealing with high-res images.
❖Decoder-Only LM:

 Flamingo extends the LM with cross-attention blocks to
handle image-conditioned text generation.

Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for few-shot learning."
Advances in neural information processing systems 35 (2022): 23716-23736.

ViperGPT
ViperGPT: A novel system for performing reasoning
on visual data.
LLM-Generated Python Code:

 ViperGPT uses a LLM (like GPT) to generate small
Python snippets.

 These snippets call specialized vision functions (e.g.,
detection, segmentation, classification) to gather info.
Execution + Re-evaluation:

 The code runs in a sandbox, returning results to the
LLM.

 The model integrates these results to refine or correct
its approach, forming a loop of reasoning.

Surís, Dídac, Sachit Menon,

and Carl Vondrick. "Vipergpt:
Visual inference via python

execution for

reasoning." Proceedings of
the IEEE/CVF International

Conference on Computer
Vision. 2023.

Architecture Overview:
 Language Model Brain: Proposes code to interpret or

transform image data.

 Vision Backend: Toolset of image-processing APIs for

detection, OCR, bounding boxes, etc.

 Execution Environment: Python interpreter running the

LLM-generated code.

 Feedback Loop: Model reads code outputs, decides next

step (rewrite code, answer, etc.).

Unified-IO 2
• The first autoregressive multi-modal model that is

capable of understanding and generating image, text,
audio and action.

• Processes all modalities with a single unified
encoder-decoder Transformer, which is made possible
after encoding various inputs and outputs into
sequences of tokens.

• Texts and actions are tokenized using byte-pair
encoding from LLaMA by Meta.

• Images are encoded using pre-trained ViT.

• Audios are encoded up to 4.08 seconds of audio
into a spectrogram, which is then encoded with a
pre-trained Audio Spectrogram Transformer
(AST).

Lu, Jiasen, et al. "Unified-IO 2: Scaling Autoregressive Multimodal Models with Vision Language Audio and Action." Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2024.

The Rise of Large Language Models (LLM)
• Scaled up versions of Transformer architecture, e.g. billions/trillions of parameters

• Typically trained on massive amounts of “general” textual data (e.g. web corpus)

• Training objective is typically “next token prediction”: 𝑃(𝑊t+1|𝑊𝑡, 𝑊𝑡−1, … , 𝑊1)

• Emergent abilities as they scale up (e.g. chain-of-thought reasoning)

• Heavy computational cost (time, money, GPUs)

• Larger general ones: “plug-and-play” with few or zero-shot learning

• Train once, then adapt to other tasks without needing to retrain

• E.g. in-context learning and prompting

• Why do LLMs work so well? What happens as you scale up?

• Potential explanation: emergent abilities!

• An ability is emergent if it is present in larger but not smaller models

• Not have been directly predicted by extrapolating from smaller models

• Performance is near-random until a certain critical threshold, then improves heavily

Scaling up Transformers

(Johnson, 2022)

Scaling Laws & Beyond Scaling
• With Transformers, language modeling performance improves smoothly as we increase model size, training

data, and compute resources in tandem.

• This power-law relationship has been observed over multiple orders of magnitude with no sign of slowing!

• While scaling is a factor in emergent abilities, it is not the only factor! E.g. new architectures (DeepSeek, as
discussed later), higher-quality data, and improved training procedures, could enable emergent abilities on
smaller models

https://www.youtube.com/watch?v=eMlx5fFNoYc

https://www.youtube.com/watch?v=eMlx5fFNoYc

GPT4 vs. Gemini
• Supervised learning on large dataset, then RLHF.

• GPT-4 trained on both images and text

• Discuss humor in images, summarize screenshot text, etc.

• GPT-4 is "more reliable, creative, and able to handle much

more nuanced instructions than GPT-3.5”

• Much longer context windows of 8,192 and 32,768 tokens

• Does exceptionally well on standardized tests

• No technical details of GPT-4 released

• Based on a Mixture-of-Experts (MoE) model

• Goal: have several models/“experts” work together to

• solve a problem, each expert may be specialized for a

task/purpose

• Combination of multiple small Neural networks known

as “Experts” which are trained and capable of handling

particular data and performing specialized tasks.

• “Gating network” which predicts which response is best

suited to address the request.

Reinforcement Learning with Human
Feedback (RLHF) and ChatGPT
• RLHF: Technique that trains a “reward model”

directly from human feedback.

• Uses the model as a reward function to optimize

an agent’s policy using reinforcement learning

(RL) through an optimization algorithm.

• Ask humans to rank instances of the agent’s

behavior, e.g. which produced response is better.

(Feng, Garg, Bunnapradist, & Lee, 2024)

• ChatGPT is finetuned on GPT-3.5, which

is a series of models trained on a mix of

text and code using instruction tuning

and RLHF

• Taken the world by storm!

Chain of Thought (CoT) Reasoning

• Chain-of-thought (CoT) - series of

intermediate reasoning steps

• Shown to improve LLM performance on

complex reasoning tasks

• Inspired by human thought process:

decompose multi-step problems

• Also provides an interpretable window

into behavior of the model (how it arrived

at an answer, where it goes wrong in its

reasoning path)

• CoT exploits the fact that deep down in

the model's weights, it knows more about

the problem than just prompting it to get a

response

Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language

models." Advances in neural information processing systems 35 (2022): 24824-
24837.

Content

1 Attention Mechanisms

2 Self-Attention and Positional Encoding

3 Transformer Architecture

4 Transformer Applications

5 Theoretical Properties

Theoretical Properties
Transformers have demonstrated remarkable empirical success but face unresolved theoretical challenges relating to:

❖ Their exact expressive power and limitations.

❖ Computational complexity and how to handle extremely long sequences.

❖ Optimization behaviors (loss landscapes, generalization, implicit bias).

❖ Interpretability and attention mechanics not always equaling causal explanation.

❖ Integrating multiple modalities robustly, with quantifiable performance bounds.

Building a rigorous mathematical foundation for these areas is an active field of research, aimed at closing the gap

between the extraordinary practical performance of Transformers and our incomplete theoretical understanding of why

and when they excel.

 Representation Limits: How do Transformers compare to

universal approximators (e.g., RNNs, CNNs)?

 Positional Encoding: Is sinusoidal or learned encoding

fully capturing sequence structure?

 Loss Landscape: Highly high-dimensional, and stability

for deep Transformer stacks is not fully understood.

 Generalization Bounds: Empirical scaling laws show bigger

data + bigger models = better results, but no rigorous proofs.

 Implicit Biases: Transformers, like other networks, exhibit

hidden inductive biases from gradient descent – yet these

remain partially unexplained.

 Masked LM / Next-Token Prediction: Why do these tasks

alone suffice to learn so many language/vision capabilities?

 Empirical success vs. theoretical backing – little clarity

on*why* it transfers so well to so many downstream tasks.

 Scaling Laws: Observed empirically, but not proven in

general.

References
• Ansar, W., Goswami, S., & Chakrabarti, A. (2024). A Survey on Transformers in NLP with Focus on Efficiency. arXiv preprint arXiv:2406.16893.
• Alammar, J. (2018). The Illustrated Transformer. Retrieved from https://jalammar.github.io/illustrated-transformer/
• Bertasius, G. (2024). Visual Recognition with Transformers [Lecture slides]. COMP 590/790: Visual Recognition with Transformers, Spring 2024.

University of North Carolina at Chapel Hill. Retrieved from https://uncch.instructure.com/courses/49024
• Brock, A., De, S., Smith, S. L., & Simonyan, K. (2021). High-performance large-scale image recognition without normalization. International

Conference on Machine Learning (pp. 1–10). PMLR.
• Feng, S., Garg, D., Bunnapradist, E., & Lee, S. (2024). Overview of Transformers [Lecture slides]. CS25: Transformers United V4, Spring 2024.

Stanford University. Retrieved from https://web.stanford.edu/class/cs25/
• Gao, C., Cao, Y., Li, Z., He, Y., Wang, M., Liu, H., ... & Fan, J. (2024). Global convergence in training large-scale transformers. Advances in Neural Information

Processing Systems, 37, 29213-29284.
• Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (Vol. 196). MIT Press.
• Johnson, J. (2022). Attention [Lecture slides]. EECS 498.008 / 598.008: Deep Learning for Computer Vision, Winter 2022. University of Michigan. Retrieved

from https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/schedule.html
• Jurafsky, D., & Martin, J. H. (2025). Speech and language processing: An introduction to natural language processing, computational linguistics, and speech

recognition with language models (3rd ed.). Online manuscript released January 12, 2025.
• Levine, S. (2021). Transformers [Lecture slides]. CS W182 / 282A: Designing, Visualizing and Understanding Deep Neural Networks, Spring 2021. University

of California, Berkeley. Retrieved from https://cs182sp21.github.io/
• Lin, T., Wang, Y., Liu, X., & Qiu, X. (2022). A survey of transformers. AI open, 3, 111-132.
• Prince, S. J. D. (2023). Understanding deep learning. MIT Press.
• Szałata, A., Hrovatin, K., Becker, S., Tejada-Lapuerta, A., Cui, H., Wang, B., & Theis, F. J. (2024). Transformers in single-cell omics: a review and new

perspectives. Nature methods, 21(8), 1430-1443.
• Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in Neural Information Processing

Systems, 27.
• Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances

in Neural Information Processing Systems, 30.
• Yang, D., & Hashimoto, T. (2025). Transformers [Lecture slides]. CS224N: Natural Language Processing with Deep Learning, Winter 2025. Stanford

University. Retrieved from https://web.stanford.edu/class/cs224n/
• Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2021). Dive into deep learning. arXiv preprint arXiv:2106.11342.

https://jalammar.github.io/illustrated-transformer/
https://uncch.instructure.com/courses/49024
https://web.stanford.edu/class/cs25/
https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/schedule.html
https://cs182sp21.github.io/
https://web.stanford.edu/class/cs224n/

How to succeed in this course?

Practice

Explore

Visualize

Ask

Discuss

	默认节
	Slide 1: Bios 740- Chapter 7. Transformer and Attention Mechanism
	Slide 2: Content
	Slide 3: Content
	Slide 4
	Slide 5: Sequence-to-sequence Model
	Slide 6: Neural Machine Translation
	Slide 7: Limitations of RNNs for Long Sequences
	Slide 8: A major solution was proposed in Bahdanau et al. (2014) and refined by Luong et al. (2015). They introduced a mechanism called Attention. Attention allows the model to focus on the most relevant parts of the input sequence when generating each ou
	Slide 9: Transformer: Encoder and Decoder Layers
	Slide 10: Content

	Attention Mechanisms
	Slide 11: Attention Timeline
	Slide 12: Word Embeddings in NLP
	Slide 13: Word Vector Embedding
	Slide 14: Queries, Keys and Values
	Slide 15: Queries, Keys and Values: Analogy
	Slide 16: Attention Scoring Functions
	Slide 17: Nadaraya–Watson Kernel Estimator
	Slide 18: Nadaraya–Watson Kernel Estimator
	Slide 19: Attention Mechanisms: Overview
	Slide 20
	Slide 21: Query: Illustration
	Slide 22: Key: Illustration
	Slide 23: Value: Illustration
	Slide 24: Convenience Functions
	Slide 25: Scaled Dot-Product Attention
	Slide 26: Additive Attention (Bahdanau Attention)
	Slide 27: Attention: Implementation
	Slide 28: Content

	Self Attention and Positional Encoding
	Slide 29: Self-Attention and Learnable Query
	Slide 30: Self-Attention: Motivation
	Slide 31: Self-Attention
	Slide 32: Self-Attention: Details
	Slide 33: Self-Attention: Details
	Slide 34: Self-Attention: Details
	Slide 35: Self-Attention: Matrix Calculation
	Slide 36: Self-Attention: Equivariance and Invariance
	Slide 37: RNN, CNN, and Self-Attention
	Slide 38: Comparing RNNs, CNNs and Self-Attention
	Slide 39: Comparing RNNs, CNNs and Self-Attention
	Slide 40: From Self-Attention to Transformers
	Slide 41: Masked Attention
	Slide 42: Multi-Head Attention
	Slide 43: Multi-Head Attention
	Slide 44: Multi-Head Attention
	Slide 45: Multi-Head Attention
	Slide 46: Multi-Head Attention: Example
	Slide 47: Positional Embedding
	Slide 48: Positional Embedding
	Slide 49: Positional Embedding: Example
	Slide 50: Positional Embedding: Example
	Slide 51: Positional Embedding: Example
	Slide 52: Positional Embedding
	Slide 53: Alternative Positional Embeddings
	Slide 54: Content

	Transformer Architecture
	Slide 55: Why Transformers?
	Slide 56: Why Transformers?
	Slide 57: From Attention Mechanism to Transformer
	Slide 58: Transformer: A High-Level Look
	Slide 59: Tokenization and Vocabulary Construction
	Slide 60: Illustration of BPE
	Slide 61: Transformer Layer (Block)
	Slide 62: Transformer Layer: Residual Connection
	Slide 63: Transformer Layer: Layer Normalization
	Slide 64: Position-wise Feed-Forward Networks
	Slide 65: Putting it All Together
	Slide 66: Encoder
	Slide 67: Encoder: Implementation
	Slide 68: Transformer Decoder
	Slide 69: Decoder: Masked Self-Attention
	Slide 70: Decoder: Cross-Attention
	Slide 71: Decoder: Final Layer
	Slide 72: Decoder: Implementation
	Slide 73: Combine Encoder and Decoder Values: Animation
	Slide 74: Transformer: Putting it All Together
	Slide 75: Content
	Slide 76: Transformers are Everywhere Now!
	Slide 77: Transformers are Everywhere Now!
	Slide 78: Categorization of Transformer variants
	Slide 79: X-Transformers

	Transformer Applications
	Slide 80: Why Transformers?
	Slide 81: Why Transformers?
	Slide 82: Pretraining and Fine-Tuning

	Transformer Applications: CV
	Slide 83: Attention/Transformers for Vision
	Slide 84: Attention/Transformers for Vision
	Slide 85: Attention/Transformers for Vision
	Slide 86: Attention/Transformers for Vision
	Slide 87: Vision Transformers (ViT)
	Slide 88: Vision Transformers (ViT)
	Slide 89: Vision Transformers (ViT)
	Slide 90: Improving ViT: Distillation (DeiT)
	Slide 91: Scaling (ViT-22B)
	Slide 92: Swin Transformer
	Slide 93: Swin Transformer
	Slide 94: MLP-Mixer: An All-MLP Architecture
	Slide 95: DETR: Object Detection with Transformers
	Slide 96: Masked-attention Mask Transformer for Universal Image Segmentation
	Slide 97: Key Takeaways of ViTs

	Transformer Applications: NLP
	Slide 98: BERT: Encoder-Only Model
	Slide 99: BERT: Pretraining
	Slide 100: BERT: Finetuning
	Slide 101: GPT3: Decoder-Only Model
	Slide 102: GPT3: Decoder-Only Model

	Transformer Applications: Multi-Modality
	Slide 103: Flamingo: a Visual Language Model
	Slide 104: ViperGPT
	Slide 105: Unified-IO 2

	Transformer Applications: LLM
	Slide 106: The Rise of Large Language Models (LLM)
	Slide 107: Scaling up Transformers
	Slide 108: Scaling Laws & Beyond Scaling
	Slide 114: GPT4 vs. Gemini
	Slide 115: Reinforcement Learning with Human Feedback (RLHF) and ChatGPT
	Slide 116: Chain of Thought (CoT) Reasoning
	Slide 120: Content
	Slide 121

	References
	Slide 122: References
	Slide 123: How to succeed in this course?

