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Definition: Generative models learn to generate new data samples resembling a given dataset.

What are Generative Models? 

Major Generative Models:
▶ Explicit Density Models: Estimate probability distributions  (e.g., Gaussian Mixture Models, VAEs).
▶ Implicit Density Models: Generate samples without explicit  density estimation (e.g., Generative Adversarial Network 
(GAN)s, Diffusion Models).



Explicitly Density Models
A simple form of generative learning is to learn a deterministic function

If                    is invertible,   then we have 

How? 



▸ Data: X — Just data, no labels
▸ Goal: Learn some underlying hidden structure or distribution of the data
▸ Examples: clustering, dimension reduction, feature learning, density estimation, etc.

Unsupervised Learning

▸ Generative models are a subset of unsupervised learning, but not all unsupervised learning 
techniques are generative (e.g., k-means, PCA)

PCA



Why GANs and Other Generative Models?
Goodfellow, Ian, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, 
David Warde-Farley, Sherjil 
Ozair, Aaron Courville, and 
Yoshua Bengio. "Generative 
adversarial nets." Advances in 
neural information processing 
systems 27 (2014).



GANs Progression on Face Generation

• Better Quality
• High Resolution

1024*1024 Images generated by a GAN created by NVIDIA. (source, 2018)

(source)

https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf
https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en


Realistic samples for artwork, super-resolution, colorization, etc.
- Learn useful and subtle features for downstream tasks such as classification and object detection.
- Getting insights from high-dimensional data (physics, medical imaging, etc.)
- Modeling physical world for simulation and planning (robotics and reinforcement
learning applications)
- Many more ...

Why Gans?



Stanford cs231n



Emerging Generative Models in 2022-

Stanford cs231n



Definition: A conditional generative model is a type of generative model that generates new data 
samples based on additional context or conditioning information. Mathematically, it models the 
conditional probability distribution, 

What are Conditional Generative Models? 

Applications: Image-to-Image translation, Text-to-Image generation, Super-Resolution, etc.

We can build a conditional generative model from 
other components!



Why Conditional Generative Models?
Outfilling/Missing Data Imputation

Stanford cs231n

← Generated    Input            Generated →
T1w<---------àT2w

• Infant brain MR images (T1w/T2w)
‒ Low tissue contrast and dynamic 
change in appearance



Fashion Design

Additional Applications
Text to Image
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Deep Generative Models
Deep generative models are neural network-based models designed to learn complex data distributions and 
generate realistic synthetic samples that resemble the original training data. These models leverage deep learning to 
approximate the true underlying data distribution.

Common DGMs:
▶ Deep Belief Networks (DBNs)
▶ Deep Boltzmann Machines (DBMs)
▶ Denoising Autoencoders (DAEs)
▶ Generative Stochastic Networks (GSNs)
▶ PixelRNN/PixelCNN
▶ Generative Adversarial Network (GANs)
▶ Variational Autoencoder



Taxonomy of  Deep Generative Models

Diffusion
Models



Stanford cs231n



DBN and DBM
Restricted Boltzmann Machines (RBMs)

DBNs stack multiple RBMs to form a deep probabilistic model.

DBMs extend RBMs into a multi-layer structure, allowing
deeper hierarchical representations.



Denoising Autoencoders (DAE)
A variant of autoencoders that learns robust representations by reconstructing clean inputs from noisy versions.
v The goal is to force the network to capture meaningful structure while ignoring noise.
v Used in image denoising, feature learning, and semi-supervised learning.



Generative Stochastic Networks (GSNs)
•Definition: GSNs are a class of generative models that learn to transform noise into structured data by learning a 
Markov transition function. GSNs sidestep intractable partition functions.
v They generalize Denoising Autoencoders (DAEs) by introducing latent variables into the learning process.
v Training involves learning a transition function that converges to the data distribution



Generative Stochastic Networks (GSNs)

The training objective of GSNs is to minimize the reconstruction error of a denoising autoencoder while ensuring that 
the Markov chain converges to the desired distribution. Additionally, regularization techniques or constraints can be 
applied to stabilize the Markov chain during training. 



Generative Stochastic Networks (GSNs)

Alain, Guillaume, Yoshua Bengio, Li Yao, Jason Yosinski, Eric Thibodeau-Laufer, Saizheng Zhang, and Pascal Vincent. "GSNs: generative stochastic 
networks." Information and Inference: A Journal of the IMA 5, no. 2 (2016): 210-249.



PixelRNN/PixelCNN
Autoregressive models predict the probability of an image as a sequential product of pixel conditionals:
v Each pixel is generated sequentially, conditioned on all previously generated pixels.
v PixelRNN and PixelCNN differ in how they model these dependencies.



Variational Autoencoder



Generative Adversarial Network (GANs)



v GANs and Pixel-based models achieve the 
highest quality but can struggle 
with diversity.

v VAEs and GSNs offer high diversity but 
often produce lower quality outputs.

v DBMs and GSNs allow complex feature 
learning but are harder to train than DBNs.

v PixelCNN is faster and more stable than 
PixelRNN due to parallel processing.

v DAEs and VAEs are better for 
representation learning but are not ideal 
for direct sample generation.

Comparisons among DGMs
Model Quality Diversity Pros Cons

DBN Moderate Moderate Efficient pretraining, useful 
for feature extraction

Not a true generative 
model, lacks flexibility

DBM High High
Captures complex 
dependencies, deep 
representation learning

Hard to train, requires 
MCMC sampling

DAE Moderate Low
Effective for 
representation learning, 
robust to corruption

Not a true generative 
model, lacks explicit 
sampling mechanism

GSN High High No intractable partition 
function, stable training

Requires well-tuned 
Markov transitions

PixelRNN / 
PixelCNN

Very High Low
High-quality samples, 
avoids adversarial training 
issues

Slow sampling (PixelRNN), 
limited long-range 
dependencies (PixelCNN)

GAN Very High Low Generates highly realistic 
images, fast sampling

Mode collapse, unstable 
training

VAE Moderate High
Well-defined latent space, 
meaningful 
representations

Blurry image samples, 
over-regularized latent 
space



Evaluation Metrics
Metric Measures Best for Limitations

Inception Score (IS) Quality & diversity Image GANs Doesn't compare to real 
data

Fréchet Inception 
Distance (FID) Realism & diversity Image GANs Requires feature 

extraction

Precision & Recall Fidelity & coverage Any model Computationally 
expensive

Log-Likelihood Probability assignment VAEs, Flows Doesn't match human 
perception

Human Evaluation Subjective quality Any model Expensive and subjective

Downstream Task 
Performance Utility in real tasks Task-driven models Domain-dependent



Applications of  Generative Models in AI
• Understanding Probability Distributions

• Generative models help represent and manipulate high-dimensional probability distributions across various 
fields.

• Role in Reinforcement Learning (RL)
• Used in model-based RL to simulate possible futures for planning & decision-making.
• Enables learning in imaginary environments, reducing risks of real-world errors.
• Guides exploration by tracking visited states & attempted actions.
• Supports inverse RL for learning from expert demonstrations.

• Handling Missing Data & Semi-Supervised Learning
• Can train with missing data and predict missing inputs.
• Enables semi-supervised learning, reducing the need for labeled data.

• Multi-Modal Learning & Sample Generation
• Allows multiple correct outputs for a single input (e.g., video frame prediction).
• GANs excel in generating realistic samples for various AI applications.



Model Results
Restricted Boltzmann Machine

Denoising Autoencoder

Graph-Structured Network

VAE (generated from noise)

GAN (generated from noise)



Training & Validation Loss
Restricted Boltzmann Machine

Deep Belief Network (multi-layer RBM - classifier only)

Denoising Autoencoder

Graph-Structured Network

Pixel CNN

GAN

Model Test_loss
RBM 0.025985
DBN 0.064641
DAE 0.010321
GSN 0.599898
PIXELCNN 2.370674

train_loss = 
contrastive-divergence 
free-energy difference
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Fully visible belief  network (FVBN)
Definition:  A Fully Visible Belief Network (FVBN) is a directed probabilistic model where the joint 
probability of observed variables is factorized using the chain rule of probability.

Key Features
✅ Autoregressive structure: Each variable is modeled sequentially.
✅ Exact likelihood estimation: Unlike GANs, FVBNs provide explicit probability distributions.
✅ No latent variables: Unlike VAEs or DBNs, FVBNs do not rely on hidden representations.

Applications
📌 Generative Modeling – Used in density estimation tasks.
📌 Sequential Data – Applied in speech and language models.
📌 Autoregressive Image Models – Used in PixelCNN-like architectures.

Probability of the i-th pixel value
given all previous pixels

Complex distribution over pixel
values => Express using a neural
network!



PixelRNN
van den Oord et al. (2016). 

What is PixelRNN?
v A generative autoregressive model that predicts pixels sequentially along spatial dimensions.
v Used for image generation, inpainting, and density estimation.
Pixel-Level Autoregressive Model Color Image

Architecture of PixelRNN
Recurrent Layers (LSTM)
▶ Row LSTM: Processes the image row-by-row.
▶ Diagonal BiLSTM: Processes diagonal bands for improved efficiency.
Output Layer
▶ Uses a softmax layer to predict pixel intensities.

PixelRNN
▶ Uses LSTMs to process images sequentially.
▶ Captures long-range dependencies.
▶ Computationally expensive



PixelRNN

Image completions sampled from a model that was trained on 32x32 ImageNet images 
(van den Oord et al. (2016)).



What is PixelCNN?
▶ A convolution-based generative model for image synthesis.
▶ Trains using autoregressive likelihood estimation.
▶ Faster than PixelRNN due to convolutional structure.
▶ Efficient for real-world image generation tasks.

PixelCNN
Architecture of PixelCNN

▶ Mask A: Ensures pixels don’t see themselves.
▶ Mask B: Allows flow of information across layers. 

Mask A

Mask B



PixelCNN+++



What are Autoencoders?
Autoencoders are neural networks designed for dimensionality 
reduction and feature extraction by compressing and 
reconstructing data. 

They consist of two main components:
v Encoder (e): Maps input x to a low-dimensional latent 

space z, where similar inputs have similar latent 
representations.

       e: X→Z,  z=e(x)  with dim(X)≫dim(Z)
v Decoder (d): Reconstructs x from its latent representation z, 

mapping back to the original input space.
       d: Z→X and "𝑥 = 𝑑 𝑧 	= 𝑑(𝑒 𝑥 ). 

Illustration of autoencoder (source)

https://avandekleut.github.io/vae/


What are Autoencoders?

Reconstructed
input data

Want features to capture meaningful 
factors of variation in data

Train such that features can be used to 
reconstruct original data “Autoencoding” -
encoding input itself



Autoencoder Latent Space and Its Limitations

Illustration of example latent vectors using the MNIST 
dataset (source)

•Trained on MNIST, the autoencoder clusters 
similar digits in the latent space.
•Decoder can reconstruct images from latent 
vectors, but gaps in the latent space cause issues.
•Generative models aim to produce new samples, 
but disjoint latent spaces in autoencoders make 
some sampled latent vectors meaningless.
•Illustration: In the top-left corner of the latent 
space, unseen regions result in unrealistic 
reconstructions.
•Solution: Variational Autoencoders 
(VAEs) introduce structured latent spaces to ensure 
continuity and improve generative performance.
📌 Key Issue: Autoencoders are great for 
representation learning but struggle as generative 
models due to fragmented latent spaces.

https://avandekleut.github.io/vae/


📌 VAE = Autoencoder + Generative Modeling
• Same structure as a traditional autoencoder:

v Encoder: Compresses input into a latent space 
representation, but instead of a single point, outputs a 
probability distribution (Gaussian).

v Decoder: Samples from this distribution and reconstructs 
the input.

📌 Key Difference from Traditional Autoencoders
v Traditional autoencoders map inputs deterministically to a 

single latent vector z=e(x).
v VAEs introduce probabilistic encoding, ensuring smooth and 

structured latent spaces for better generative performance.
✨ Benefit: Enables meaningful interpolation and sampling for 
generating new data! 🚀

Illustration of VAE (source)

What is a Variational Autoencoder?

https://avandekleut.github.io/vae/


Variational Autoencoder as a DGM
VAEs define an intractable density function with latent

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data                        is generated from the distribution of unobserved (latent) representation z

Decoder
network

Choose prior p(z) to be simple, e.g. Gaussian.

Conditional p(x|z) is complex (generates 
image) => represent with neural network



How to train VGE?
Learn model parameters to maximize likelihood of training data

We want to estimate the true parameters
of this generative model given training data

Q: What is the problem with this?
Intractable!

Intractable to compute p(x|z) for every z! Monte Carlo estimation is too high variance

Data Likelihood

Posterior distribution

Solution: In addition to decoder network modeling ,    define additional encoder network

Will see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize.



Decoder network gives pθ(x|z), can
compute estimate of this term 
through sampling (need some trick 
to differentiate through sampling).

How to approximate VGE?

This KL term (between
Gaussians for encoder and 
z prior) has nice closed-
form solution!

pθ(z|x) intractable (saw earlier),
can’t compute this KL term. 
But we know KL divergence
always >= 0.



How to approximate VGE?

Tractable lower bound which we can take gradient of and optimize! 
(pθ(x|z) differentiable, KL term differentiable)

We want to
maximize the
data likelihood. 

Encoder: make approximate
posterior distribution. close to prior

Decoder: reconstruct 
the input data

Variational evidence lower bound (ELBO):

Training: Maximize lower bound



Stochastic Optimization of ELBO

Reparametrization Trick:



A Theoretical Example



Real Examples



# ----- Define the Encoder & Decoder -----
# The encoder outputs two vectors: mu (µ) — the mean of the latent distribution & logvar (logσ2) — the log-variance of 

the latent distribution. Reparameterization Trick is used:	𝑧 = 𝜇 + exp !
" 𝑙𝑜𝑔𝜎

" ⨀𝜖, 𝜖 ∼ 𝑁(0,1)
# The decoder maps the latent vector z back to the original data space. We will use a final Sigmoid to produce pixel 
intensities in [0,1].
class VAE(nn.Module):
    def __init__(self, input_dim, hidden_dim, latent_dim):
        super(VAE, self).__init__()
        # Encoder
        self.enc_fc1 = nn.Linear(input_dim, hidden_dim)
        self.enc_fc2_mu = nn.Linear(hidden_dim, latent_dim)
        self.enc_fc2_logvar = nn.Linear(hidden_dim, latent_dim)
        # Decoder
        self.dec_fc1 = nn.Linear(latent_dim, hidden_dim)
        self.dec_fc2 = nn.Linear(hidden_dim, input_dim)
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()
    def encoder(self, x):
        """Encode the input into latent parameters (mu, logvar)."""
        h = self.relu(self.enc_fc1(x))
        mu = self.enc_fc2_mu(h)
        logvar = self.enc_fc2_logvar(h)
        return mu, logvar
    def reparameterize(self, mu, logvar):
        """Reparameterization trick to sample z."""
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)  # same shape as std
        z = mu + eps * std
        return z

Code: Vanilla VAE



def decoder(self, z):
        """Decode the latent vector into reconstructed input."""
        h = self.relu(self.dec_fc1(z))
        x_recon = self.sigmoid(self.dec_fc2(h))
        return x_recon

    def forward(self, x):
        """Forward pass: encoder -> reparam -> decoder."""
        mu, logvar = self.encoder(x)
        z = self.reparameterize(mu, logvar)
        x_recon = self.decoder(z)
        return x_recon, mu, logvar

# ----- Define the loss function -----
# The total loss is the sum of Reconstruction Loss: Typically we use Binary Cross Entropy between the reconstructed 
image and the original image (scaled to [0,1]) and KL Divergence Loss: Encourages the approximate posterior qϕ(z∣x) to 
be close to the prior p(z)=N(0,I).
def loss_function(x_recon, x, mu, logvar):
    # Reconstruction loss (assuming x, x_recon in [0, 1])
    bce = nn.functional.binary_cross_entropy(
        x_recon, x, reduction='sum'
    )  # sum over all pixels
    # KL Divergence
    # KL(N(mu, sigma^2) || N(0,1))
    # = 0.5 * sum(exp(logvar) + mu^2 - 1 - logvar)
    kl = 0.5 * torch.sum(torch.exp(logvar) + mu**2 - 1.0 - logvar)
    return bce + kl

Code: Vanilla VAE



Strengths & Limitations
📌 Key Idea:
Ø Adds a probabilistic spin to traditional autoencoders, enabling data generation.
Ø Defines an intractable density, requiring variational inference to derive and optimize a lower bound 

(ELBO).
📌 Pros:
✔ Principled generative approach based on probabilistic modeling.
✔ Interpretable latent space enables meaningful structure in representations.
✔ Inference of q(z∣x) allows feature extraction for other tasks.
📌 Cons:
❌ Optimizes a lower bound on likelihood, which may not be an ideal evaluation metric.
❌ Lower sample quality compared to PixelRNN/PixelCNN.
❌ Blurry reconstructions compared to GANs, which generate sharper images.
📌 Active Research Areas:
🔹 Flexible Approximate Posteriors: Moving beyond diagonal Gaussian assumptions to richer models 
like Gaussian Mixture Models (GMMs) or Categorical Distributions.
🔹 Disentangled Representations: Learning independent latent factors for better interpretability.
🔹 Improving Training Objectives: Hybrid models incorporating adversarial learning (VAE-GANs).
🚀 Future Directions: Enhancing sample quality while retaining VAE’s structured latent space!
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“This (GANS), and the variations that are now 
being proposed is the most interesting idea in the 

last 10 years in ML, in my opinion”
–Yann LeCun



What is GAN? 
Problem: 
v We want to sample from a complex, high-dimensional 

training distribution.
v There is no direct way to explicitly learn or model the data 

distribution.
Solution:
Ø Instead of learning the distribution explicitly, GANs learn a 

transformation.
Ø Start by sampling from a simple distribution (e.g., 

Gaussian noise).
Ø Train a neural network to transform the simple distribution 

into the training data distribution.
Key Idea:
ü GANs learn to generate new samples indirectly through 

adversarial training.
ü The model never explicitly estimates the probability 

density function of the data.

Output: Sample from
training distribution

Input: Random noise

Objective: generated
images should look “real”

Use a DN
to tell whether 
the generate image 
is within data
distribution 
(“real”) or not



Generative Vs Discriminative Models
Generative Models:
▶ Can generate new data samples resembling real data.
▶ Example: GANs generate realistic images that resemble real ones.
Discriminative Models:
▶ Focus on classification by distinguishing between different categories.
▶ Example: A decision tree can classify dogs and cats but cannot generate them.



Overview of  GAN Training
Discriminator Network: Tries to distinguish between real and  fake images.
Generator Network: Tries to fool the discriminator by generating  real-looking images.
Training Process: Both networks are trained jointly in a minimax  game.



GAN Training

Instead: Consider a different objective



GAN Algorithms



Alternating Training for GANs
GAN Training Process (Alternating Phases):
1. Discriminator Training: Trains for one or more epochs while the generator remains unchanged. It learns to 
differentiate real from generated data, adapting to the generator’s flaws.
2. Generator Training: Trains for one or more epochs while the discriminator remains unchanged. This 
prevents the generator from chasing a moving target.

Training Dynamics:
v As the generator improves, the discriminator struggles to distinguish real from fake data.
v A perfect generator results in a discriminator with 50% accuracy (random guessing).
v Overtraining can degrade performance, leading to unstable convergence where the generator receives 

meaningless feedback.



Challenges in GAN Training
▶ Hyperparameter Sensitivity: GANs are sensitive to learning rates, batch sizes, and architectural choices.

▶ Mode Collapse: The generator produces limited diversity.

▶ Training Instability: The minimax optimization is difficult to balance.

▶ Vanishing/Exploding Gradients: The discriminator can become too strong or weak, leading to poor gradients.

▶ Non-Convergence: The model oscillates instead of converging.



Hyperparameter Sensitivity
1. Adjust Learning Rates Carefully
v Learning Rate (α): Too high → instability, Too low → slow convergence.
v Two-Timescale Update Rule (TTUR): Use a smaller learning rate for the generator than the discriminator to 

balance training.

2. Tune Adam Hyperparameters
Ø Standard settings (β1=0.9, β2=0.999) can lead to oscillations.
Ø For GANs, reducing β1 to 0.5 improves stability. 

3. Normalize Inputs and Use Spectral Normalization
ü Normalize training images between [−1,1] instead of [0,1] (for Tanh activation).
ü Use Spectral Normalization on the discriminator to control weight magnitudes.

4. Improve Loss Functions
o Wasserstein Loss (WGAN): Uses Earth-Mover distance for better gradient behavior.
o Gradient Penalty (WGAN-GP): Adds stability and prevents exploding gradients:

5. Use Progressive Training
q Start with low-resolution images, gradually increasing resolution (used in Progressive Growing GANs).
q Helps GAN learn simple features first before complex details.



Hyperparameter Sensitivity
6. Apply Regularization Techniques
•Batch Normalization: Helps control variance, but can cause mode collapse in GANs.
•Instance Normalization: Often more stable than batch normalization.
•Dropout in Discriminator: Helps prevent overfitting.

7. Monitor Convergence and Use Early Stopping
•Track GAN metrics (FID, Inception Score) instead of just loss values.
•Avoid overtraining: If the discriminator gets too strong, freeze it temporarily.

8. Use Larger Batch Sizes
•GANs often benefit from larger batch sizes (e.g., 128–512) to stabilize updates.
•Gradient accumulation can be used if GPU memory is limited.

9. Data Augmentation
•Apply transformations (rotation, flipping, color jitter) to make training more robust.
•Prevents the discriminator from memorizing training data.

10. Experiment with Alternative Architectures
•Self-Attention GANs (SAGAN): Improves global structure modeling.
•BigGAN: Uses larger batch sizes and orthogonal regularization for stability.



Mode Collapse
Mode Collapse in GANs refers to a common failure mode where 
the generator fails to capture the full diversity of the data distribution 
and produces limited variations of samples. Instead of generating a 
wide range of outputs, it collapses to generating a few or even a single 
type of sample repeatedly.
Why Does Mode Collapse Occur?
v Imbalanced Generator-Discriminator Learning
v Training Instability
v Lack of Diversity-Promoting Mechanisms

1.  

Illustration of example monotonous output. 
(source)

Effects of Mode Collapse
v Reduced Sample Diversity → Poor representation of the real dataset.
v Low-Quality Generation → Outputs look repetitive and lack variety.
v Unreliable Model → The generator fails to generalize.

https://neptune.ai/blog/gan-loss-functions


Techniques to Mitigate Mode Collapse
1.Minibatch Discrimination

Encourages diversity by comparing samples in each batch.
2.Feature Matching

Instead of just fooling the discriminator, the generator learns to match feature statistics of real data.
3.Wasserstein GAN (WGAN)

Uses the Earth Mover (Wasserstein) distance to stabilize training and avoid collapsing to few modes.
4.Unrolled GANs

Allows the generator to anticipate discriminator updates, preventing it from getting stuck in mode collapse.
5.Mutual Information Regularization

Forcing the generator to learn meaningful latent representations that generate diverse outputs.
.

More details of example GAN suffering mode collapse: https://neptune.ai/blog/gan-failure-modes 

https://neptune.ai/blog/gan-failure-modes


The taxonomy of  the recent GANs



Different GANs 

Model Stability Mode Collapse Convergence Sample 
Quality

Special 
Features

GAN Low High Unstable Medium Baseline

LSGAN Medium Medium More stable Medium Least squares 
loss

WGAN High Low More stable High Wasserstein 
distance

WGAN-
GP Very High Very Low Very stable Very High Gradient 

Penalty

cGAN Medium Medium Stable High Class 
conditioning

StyleG
AN High Low Stable Very High Style control



Timeline of  GAN architectures

Complexity in blue stream refers to size of the architecture and computational cost such as batch size. Mechanisms 
refer to the number of types of operations (e.g., convolution, deconvolution, self-attention) used in the architecture (e.g., 
FCGAN uses fully connected layers for both discriminator and generator. In this case, the value for mechanisms is 1).



Loss-variant GANs



GAN-related Loss Functions
GANs aim to approximate the real data distribution                      using a generator network               , where      
                               is drawn from a simple prior distribution.
▶ The training process is driven by a discriminator D(x), which distinguishes real from generated samples.
▶ The loss function should measure the divergence between                      and  , where                is the 
distribution of generated samples

Minimax Loss: In the original GANs, the generator tries to minimize the following function while the discriminator 
tries to maximize it:
	 min
	 "

max
#

𝑉(𝐷, 𝐺) = 𝐸$ log 𝐷 𝑥 + 𝐸%[log(1 − 𝐷(𝐺 𝑧 ))] 
The formula derives from the cross-entropy between the real and generated distributions. 

For a given x, the optimal discriminator is given by

Thus, minimizing the GAN objective is equivalent to minimizing the Jensen-Shannon divergence as follows:



Minimax Loss
The Standard GAN loss function can further be categorized into two parts: Discriminator loss and Generator 
loss. The diagram below summarizes how we train the discriminator and the generator using the corresponding 
gradient.

Non-Saturating GAN Loss



f-divergence 



Least Squares GAN (LSGAN)
• Objective: Improve stability and quality of GAN training by replacing standard binary cross-entropy 

loss with least squares loss.
• Proposed by: Mao et al. (2017) in the paper "Least Squares Generative Adversarial Networks”
• Key Motivation: Standard GANs suffer from vanishing gradients when the discriminator becomes 

too confident. Least squares loss provides stronger gradients and better sample quality.
In LSGAN, the discriminator is trained with the following least squares loss:

In LSGAN, the generator is trained to minimize:

v LSGAN minimizes the Pearson χ² divergence, making it more stable than standard GANs.
v Compared to Jensen-Shannon divergence (used in standard GANs), χ² divergence is more sensitive 

to small differences in distributions.
v LSGAN penalizes fake samples more aggressively, which helps avoid mode collapse.

Minimizing LSGAN loss is equivalent to minimizing the Pearson χ² divergence.



Wasserstein GAN (WGAN)

For the special case of p = 1, the p-Wasserstein metric is also known as the Monge-Rubinstein metric, or the 
earth mover distance.
The 1-Wasserstein metric can be expressed as (Villani, 2008),

This expression of 1-Wasserstein metric is computationally convenient, which is used in the construction 
of Wasserstein generative adversarial networks (WGAN) (Arjovsky et al., 2017).



Training  WGAN
Critic (Discriminator) Loss:

Generator Loss:

Training Process:
1. Update the critic D multiple times per generator update.
2. Compute Wasserstein distance using the critic’s output.
3. Update generator G to minimize the critic’s output.

Methods to Enforce Lipschitz Constraint:
Weight Clipping (Original WGAN): Gradient Penalty (WGAN-GP):



WGAN vs WGAN-NP



Progressive GAN (PGAN)
▶ Progressive GAN (PGAN) is a technique for progressive growth of layers in both the generator and discriminator.
▶ Introduced by Karras et al. (2017) for high-resolution image synthesis.
▶ Allows training GANs stably at resolutions up to 1024×1024.

▶ Works by starting small and growing larger over training iterations.

Progressive Growing Mechanism
▶ Training begins with low-resolution images (e.g., 4×4).
▶ New layers are added progressively to both generator and
discriminator.
▶ Old layers remain trainable, allowing smooth transition.
▶ Uses smooth transition (fade-in layers) when adding new
resolutions.

Architecture of Progressive GAN
▶ Generator and Discriminator start with small networks (4×4).
▶ New convolutional layers are added progressively to increase
resolution.
▶ Uses skip connections to stabilize training.
▶ Mini-batch standard deviation is used to improve diversity.



import torch
import torch.nn as nn
import torchvision.models as models

# ----- Define Hyperparameters ---
lr = 0.0002       # Learning rate
z_dim = 64        # Dimensionality of the noise vector
image_dim = 28*28 # 784 for MNIST (28 x 28)
hidden_dim = 128  # Hidden layer dimensionality for both Generator and Discriminator
batch_size = 128
epochs = 50       # number of epoches

# ----- Define the Generator -----
# A fully connected (MLP) generator that takes a random noise vector z and outputs a 28x28 image (784-dimensional 
vector). We apply a Tanh activation to the final layer to constrain the pixel values between −1 and 1. 
class Generator(nn.Module):
    def __init__(self, z_dim, hidden_dim, out_dim):
        super(Generator, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(noise_dim, hidden_dim),
            nn.ReLU(True),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU(True),
            nn.Linear(hidden_dim, out_dim),
            nn.Tanh()
        )
        
    def forward(self, x):
        return self.net(x)

Code: Vanilla GAN



import torch
import torch.nn as nn
import torchvision.models as models

# ----- Define the Discriminator -----
# A fully connected (MLP) discriminator that takes a 784-dimensional vector (flattened 28x28 image) and outputs a 
single probability (real vs. fake). We apply a Sigmoid at the end to interpret the output as a probability.
class Discriminator(nn.Module):
    def __init__(self, in_dim, hidden_dim):
        super(Discriminator, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(in_dim, hidden_dim),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(hidden_dim, hidden_dim),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(hidden_dim, 1),
            nn.Sigmoid()
        )
    def forward(self, x):
        return self.net(x)

# -----  Instantiate Model and Optimizers  -----
# Initialize generator and discriminator
gen = Generator(z_dim, hidden_dim, image_dim).to(device)
disc = Discriminator(image_dim, hidden_dim).to(device)
criterion = nn.BCELoss() # Binary Cross Entropy loss
# Optimizers (use Adam for both)
optimizer_gen = optim.Adam(gen.parameters(), lr=lr, betas=(0.5, 0.999))
optimizer_disc = optim.Adam(disc.parameters(), lr=lr, betas=(0.5, 0.999))

Code: Vanilla GAN



Controllable Generation and Conditional GAN

Illustration of example to generate a breed of dog (source)

Most of the practical applications require the ability to sample a 
conditional distribution, like:

Next frame prediction. 
“in-painting”,
segmentation,
style transfer.

This would in particular address some of the shortcomings of 
unconditional GANs. 

▶ CGAN is a supervised extension of GANs where the generator and discriminator receive additional information.
▶ Allows generating samples based on specific conditions.

https://avandekleut.github.io/vae/


CGAN
The CGAN proposed by Mirza and Osindero (2014) consists of parameterizing both G and D by a conditioning 
quantity Y.

	
This adds semantic meaning to latent space manifold and provides more control in the types of output generated by 
the generator. 

Training Algorithm:



▶ Pix2Pix is a supervised image-to-image translation model  based on cGANs.
▶ Introduced in Isola et al. (2017) for tasks like sketch-to-photo, satellite-to-map, and more.

Pix2Pix

Pix2Pix Objective:

Pix2Pix Generator: U-Net
▶ The generator is based on a U-Net architecture, using 
an encoder-decoder structure with skip connections.
▶ The encoder extracts deep features while the decoder
reconstructs the image.
▶ Skip connections help preserve fine-grained details.

Pix2Pix Discriminator: PatchGAN
▶ Uses a convolutional PatchGAN discriminator instead of a
full-image classifier.
▶ PatchGAN classifies small image patches instead of the 
entire image.
▶ Helps focus on local texture realism and prevents blurriness.

Training Algorithm



Application of  CGANs

https://arxiv.org/pdf/1611.07004.pdf 

https://arxiv.org/pdf/1611.07004.pdf


Application of  CGANs

http://arxiv.org/pdf/1612.03242 

Text to image synthesis 

Comparison of StackGAN (stacked conditional 
GAN) and a one-stage GAN for generating 256×256 
images. (a) Given text descriptions, Stage-I of 
StackGAN sketches rough shapes and basic colors 
of objects, yielding low-resolution images. (b) 
Stage-II of StackGAN takes Stage-I results and text 
descriptions as inputs, and generates high-resolution 
images with photo-realistic details. (c) Results by a 
vanilla 256×256 GAN which simply adds more 
upsampling layers to state-of-the-art GAN-INT-CLS 
[26]. It is unable to generate any plausible images of 
256×256 resolution.

http://arxiv.org/pdf/1612.03242


import torch
import torch.nn as nn

# ----- Define Hyperparameters ---
lr = 0.0002       # Learning rate
z_dim = 64        # Dimensionality of the noise vector
image_dim = 28*28 # 784 for MNIST (28 x 28)
hidden_dim = 128  # Hidden layer dimensionality for both Generator and Discriminator
batch_size = 128
epochs = 50       # number of epoches
# ----- Define the Generator -----
# We concatenate [z, label_onehot] into a single vector of size z_dim + label_dim before passing through an MLP. The 
output is a flattened 28x28 image (size 784), which we squish to [−1,1] using Tanh.
class Generator(nn.Module):
    def __init__(self, z_dim, label_dim, hidden_dim, out_dim):
        super(Generator, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(noise_dim, hidden_dim),
            nn.ReLU(True),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU(True),
            nn.Linear(hidden_dim, out_dim),
            nn.Tanh()
        )
    def forward(self, x):
        # labels: (batch_size, label_dim)
        # z: (batch_size, z_dim)
        x = torch.cat([z, labels], dim=1)  # Concatenate noise + label
        return self.net(x)

Code: Conditional GAN



import torch
import torch.nn as nn

# ----- Define the Discriminator -----
# We concatenate [image, label_onehot] into a single vector of size image_size + label_dim before passing through an 
MLP. The final output is a single probability (real or fake), obtained via Sigmoid. 
class Discriminator(nn.Module):
    def __init__(self, in_dim, label_dim, hidden_dim):
        super(Discriminator, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(in_dim + label_dim, hidden_dim),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(hidden_dim, hidden_dim),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(hidden_dim, 1),
            nn.Sigmoid()
        )
    def forward(self, x, labels):
        # x: (batch_size, image_size)
        # labels: (batch_size, label_dim)
        x = torch.cat([x, labels], dim=1)  # Concatenate image + label
        return self.net(x)

# -----  Instantiate Model and Optimizers  -----
gen = Generator(z_dim, label_dim, hidden_dim, image_size).to(device)
disc = Discriminator(image_size, label_dim, hidden_dim).to(device)
criterion = nn.BCELoss()
optimizer_gen = optim.Adam(gen.parameters(), lr=lr, betas=(0.5, 0.999))
optimizer_disc = optim.Adam(disc.parameters(), lr=lr, betas=(0.5, 0.999))

Code: Conditional GAN



Cycle GAN to Transfer Image Domains



Cycle GAN
▶ CycleGAN is an unsupervised image-to-image translation method.

▶ Unlike Pix2Pix, it does not require paired data.
▶ Uses two generators and two discriminators for learning mappings between two domains.
▶ Useful for photo enhancement, style transfer, and domain adaptation.  
vConvert an image from one representation to another.
vCapture characteristics of one image domain and figure out how these characteristics could be translated into 

the other domain.
vTwo mapping G : X → Y and F : Y → X. Two discriminators: 𝐷! and 𝐷".

Encourage G to generate images similar to images in domain Y and 𝐷& to 
distinguish G(x) from y.

𝐿"'( 𝐺, 𝐷& , 𝑋, 𝑌
= 	𝔼)∼+!"#"()) 𝑙𝑜𝑔𝐷& 𝑦 + 𝔼$∼+!"#"($) 𝑙𝑜𝑔(1 − 𝐷& 𝐺(𝑥) )

Similarly, for F, we also have 𝐿"'( 𝐹, 𝐷., 𝑋, 𝑌 . 



Consistency Loss
• Need extra regularization to make sure mapping function is cycle-consistent, (capable of mapping 

the input images to any subsets of images in the target domain), i.e., x → G(x) → F(G(x)) ≈ x.

• Cycle consistency loss: 𝐿!"! 𝐺, 𝐹 = 	𝔼#∼%7898(#) 𝐹 𝐺 𝑥 − 𝑥
(
+

𝔼"∼%7898(") 𝐺 𝐹 𝑦 − 𝑦
(

• The full objective: L 𝐺, 𝐹, 𝐷), 𝐷* = 𝐿+,- 𝐺, 𝐷*, 𝑋, 𝑌 + 𝐿+,- 𝐹, 𝐷), 𝑋, 𝑌 .



Cycle GAN Example Result

Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. ”Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, in IEEE International 
Conference on Computer Vision (ICCV), 2017



Cycle GAN Example Result

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017



Tips to improve GAN performance
• Change the cost function for a better optimization goal.

• Add additional penalties to the cost function to enforce constraints.

• Avoid overconfidence and overfitting.

• Better ways of optimizing the model.

• Add labels (Conditional GAN).

• More details and other implementation tips: https://towardsdatascience.com/gan-ways-to-improve-

gan-performance-acf37f9f59b 

https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b


# The key idea is to learn two translation mappings 
between two domains X and Y without requiring paired 
examples.
# ----- Define Residual Blocks -----
class ResidualBlock(nn.Module):
    """Residual Block with instance normalization."""
    def __init__(self, channels):
        super(ResidualBlock, self).__init__()
        self.block = nn.Sequential(
            nn.ReflectionPad2d(1),
            nn.Conv2d(channels, channels, kernel_size=3, 
stride=1),
            nn.InstanceNorm2d(channels),
            nn.ReLU(True),

            nn.ReflectionPad2d(1),
            nn.Conv2d(channels, channels, kernel_size=3, 
stride=1),
            nn.InstanceNorm2d(channels)
        )
    def forward(self, x):
        return x + self.block(x)

# - Define ResNet-based Generators (G: X → Y, F: Y → X)--
class GeneratorResNet(nn.Module):
    """
    Generator that transforms input images (domain X to 
domain Y or vice versa).
    Uses several downsampling layers, residual blocks, and 
upsampling layers.
    """
    

Code: Cycle GAN
def __init__(self, in_channels, out_channels, n_res_blocks=6, 
ngf=64):
        super(GeneratorResNet, self).__init__()
        # Initial convolution block
        model = [nn.ReflectionPad2d(3),
            nn.Conv2d(in_channels, ngf, kernel_size=7, stride=1),
            nn.InstanceNorm2d(ngf),
            nn.ReLU(True)]
        # Downsampling
        curr_dim = ngf
        for _ in range(2):
            model += [nn.Conv2d(curr_dim, curr_dim*2, kernel_size=3, 
stride=2, padding=1),
                nn.InstanceNorm2d(curr_dim*2),
                nn.ReLU(True)]
            curr_dim *= 2
        # Residual blocks
        for _ in range(n_res_blocks):
            model += [ResidualBlock(curr_dim)]
        # Upsampling
        for _ in range(2):
            model += [nn.ConvTranspose2d(curr_dim, curr_dim//2, 
kernel_size=3, stride=2, padding=1, output_padding=1),     
nn.InstanceNorm2d(curr_dim//2),nn.ReLU(True)]
            curr_dim //= 2
        # Output layer
        model += [nn.ReflectionPad2d(3), nn.Conv2d(curr_dim, 
out_channels, kernel_size=7, stride=1), nn.Tanh()]
        self.model = nn.Sequential(*model)

    def forward(self, x):
        return self.model(x)



# ----- Define the Discriminator -----
class Discriminator(nn.Module):
    """
    PatchGAN discriminator: tries to classify each NxN patch in the image
    as real or fake. Output is a feature map of "realness" scores.
    """
    def __init__(self, in_channels=3, ndf=64):
        super(Discriminator, self).__init__()
 # A small patch-based ConvNet
        model = [
            nn.Conv2d(in_channels, ndf, kernel_size=4, stride=2, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(ndf, ndf*2, kernel_size=4, stride=2, padding=1),
            nn.InstanceNorm2d(ndf*2),
            nn.LeakyReLU(0.2, inplace=True),

            nn.Conv2d(ndf*2, ndf*4, kernel_size=4, stride=2, padding=1),
            nn.InstanceNorm2d(ndf*4),
            nn.LeakyReLU(0.2, inplace=True),

            # Last convolution
            nn.Conv2d(ndf*4, 1, kernel_size=4, stride=1, padding=1)
            # No Sigmoid here, we use BCEWithLogitsLoss
        ]
        self.model = nn.Sequential(*model)

    def forward(self, x):
        return self.model(x)

Code: Cycle GAN
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Imaging Synthesis

Y. Pan, M. Liu, C. Lian, Y. Xia, and D. Shen. MICCAI, 2019
Y. Pan, M. Liu, C. Lian, T. Zhou, Y. Xia, and D. Shen. MICCAI, 2018
Y. Pan, M. Liu, C. Lian, L. Yue, S. Xiao, Y. Xia, and D. Shen. ISMRM, 2019

Cross-Modal Image Synthesis via Deep Learning



Cross-Modal Image Synthesis for Diagnosis

Diagnosis with complete multi-modal images

MRI PET

F

Label

MRI

F

PET

Diagnosis with incomplete multi-modal images 

• Multi-modal imaging data for disease diagnosis (e.g., MRI and PET)
• Providing complementary information of the brain
• Subjects usually have incomplete multi-modal data

PET

G

Label

Y. Pan, M. Liu, C. Lian, Y. Xia, and D. Shen. MICCAI, 2019
Y. Pan, M. Liu, C. Lian, T. Zhou, Y. Xia, and D. Shen. MICCAI, 2018
Y. Pan, M. Liu, C. Lian, L. Yue, S. Xiao, Y. Xia, and D. Shen. ISMRM, 2019



Synthetic PET
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• Generating missing PET/MRI scans for diagnosis

Y. Pan, M. Liu, C. Lian, T. Zhou, Y. Xia, and D. Shen. MICCAI, 2018
Y. Pan, M. Liu, C. Lian, L. Yue, S. Xiao, Y. Xia, and D. Shen. ISMRM, 2019

Cross-Modality Image Synthesis



Synthetic PET Scans
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Y. Pan, M. Liu, C. Lian, T. Zhou, Y. Xia, and D. Shen. MICCAI, 2018
Y. Pan, M. Liu, C. Lian, L. Yue, S. Xiao, Y. Xia, and D. Shen. ISMRM, 2019

GAN CGAN VGAN Ours Ground Truth

PSNR: Peak signal-to-noise ratio



Multi-Modal Classification

Y. Pan, M. Liu, C. Lian, T. Zhou, Y. Xia, and D. Shen. MICCAI, 2018
Y. Pan, M. Liu, C. Lian, L. Yue, S. Xiao, Y. Xia, and D. Shen. ISMRM, 2019

• Landmark-based multi-scale network for classification



Experiments

Y. Pan, M. Liu, C. Lian, T. Zhou, Y. Xia, and D. Shen. MICCAI, 2018
Y. Pan, M. Liu, C. Lian, L. Yue, S. Xiao, Y. Xia, and D. Shen. ISMRM, 2019

• Results of pMCI vs. sMCI with complete MRI and PET (after imputation)



Imaging Synthesis

Y. Pan, M. Liu, Y. Xia, and D. Shen. IEEE Trans. Pattern Analysis and Artificial Intelligence, 2022
Y. Liu, L. Yue, S. Xiao, W. Yang, D. Shen, M. Liu. Medical Image Analysis, 2022

Diagnosis-Oriented GAN for PET/MRI Construction



Synthetic PET
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Diagnosis-Oriented PET/MRI Construction

• Generating diagnosis-oriented PET/MRI scans
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Y. Pan, M. Liu, Y. Xia, and D. Shen. IEEE Trans. Pattern Analysis and Artificial Intelligence, 2022



Feature-Consistent Component

• Joint classification-oriented image synthesis and classifier training
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Results of Image Synthesis
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Y. Pan, M. Liu, Y. Xia, and D. Shen. IEEE Trans. Pattern Analysis and Artificial Intelligence, 2022



Results of Image Synthesis
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• Classification results using synthetic MRI and PET scans

Y. Pan, M. Liu, Y. Xia, and D. Shen. IEEE Trans. Pattern Analysis and Artificial Intelligence, 2022
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Results of Classification

Generating task-oriented PET scans boost performance

• MCI conversion prediction with complete MRI and PET (after imputation)

Y. Pan, M. Liu, Y. Xia, and D. Shen. IEEE Trans. Pattern Analysis and Artificial Intelligence, 2022
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Theoretical Properties GANs aim to approximate complex probability 
distributions through adversarial training.
Key theoretical questions:
▶ How to mathematically characterize the 
distribution of imaging and text datasets (e.g., 
ImageNet)?
▶ Why do we think that a specific GAN (loss 
function and architecture) can learn the key  
complexity of certain distributions? 
▶ Can GANs converge to the true data distribution 
of some complex datasets?
▶ What distance measure is optimized in training?
▶ How to rigorously evaluate GANs in complex 
scenqrios?
▶ How do GANs generalize to unseen data?v What is the Manifold Hypothesis?

v High-dimensional data (e.g., images, text) often lies on a lower-dimensional manifold embedded 
in a higher-dimensional space.

v Learning this low-dimensional structure is crucial for improving generative models.
v Why Study Generative Models from this Perspective?

v Understanding DGMs through this lens helps explain their strengths and weaknesses.
v Provides insights into why certain models (e.g., diffusion models, GANs) outperform others (e.g., 

VAEs, normalizing flows)
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