Bios 740- Chapter 6. Generative Adversarial
Networks (GAN)

Acknowledgement: Many thanks to Mr. Xiaoqi Liu for preparing some of these slides, and to Drs.
Mingxia Liu, Gang Li, Xiao Wang, and Jian Huang for sharing their slides. I also drew on material
from the lecture presentations of Stanford CS224w and StanfordCS231n, Dr. Liu’s presentation, and
Dr. Huang’s lecture, as well as content generated by ChatGPT.
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1 Motivating Applications
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What are Generative Models?

Definition: Generative models learn to generate new data samples resembling a given dataset. }

7]

Training data ~ pyata(X

learning sampling

:> pmodel

o

Objectives:
1. Learn ppogel(X) that approximates pyata(X)
2. Sampling new x from pmodel(X)

Major Generative Models:
> Explicit Density Models: Estimate probability distributions (e.g., Gaussian Mixture Models, VAEs).
> Implicit Density Models: Generate samples without explicit density estimation (e.g., Generative Adversarial Network

(GAN)s, Diffusion Models).
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Explicitly Density Models

A simple form of generative learning 1s to learn a deterministic function

@ Generate n ~ N(0,1,), m > 1.

@ Estimate a generator function G such that

G(n) ~ Px.

@ Let X = Gg(Z) with Z ~ pz. The distribution function of X is

Bl = 2] —P(6,(Z) & ) — / Bl

Go(z)<x

with density function
0
pe,(x) = — pz(z)dz.
o) = s Go(2)<x

If GQ(Z) 1s invertible, then we have 3 i
PGe(x) = m(Gy " (x))|det(Vx Gy (x))]-

How?

It is still difficult to calculate the inverse G, .
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Unsupervised Learning

» Data: X — Just data, no labels
» Goal: Learn some underlying hidden structure or distribution of the data
» Examples: clustering, dimension reduction, feature learning, density estimation, etc.

» Generative models are a subset of unsupervised learning, but not all unsupervised learning
techniques are generative (e.g., k-means, PCA)

original data space

component space SR e e m

Figure copyright lan Goodfellow, 2016. Reproduced with permission.

N 2y 1-d density estimation

K-means clustering PCA 2-d density estimation
Modeling p(x) P —
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Why GANs and Other Generative Models?

Goodfellow, Ian, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil
Ozair, Aaron Courville, and
Yoshua Bengio. "Generative
adversarial nets." Advances in

neural information processing
systems 27 (2014).
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GANs Progression on Face Generation

* Better Quality
* High Resolution

2018

1024*1024 Images generated by a GAN created by NVIDIA. (source, 2018)
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https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf
https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en

Why Gans?

.‘y.'"‘

o ‘
Training examples Model samples

Realistic samples for artwork, super-resolution, colorization, etc.

- Learn useful and subtle features for downstream tasks such as classification and object detection.
- Getting insights from high-dimensional data (physics, medical imaging, etc.)

- Modeling physical world for simulation and planning (robotics and reinforcement

learning applications)

- Many more ...

l lP l GILLINGS SCHOOL OF
= GLOBAL PUBLIC HEALTH




Al Art

Midjourney v5

ﬁ l l P | GILLINGS SCHOOL OF
g— GLOBAL PUBLIC HEALTH



Emerging Generative Models in 2022-

(= dphacode

it solutions

2 Stable Diffusion



What are Conditional Generative Models?

Definition: A conditional generative model is a type of generative model that generates new data

samples based on additional context or conditioning information. Mathematically, it models the
conditional probability distribution,

Applications: Image-to-Image translation, Text-to-Image generation, Super-Resolution, etc.

Discriminative Model (Unconditional)

P (y | x) Generative Model
P(x|y) P0) P(x)

We can build a conditional generative model from
other components!
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Why Conditional Generative Models?

Outfilling/Missing Data Imputation

«— Generated Generated —

00 Months 00 Months

* Infant brain MR images (T1w/T2w)
— Low tissue contrast and dynamic
change in appearance
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Additional Applications

Text to Image

The bird is A bird with a This small Eggs fruit A street sign
This bird isred  short and medium orange  black bird has A group of candy nuts on a stoplight
and brown in stubby with bill white body  a short, slightly ~ A pictureofa  people on skis  and meat pole in the
color, with a yellow on its gray wings and  curved bill and very clean stand in the served on middle of a
stubby beak body webbed feet long legs living room AR white dish day

Fashion Design
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2 Understanding Generative Models
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Deep Generative Models

Deep generative models are neural network-based models designed to learn complex data distributions and
generate realistic synthetic samples that resemble the original training data. These models leverage deep learning to
approximate the true underlying data distribution.

Common DGMs:
Let X ~ Px, where Px is the distribution of X. Let its density function be px. L Deep Belief Networks (DBNs)
There are two ways to learn the distribution of X: > Deep Boltzmann Machines (DBMs)

o Denoising Autoencoders (DAESs)

y _ _ . L Generative Stochastic Networks (GSNs)
@ The explicit modeling approach assumes px € Po, or estimates px directly [ pixe]RNN/PixelCNN

nonparamtrically. L2 Generative Adversarial Network (GAN’s)

a Variational Autoencoder
@ Generative models learn a generator function G : R™ — R” such that G n)~ FX,
g

where 1 ~ P,, a known reference distribution.

o If a generator function G is known, then we know everything about Pk,
since we can first sample 1) ~ Py, then G(1) ~ Px.

o We usually take the reference distribution to be N(0,1,) or uniform
distribution on [0, 1]".

ﬁ l l P I GILLINGS SCHOOL OF
= GLOBAL PUBLIC HEALTH




Taxonomy of Deep Generative Models

Taxonomy of Generative Models

Generative models

/\

Explicit density

T m—

Tractable density

Direct
GAN

Implicit density

Diffusion
Models

\

Fully Visible Belief Nets
- NADE
- MADE

- PixelRNN/CNN

- \ REealNVF
-  Glow
- Ffjord

Approximate density

Markov Chain

.

Variational

Variational Autoencoder

\

GSN

Markov Chain

Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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The Landscape of Deep Generative Models

A Normalizing
Autoregressive
Models Bl
Variational
Autoencoders
Generative ~ Ene Diffusion Models

Adversarial Networks




DBN and DBM

Restricted Boltzmann Machines (RBMs) DBMs extend RBMs into a multi-layer structure, allowing

deeper hierarchical representations.
» Energy Function:

Hidden units

Visible units E(v,h) ==Y aivi— > bihi— Y viWjh; E(v, h', h*) = — Z aiVi — Z bfh} - Z cich

/
» Probability Distribution:
e—E(v,h) £
— — - ( 7h)
P(v,h) = 7 Z—Ehe v
\\

1 —_E(uv,h)
Plu) = 7 Z e
{h}
DBNss stack multiple RBMs to form a deep probabilistic model.

L-1
P(v,h', 1, ..., h") = P(hY) ] P(K*|R*T1)P(v|h")

k=1 Deep Boltzmann Machine Deep Belief Network
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Denoising Autoencoders (DAE)

A variant of autoencoders that learns robust representations by reconstructing clean inputs from noisy versions.
¢ The goal is to force the network to capture meaningful structure while ignoring noise.
¢ Used in image denoising, feature learning, and semi-supervised learning.

> A corrupted version is generated as X ~ gp(X|x), where noise » Noise Injection: The corruption process gp(X|x) can be:
is added. > Gaussian noise: X = x +N(0,0°/).

» The encoder maps the noisy input to a latent representation: > Masking: Randomly setting input values to zero.
» Salt-and-pepper noise.

h = fy(X) = o(Wk + b) » The reconstruction error is minimized:

L£(0, 9) = Expgors, 2vap [L(X; 8(Fo(X)))]

where L(x,r) =[x — r||3.

» The decoder reconstructs the original input:

r = gy(h) = o(W'h + 1)

» DAEs generate samples by reconstructing corrupted inputs:

X ~q(X1X), h=f(X), X=gh)
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Generative Stochastic Networks (GSNs)

eDefinition: GSNs are a class of generative models that learn to transform noise into structured data by learning a
Markov transition function. GSNs sidestep intractable partition functions.

¢ They generalize Denoising Autoencoders (DAEs) by introducing latent variables into the learning process.

¢ Training involves learning a transition function that converges to the data distribution

GSNs use the denoising autoencoder to define a Markov chain
that generates samples. The Markov chain is defined by a
transition operator T(x' | x).

> Let x; be the state of the Markov chain at step t lterative Markov chain with noise injection:

» The next state x;;1 is generated by: Xey1 = HH(Xe, Z)), Z~ p(2)
1. Corrupting x; with noise: X; ~ q(X | x¢).
2. Applying the denoising autoencoder to obtain x;+1 = fy(X).

» The transition operator T(x;+1 | Xt) can be written as:

T(xes1 | %) = / a(% | xe) 6(xer1 — (%)) d

where §(+) is the Dirac delta function.
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Generative Stochastic Networks (GSNs)

To generate new samples from the GSN:
1. Start with an initial state xp (e.g., random noise).

2. lteratively apply the transition operator T(x¢11 | x¢) for T
steps:
xer1 = fo(Xt), Xe ~ q(X | xt)

3. After sufficient steps, x7 will be a sample from pmodel(X)-

® Pgata represents the true data distribution.
o q(X|x) defines the corruption process introducing noise.

I
o fy(X) is the model that reconstructs x from corrupted input X.

0* - arg meinEprdataa)?Nq()ﬂx) [||X B f@( )

The training objective of GSNs is to minimize the reconstruction error of a denoising autoencoder while ensuring that
the Markov chain converges to the desired distribution. Additionally, regularization techniques or constraints can be
applied to stabilize the Markov chain during training.
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Generative Stochastic Networks (GSNs)

Proposition 2 Let P(X) be the training distribution for which we only have empirical
samples. Let w(X) be the implicitly defined asymptotic distribution of the Markov chain
alternating sampling from Py(X|X) and C(X|X), where C is the original local corruption
process.

If we assume that Py(X |)~( ) has sufficient capacity and that the walkback algorithm con-
verges (in terms of being stable in the updates to Py(X|X)), then m(x) = P(X).

That is, the Markov chain defined by alternating Pp(X|X) and C(X|X) gives us samples
that are drawn from the same distribution as the training data.

(X & & X (%,

Alain, Guillaume, Yoshua Bengio, Li Yao, Jason Yosinski, Eric Thibodeau-Laufer, Saizheng Zhang, and Pascal Vincent. "GSNs: generative stochastic
networks." Information and Inference: A Journal of the IMA 5, no. 2 (2016): 210-249.
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PixelRNN /PixelCNN

Autoregressive models predict the probability of an image as a sequential product of pixel conditionals:
¢ Each pixel is generated sequentially, conditioned on all previously generated pixels.
¢ PixelRNN and PixelCNN differ in how they model these dependencies.

N
p(X) — H p(Xi|X17X27 .. 7Xi—1)
i=1

&0 6

S e g
111111111 ooooo oXe)
‘ \ OO0 ooo*oo

l
!

ole\ee ® 00O 6000
!

0 1, 255
A 3 O O JOi0 O O O 0I0 O O
/ O®®0O0 O®®0O0 OO ®0O0
/ / O000O0 O000O0 O000O0
PixelCNN Row LSTM Diagonal BILSTM

Figure 4. Visualization of the input-to-state and state-to-state

mappings for the three proposed architectures.
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Variational Autoencoder

il
Key Idea: i Encoder/Decoder:
PyE ] _ Decoder
P G )X s [ e )= Nzl 20, ol 2 =Nl )
» Decoder: p(x | z). ¥
» Prior: p(z) = N(0,1). Fneoder ) Divergence:
Input data T

Objective (ELBO):

KL{q(z | x)|p(2)) = % (tr(0”(x) + lu(x)|* - d - logdet(o*(x)))
Lyae = Eq (1 [log plx | 2)] = KL(q(z | x)|p(2))

Reparameterization Trick:
Training:

» Maximize ELBO using stochastic gradient descent. z=p(x)+o(x) ¢ e~ N(0,)
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Generative Adversarial Network (GANs)

Key ldea:

» Two networks compete:

» Generator G: Maps noise z ~ p,(z) to G(z).
» Discriminator D: Outputs D(x) € [0, 1].

Objective:

mGin max V(D, G) = Exp,...[log D(x)] + E.p,[log(1 — D(G(2)))]

Training:
1. Update D to maximize V(D, G).
2. Update G to minimize V(D, G).
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Comparisons among DGMs

Model Qualit Diversit Pros Cons . .
Y Y ** GANSs and Pixel-based models achieve the
Efficient pretraining, useful Not a true generative . :
DBN Moderate Moderate for feature extraction model, lacks flexibility hlgheSt quallty but can Stmggle
with diversity.
DBM Hich Hich gzgteunrj::g?spldegep Hard to train, requires ‘:’ VAES and GSNS Offer high diVerSity but
¢ : representation learning " P e often produce lower quality outputs.
+ DBMs and GSNs allow complex feature
Effective for Not a true generative learning but are harder to train than DBNSs.
DAE Moderate Low representation learning, model, lacks explicit . .
robust to corruption sampling mechanism ¢ PixelCNN is faster and more stable than
PixelRNN due to parallel processing.
GSN High High ;\loir::_tractajcblbeI p:rti_ti'on sﬂeqiirestwell_-:_uned 0:0 DAES and VAES are bet‘[er for
unction, stable training arkov transitions . . .
representation learning but are not ideal
o o for direct sample generation.
PierRNN/ ' High-quality samples, Slow sampling (PixelRNN),
A Very H|gh Low avoids adversarial training  limited long-range
PixelCNN issues dependencies (PixelCNN)
. Generates highly realistic Mode collapse, unstable
GAN Very ngh Low images, fast sampling training
Well-defined latent space,  Blurry image samples,
VAE Moderate High meaningful over-regularized latent
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Evaluation Metrics

Metric Measures Best for Limitations

D ' |
Inception Score (IS) Quality & diversity Image GANs d;)teasn t compare to rea

Fréchet Inception Requires feature

Distance (FID) Realism & diversity Image GANs extraction
. . T Computationally
Precision & Recall Fidelity & coverage Any model :
expensive
. : D ' tch h
Log-Likelihood Probability assighment VAEs, Flows oesn t.ma ch himan
perception
Human Evaluation Subjective quality Any model Expensive and subjective
Downstream Task Utility in real tasks Task-driven models Domain-dependent

Performance
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Applications of Generative Models 1n Al

Understanding Probability Distributions
. t(;relréler:«ltive models help represent and manipulate high-dimensional probability distributions across various
ields.
Role in Reinforcement Learning (RL)
* Used in model-based RL to simulate possible futures for planning & decision-making.
* Enables learning in imaginary environments, reducing risks of real-world errors.
* QGuides exploration by tracking visited states & attempted actions.
* Supports inverse RL for learning from expert demonstrations.

Handling Missing Data & Semi-Supervised Learning
e (Can train with missing data and predict missing inputs.
* Enables semi-supervised learning, reducing the need for labeled data.

Multi-Modal Learning & Sample Generation

* Allows multiple correct outputs for a single input (e.g., video frame prediction).
* GANSs excel in generating realistic samples for various Al applications.
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Model Results

Restricted Boltzmann Machine Graph-Structured Network

Real (Top) vs. RBM Generated (Bottom) Real (Top) vs. GSN Generated (Bottom)

FMEAPCNEAN PRANRENELN

Denoising Autoencoder VAE (generated from noise)

Real (Top) vs. DAE Generated (Bottom) VAE Generated Samples

aja|slels)/]élelé]a
7iz]/jolql /912

GAN (generated from noise)
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Training & Validation Loss

Restricted Boltzmann Machine

Training and Validation Loss Over Epochs

Graph-Structured Network

o Training and Validation Loss Over Epochs
0061 & —e- Trainloss |
-10 —e— Validation Loss
e
% WNM
‘/'..0‘ 0.05
30 I
g —-40 v 0.04
train_loss = 5o W/ g \
contrastive-divergence f 003
free-energy difference / —
2 s , Model Test_loss
0 10 20 30 40 50 —
Epoch
0 10 20 30 ) 50
Deep Belief Network (multi-layer RBM - classifier only) pixel CZOIC\;' RBM 0025985
o2s Training and Validation Loss Over Ep?ChS — Training and Validation Loss Over Epochs D B N O . 06464 1
—e— Validation Loss 37 : 1\:'::;?:: Loss
| DAE 0.010321
015
m A 1 GSN 0.599898
§ §
0.10 Mm
WA\ | PR PIXELCNN 2.370674
0.05 T i
/.
0.00 —” 7 [
0.0 25 50 75 oot 10.0 125 15.0 17.5 B T B = B pa
Denoising Autoencoder Training and Validation Loss Over Epochs
Training and Validation Loss Over Epochs 350 =
—&— Train Loss
\ —e~ Train Loss ~o- Validation Loss /\v—‘
0.08 | —e— Validation Loss 325
006 \. 2.75 A / \
a 4 A
§oos K 3z AV \
2.25 - - t
0.04
\““ 2.00
0.03 L 2 ”4'\ \
175
N M‘W ~N
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3 PixelCNN/RNN and Variational Autoencoder
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Fully visible belief network (FVBN)

Definition: A Fully Visible Belief Network (FVBN) is a directed probabilistic model where the joint
probability of observed variables is factorized using the chain rule of probability.

p(a:) — p(fﬂl g L2y ey xn)z Hp(wz'h?l, ey Ti—1)
=1 T

Probability of the i-th pixel value

given all previous pixels
Complex distribution over pixel

Key Features values => Express using a neural
Autoregressive structure: Each variable is modeled sequentially. network!

Exact likelihood estimation: Unlike GANs, FVBNs provide explicit probability distributions.

No latent variables: Unlike VAEs or DBNs, FVBNs do not rely on hidden representations.

Applications

* Generative Modeling — Used in density estimation tasks.

o Sequential Data — Applied in speech and language models.

o Autoregressive Image Models — Used in Pixel CNN-like architectures.
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Pixel RNIN

What is PixelRNN?
¢ A generative autoregressive model that predicts pixels sequentially along spatial dimensions.
% Used for image generation, inpainting, and density estimation.

van den Oord et al. (2016).

Pixel-Level Autoregressive Model Color Image
2
n
P(X) = H P(X;| Xv:i—1) P(Xi) = P(Xi r|X<i)P(Xi,c|X<i, Xi,r)P(Xi B| X<is Xi,r) Xi G)
=1 I Architecture of PixelRNN
X E X . Recurrent Layers (LSTM)
he | hy i h, | h, i LJ Row LSTM: Processes the image row-by-row.
_’—'—' RN o > Diagonal BiILSTM: Processes diagonal bands for improved efficiency.
i : : ] Output Layer
1 i i L Uses a softmax layer to predict pixel intensities.
PixelRNN Row LSTM
L Uses LSTMs to process images sequentially. hij = LSTM(xi;, hi—1,7)
o Captures long-range dependencies. Diagonal BiLSTM

> Computationally expensive
h,"j = LSTM(X;J, hi_1J—1, hi,j—17 hi—l,j)
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Pixel RNIN

occluded completions original geeliden completions original

- | ] T ".ﬁ"

AR A A
s i

)
[

ihhimma
Image completions sampled from a model that was trained on 32x32 ImageNet images
(van den Oord et al. (2016)).
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PixelCNN

What is Pixel CNN?

L A convolution-based generative model for image synthesis.
W Trains using autoregressive likelihood estimation.

L Faster than PixelRNN due to convolutional structure.

J Efficient for real-world image generation tasks.

i 0| 0| O -
ofofofofofjojo
ofofofofofjojo
olojoJloflo]o|oO Conv2D 1x1

L Mask A: Ensures pixels don’t see themselves.
L Mask B: Allows flow of information across layers.
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Architecture of Pixel CNN

Model: "model"”

Layer (type)

Output

Shape

Param #

input_1 (InputlLayer)

pixel conv_layer (PixelConv
Layer)

residual_block (ResidualBlo
ck)

residual_block_1 (ResidualB
lock)

residual_block_2 (ResidualB
lock)

residual_block_3 (ResidualB
lock)

residual_block_4 (ResidualB
lock)

pixel_conv_layer_6 (PixelCo
nvLayer)

pixel_conv_layer_7 (PixelCo
nvLayer)

conv2d_18 (Conv2D)

(None,

(None,

(None,

(None,

(Neone,

(Neone,

(None,

28, 28, 128)

28, 28, 128)

28, 28, 128)

28, 28, 128)

28, 28, 128)

28, 28, 128)

2828, 1)

98624
98624
98624
98624

98624

Mask B

16512

16512

Total params: 532,673
Trainable params: 532,673
Mon-trainable params: @




PixelCNN+++

I-llﬂﬂld ﬁ

Iﬂﬂd‘hﬁlﬂl

dns HL2 S AR

SEEY Y- ¥

oY Bty A DR

_CRRlall P SN

S o B [V
- | <
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Model

Bits per sub-pixel

Deep Diffusion (Sohl-Dickstein et au \2015}

NICE (Dinh et al., 2014)

DRAW (Gregor et al., 2015)

Deep GMMs (van den Oord & Dambre, 2015

Conv DRAW (Gregor et al., 2016)

Real NVP (Dinh et al., 2016)

PixelCNN (van den Oord et al.

2016b

)

VAE with IAF (Kingma et al.,

016)

Gated PixelCNN (van den Oord et al.,

2016c¢)

PixelRNN (van den Oord et al.

2016b

)

Pixel CNN++

5.40
4.48
4.13
4.00
3.58
3.49
3.14
3.11
3.03
3.00
2.92




What are Autoencoders?

Autoencoders are neural networks designed for dimensionality T & = d(Z)

reduction and feature extraction by compressing and

reconstructing data.

z = e(x)

They consist of two main components:

“* Encoder (e): Maps input X to a low-dimensional latent
space z, where similar inputs have similar latent
representations.

e: X—7Z, z=e(x) with dim(X)>dim(Z)
% Decoder (d): Reconstructs x from its latent representation z,
mapping back to the original input space.

d: Z—»Xand X = d(z) =d(e(x)).

Q.0 O O

\—

lllustration of autoencoder (source)
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https://avandekleut.github.io/vae/

What are Autoencoders?

L2 Loss function: Reconstructed data

e i = I

|z — 2]

ENL&03
o el O o Y AN
-EHT* el

Encoder: 4-layer conv
Decoder: 4-layer upconv

—_— utt(gata |
s . T
B L& e
PRSI IE
= bl < S

Train such that features can be used to I
reconstruct original data “Autoencoding” - ReCOﬂStI’Uerd o '
encoding input itself input data

Decoder

Want features to capture meaningful Features Z
factors of variation in data |
£

Encoder

Input data
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Autoencoder Latent Space and Its Limitations

*Trained on MNIST, the autoencoder clusters
similar digits in the latent space.
*Decoder can reconstruct images from latent

vectors, but gaps in the latent space cause issues. | ;
*Generative models aim to produce new samples, Y
but disjoint latent spaces in autoencoders make o] 1 f,
some sampled latent vectors meaningless. 5 / 5
Illustration: In the top-left corner of the latent D s
space, unseen regions result in unrealistic - . -
reconstructions. _15 7777 S
*Solution: Variational Autoencoders ¢ ; ; > 2 >0
(VAEs) introduce structured latent spaces to ensure R P S S -50 -25 00 25 50 75 100

continuity and improve generative performance.
Key Issue: Autoencoders are great for

representation learning but struggle as generative

models due to fragmented latent spaces. lllustration of example latent vectors using the MNIST
dataset (source)
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https://avandekleut.github.io/vae/

What is a Variational Autoencoder?

* VAE = Autoencoder + Generative Modeling
* Same structure as a traditional autoencoder:

“» Encoder: Compresses input into a latent space
representation, but instead of a single point, outputs a
probability distribution (Gaussian).

% Decoder: Samples from this distribution and reconstructs
the input.

o Key Difference from Traditional Autoencoders

¢ Traditional autoencoders map inputs deterministically to a
single latent vector z=e(x).

¢ VAE:s introduce probabilistic encoding, ensuring smooth and
structured latent spaces for better generative performance.

- Benefit: Enables meaningful interpolation and sampling for

generating new data! : 4

Nz~ N, o)

5=

OV ®

[eNeyerek

b 4

Illustration of VAE (source)
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https://avandekleut.github.io/vae/

Variational Autoencoder as a DGM
VAEs define an intractable density function with latent

po(x) = [ po(2)pa(alz)dz
Probabilistic spin on autoencoders - will let us sample from the model to generate data!
Assume training data { 2 (%) }1{\; 1 1s generated from the distribution of unobserved (latent) representation z
Sample from

true conditional i W Conditional p(x|z) is complex (generates
3 image) => represent with neural network

po-(z | 2)

Decoder
network
Sample from

true prior > Choose prior p(z) to be simple, e.g. Gaussian.
29 ~ py (2)
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How to train VGE?

Learn model parameters to maximize likelithood of training data , , ,
Q: What is the problem with this?

We want to estimate the true parameters { 2 (%) }N Intractable!
of this generative model given training data —

Data Likelihood ‘ @
pe(z) = [ po(2)pe(z|2)dz % log p(x) ~ log % Zle p(z|2"), where 27 ~ p(2)

Intractable to compute p(xlz) for every z! Monte Carlo estimation is too high variance

Posterior distribution

pe(z|w) = po(z|2)pe(2)/pe()
Solution: In addition to decoder network modeling  Pg (33 | yA )_, define additional encoder network

qe(2|x) ~ pe(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize.
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How to approximate VGE?

log pg(z\V) = E; g (z2) {log pg(m(i))} (po(z) Does not depend on 2)

po (2 | 2)pe(2)
po(z | =)

po('¥ | 2)pg(2) go(2 | a;(’:))] (Multiply by constant)

po(z |2)  gy(z | 20)

=E, |log ] (Bayes” Rule)

=E, |log

- g0 o () (i)
=E, |logps(z'¥) | 2)| - E, llog (2 |77) w +E, [log Gl |2 . )] (Logarithms)
- : Po(2) po(z | 21)

=E, |logps(z" | 2)| — Dxr(as(z | 27) || po(2)) + Dicr(go(z | 2) || po(z | "))

1 1

Decoder network gives p0(x|z), can This KL term (between po(z[x) intractabl.e (saw earlier),
compute estimate of this term Gaussians for encoder and can’t compute this KL term. ®®
through sampling (need some trick z prior) has nice closed- But we know KL divergence -
to differentiate through sampling). form solution! always >= 0.
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How to approximate VGE?

Decoder: reconstruct Encoder: make approximate
the input data posterlor dlstrlbutlon close to prlor
i\ : } - .
log po(e®) = [, [logp(e® | 2)] - Drcslaol= | 2®) [ po(eN| Dicslaols | 9 llpoz | 29)
e wanc (0.0 >
maximize the
data likelihood. Tractable lower bound which we can take gradient of and optimize!

(pB(x|z) differentiable, KL term differentiable)

Variational evidence lower bound (ELBO):

L(x,0,9) <logps(x)

Training: Maximize lower bound

0,9 =arg Igl,aX;‘C(x’ba 0, ¢)
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Stochastic Optimization of ELBO

Algorithm 1: Stochastic optimization of the ELBO. Since noise
originates from both the minibatch sampling and sampling of p(€),
this is a doubly stochastic optimization procedure. We also refer
to this procedure as the Auto-Encoding Variational Bayes (AEVB)

algorithm.
Data:
D: Dataset Lo ¢( ) EQ¢(Z|X) [logpg(x Z) log Q¢(Z|X)]
M. Lo () = Vo log (s, 2) o (ax)
0\X,7Z):
Result: vd)£9,¢(x) — V¢Eq¢(z|x) log pg(x,2) — log Q¢(Z|X)J

0, ¢: Learned parameters
Reparametrization Trick: 2z = X
(0, @) < Initialize parameters P g(e, P, )

while SGD not converged do Eq¢(z|x) 1f(z)] = Ep(e) 1f(z)]
M ~ D (Random minibatch of data)
e ~ p(e) (Random noise for every datapoint in M) V¢]Eq¢ z|x) f(2)] = V4E, (€) f(2)]
Compute Lg 4(M, €) and its gradients Vg 3Lg (M, €) _ Vo f(2)]
Update 0 and ¢ using SGD optimizer p (1Yo
end ~ Vy [(2)
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A Theoretical Example

Sample zfrom 2|z ~ N/ ( (5 2 ) D
/ \ Sample x|z from :c|z ~ N(um|z, EW)
Hz|z z|a: [ Emlz
Encoder network Decoder network \/
4 (2|7) po(z|2)
(parameters ¢) Z
T Sample z from z ~ A(0, 1)

/qg(z) log p(z) dz = /N(z;u, o?)1og N(2;0.1) dz log p(x|z) = log N (x; ., o°T)
r where = W4h + by
J 1|

= —3log(2m) — 5 3 (45 +07) logo® = Wsh + bs

gt L= tanh(Wgz -+ b3)
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Code: Vanilla VAE

# ————- Define the Encoder & Decoder —-----
# The encoder outputs two vectors: mu (u) — the mean of the latent distribution & logvar (logc?) — the log-variance of

the latent distribution. Reparameterization Trick is used:z==u-+exp(%wgaz)Ck;EﬂvN(Ql)

# The decoder maps the latent vector z back to the original data space. We will use a final Sigmoid to produce pixel
intensities in [0,17.
class VAE (nn.Module) :

def init (self, input dim, hidden dim, latent dim):

super (VAE, self). init ()

# Encoder

self.enc fcl = nn.Linear (input dim, hidden dim)
self.enc _fc2 mu = nn.Linear (hidden dim, latent dim)

self.enc fc2 logvar = nn.Linear (hidden dim, latent dim)
# Decoder
self.dec fcl = nn.Linear (latent dim, hidden dim)
self.dec fc2 = nn.Linear (hidden dim, input dim)
self.relu = nn.RelLU()
self.sigmoid = nn.Sigmoid/()
def encoder (self, Xx):
"""Encode the input into latent parameters (mu, logvar)."""

h = self.relu(self.enc fcl(x))
mu = self.enc fc2 mu (h)
logvar = self.enc fc2 logvar (h)

return mu, logvar

def reparameterize(self, mu, logvar):
"""Reparameterization trick to sample z."""
std = torch.exp (0.5 * logvar)
eps = torch.randn like(std) # same shape as std
z = mu + eps * std
return z
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Code: Vanilla VAE

def decoder (self, z):
"""Decode the latent vector into reconstructed input."""
h = self.relu(self.dec fcl(z))
x recon = self.sigmoid(self.dec fc2 (h))
return x recon

def forward(self, Xx):
"""Forward pass: encoder -> reparam -> decoder."""
mu, logvar = self.encoder (x)
z = self.reparameterize (mu, logvar)
x _recon = self.decoder (z)
return x recon, mu, logvar

# ————- Define the loss function -----
# The total loss is the sum of Reconstruction Loss: Typically we use Binary Cross Entropy between the reconstructed
image and the original image (scaled to [0,1]) and KL Divergence Loss: Encourages the approximate posterior g¢ (zlx) to

be close to the prior p(z)=N(0,I).
def loss function(x recon, x, mu, logvar):
# Reconstruction loss (assuming x, x recon in [0, 1])
bce = nn.functional.binary cross_entropy (
x_recon, X, reduction='sum'
) # sum over all pixels
# KL Divergence

# KL(N(mu, sigma”2) || N(0,1))
# = 0.5 * sum(exp(logvar) + mu”2 - 1 - logvar)
kl = 0.5 * torch.sum(torch.exp(logvar) + mu**2 - 1.0 - logvar)

return bce + k1l
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Strengths & Limitations

b4 Key Idea:
» Adds a probabilistic spin to traditional autoencoders, enabling data generation.
» Defines an intractable density, requiring variational inference to derive and optimize a lower bound
(ELBO).
Pros:
v Principled generative approach based on probabilistic modeling.
V Interpretable latent space enables meaningful structure in representations.
V Inference of q(zlx) allows feature extraction for other tasks.
X Cons:
X Optimizes a lower bound on likelithood, which may not be an ideal evaluation metric.
X Lower sample quality compared to PixelRNN/PixelCNN.
Blurry reconstructions compared to GANs, which generate sharper images.
' Active Research Areas:
@ Flexible Approximate Posteriors: Moving beyond diagonal Gaussian assumptions to richer models
like Gaussian Mixture Models (GMMs) or Categorical Distributions.
@ Disentangled Representations: Learning independent latent factors for better interpretability.
@ Improving Training Objectives: Hybrid models incorporating adversarial learning (VAE-GANS).
# Future Directions: Enhancing sample quality while retaining VAE’s structured latent space!
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Content

4 GANSs and their Architectures
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“This (GANS), and the variations that are now
being proposed is the most interesting idea in the
last 10 years in ML, in my opinion”

—Yann LeCun
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What is GAN?

Problem:

* We want to sample from a complex, high-dimensional
training distribution.

¢ There is no direct way to explicitly learn or model the data

Objective: generated
images should look “real”

distribution. Output: Sample from Discriminator Real?
Solution: training distribution Network " Fake?
» Instead of learning the distribution explicitly, GANs learn a t
transformation.
» Start by sampling from a simple distribution (e.g., Generator Use a DN
Gaussian noise). Network to tell whether
» Train a neural network to transform the simple distribution f the generate image
into the training data distribution. > 1s within data
Key Idea: distribution
v GANSs learn to generate new samples indirectly through Input: Random noise “real”) or not

adversarial training.
v The model never explicitly estimates the probability
density function of the data.

l lP l GILLINGS SCHOOL OF
= GLOBAL PUBLIC HEALTH




Generative Vs Discriminative Models

Generative Models:

W can generate new data samples resembling real data.

o Example: GANs generate realistic images that resemble real ones.
Discriminative Models:

L Focus on classification by distinguishing between different categories.

> Example: A decision tree can classify dogs and cats but cannot generate them.

Real or Fake o o o
T \ Discriminator learning signal o
0
Generator learningsignal | Discriminator Network Real images »  Sample § 3
3
0
g
Fake Images Real Images
(from generator) (from training set) Discriminator
5
| 2 0
Generator Network £ Generator )| Sample 05
A 3 o 4
g S
Random noise Z u
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Overview of GAN Training

Discriminator Network: Tries to distinguish between real and fake images.
Generator Network: Tries to fool the discriminator by generating real-looking images.
Training Process: Both networks are trained jointly in a minimax game.

Minimax objective function:

min max []Em,\,pdam log Do () + E,wp(2) log(1l — Dg,(Go, (Z)))]

9 04 | - I ]
& o
Ssjneirt?\tgr Discriminator Discriminator output Discriminator output for
objective for real data x generated fake data G(z)

» Discriminator (6,) wants to maximize the objective such
that D(x) =~ 1 (real) and D(G(z)) = 0 (fake).

» Generator (6;) wants to minimize the objective such that
D(G(z)) = 1 (fooling the discriminator).
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GAN Training

Alternate between:
1. Gradient ascent on discriminator

L s [EmNPdata log Dy, (%) + Eznp(z) log(1 — Do, (Go, (2 )))]

0a
2. Gradient descent on generator Instead: Consider a different objective

Win B, p(z) log(1 — D, (Go, (2))) maxX B p(z) log(Dg, (G, (2)))
Gradient signal ‘ P
dominated by region 3 Iy
where sample is ! —
already good /

\

il
When sample is likely- < , ?\f |
fake, want to learn - 4 High gradient signal
from it to improve [ 4 “l '
generator. But 7| . T '
gradient in this region- B TREY

srelatively fiatl v 6 6 @ ow Lowgradient signal

=
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GAN Algorithms

for number of training iterations do

for & steps do

e Sample minibatch of m noise samples {z(1),. .., z(™)} from noise prior p,(z).

e Sample minibatch of m examples {z(),..., (™)} from data generating distribution

Pdata ().

e Update the discriminator by ascending its stochastic gradient:

1 <& . .
Vou > [10g Do, () + log(1 — Dy, (Go, (z1)))]
i=1

end for
e Sample minibatch of m noise samples {z(%), ..., (™)} from noise prior p,(2).

e Update the generator by ascending its stochastic gradient (improved objective):
1 «— .
Vo, 3 3 108(Day(Go, ()
1=

end for
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Alternating Training for GANs

GAN Training Process (Alternating Phases):

1. Discriminator Training: Trains for one or more epochs while the generator remains unchanged. It learns to
differentiate real from generated data, adapting to the generator’s flaws.

2. Generator Training: Trains for one or more epochs while the discriminator remains unchanged. This
prevents the generator from chasing a moving target.

Training Dynamics:
% As the generator improves, the discriminator struggles to distinguish real from fake data.
% A perfect generator results in a discriminator with 50% accuracy (random guessing).

R/

¢ Opvertraining can degrade performance, leading to unstable convergence where the generator receives
meaningless feedback.
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Challenges in GAN Training

o Hyperparameter Sensitivity: GANs are sensitive to learning rates, batch sizes, and architectural choices
O Mode C ollapse: The generator produces limited diversity.

> Training Instability: The minimax optimization is difficult to balance.

o Vanishing/Exploding Gradients: The discriminator can become too strong or weak, leading to poor gradients

2

//'f
L —m .
1”/?/
> of
T |
P Z
. e
=5 . '__—//

—2 —2 o
e

(a) Standard GAN
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Hyperparameter Sensitivity

1. Adjust Learning Rates Carefully
¢ Learning Rate (a): Too high — instability, Too low — slow convergence.

% Two-Timescale Update Rule (TTUR): Use a smaller learning rate for the generator than the discriminator to
balance training.

2. Tune Adam Hyperparameters

» Standard settings (p1=0.9, 2=0.999) can lead to oscillations.
» For GANSs, reducing B1 to 0.5 improves stability.

3. Normalize Inputs and Use Spectral Normalization
v" Normalize training images between [-1,1] instead of [0,1] (for Tanh activation).
v’ Use Spectral Normalization on the discriminator to control weight magnitudes.

4. Improve Loss Functions
o Wasserstein Loss (WGAN): Uses Earth-Mover distance for better gradient behavior.
o Gradient Penalty (WGAN-GP): Adds stability and prevents exploding gradients:

5. Use Progressive Training

O Start with low-resolution images, gradually increasing resolution (used in Progressive Growing GANs).
1 Helps GAN learn simple features first before complex details.

ﬁ l l P I GILLINGS SCHOOL OF
= GLOBAL PUBLIC HEALTH




Hyperparameter Sensitivity

6. Apply Regularization Techniques

*Batch Normalization: Helps control variance, but can cause mode collapse in GANSs.
Instance Normalization: Often more stable than batch normalization.
*Dropout in Discriminator: Helps prevent overfitting.

7. Monitor Convergence and Use Early Stopping
*Track GAN metrics (FID, Inception Score) instead of just loss values.

*Avoid overtraining: If the discriminator gets too strong, freeze it temporarily.
8. Use Larger Batch Sizes

*GANSs often benefit from larger batch sizes (e.g., 128-512) to stabilize updates.
*Gradient accumulation can be used if GPU memory is limited.

9. Data Augmentation

*Apply transformations (rotation, flipping, color jitter) to make training more robust.
*Prevents the discriminator from memorizing training data.

10. Experiment with Alternative Architectures
*Self-Attention GANs (SAGAN): Improves global structure modeling.
*BigGAN: Uses larger batch sizes and orthogonal regularization for stability.
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Mode Collapse

Mode Collapse in GANSs refers to a common failure mode where

the generator fails to capture the full diversity of the data distribution
and produces limited variations of samples. Instead of generating a
wide range of outputs, it collapses to generating a few or even a single
type of sample repeatedly.

Why Does Mode Collapse Occur?

 Imbalanced Generator-Discriminator Learning

¢ Training Instability

¢ Lack of Diversity-Promoting Mechanisms

Effec]fs of Mode Collapse
** Reduced Sample Diversity — Poor representation of the real dataset.
* Low-Quality Generation — Outputs look repetitive and lack variety.

¢ Unreliable Model — The generator fails to generalize.

lllustration of example monotonous output.
(source)
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https://neptune.ai/blog/gan-loss-functions

Techniques to Mitigate Mode Collapse

1.Minibatch Discrimination

Encourages diversity by comparing samples in each batch.
2.Feature Matching

Instead of just fooling the discriminator, the generator learns to match feature statistics of real data.
3.Wasserstein GAN (WGAN)

Uses the Earth Mover (Wasserstein) distance to stabilize training and avoid collapsing to few modes.
4.Unrolled GANs

Allows the generator to anticipate discriminator updates, preventing it from getting stuck in mode collapse.
5.Mutual Information Regularization

Forcing the generator to learn meaningful latent representations that generate diverse outputs.

More details of example GAN suffering mode collapse: https://neptune.ai/blog/gan-failure-modes
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https://neptune.ai/blog/gan-failure-modes

The taxonomy of the recent GAN's

:LAPGAN, 2015 (Laplacian pyramid coding))

_/l'JCGAN, 2016 (Transposed convolution in generator)\/

[BEGAN, 2017 (Autoencoder as dlscrlmlnatorD

{Network architecture

PPROGAN, 2017 (Progressive manner during training) — AutoGAN, 2019 (multi-level architecture search))

P <5 /BigGAN, 2019 (Deeper net and larger batch size})
§AGAN, 2018 (Self-attention module) ) b =

&LG, 2020 (A local sparse attention Iayer)\)

(AC-GAN, 2017 (Auxiliary classifier) )
CGAN, 2014 (Label Info Into discriminator and generator)\{) 3
E (\InfoGAN, 2016 (Classifier for Iabels)

Latent space [ - =
\BiGAN, 2016 (Encoder for learning inverse mapping) |

Architecture

/SGAN, 2016 (Multi-headed layer in dlscrlmlnatorD

{CycleGAN, DiscoGAN, DualGAN, 2017 “—{Image style transfer)
-{SRGAN, 2016\/—<Image super—resolution)
7 o /Scal h
[ StyleGAN, 2019’_‘\s::cel;lc face generation )
/ . N [ . - - .
{Application focused | Face Gompletion GAN, 2017 Face completion) » Architecture-variant GANs: Modify network structures

(e.g., CNN-based, RNN-based models).

- AlphaGAN, 2018 Image matting)
Pmposed GANs Taxonomy -I\/Moco-GAN . 2018\—(DVD-GAN. 2019\)—(Vldeo generatlon\‘ )

» Loss-variant GANSs: Modify loss functions to improve
stability (e.g., WGAN, LSGAN, f-GAN).

" SinGAN, 2019— Image manipulation learned by one image

'RGAN, 2018 (Integral probability metric)

/\)VGAN. 2017 (Wasserstein distancéD

Geometric GAN, 2017 (Hinge loss»—ﬁ/Sphere GAN, 2019 (Riemannian manifolds)

Loss Types

FCGAN, 2014 (JS divergence) — LSGAN, 2016 (Pearson divergence))— f-GAN, 2016 (f-divergence) |

UGAN, 2016 (Second order gradient loss)jl

LS-
GAN, 2017 (Designated margin between real and fake samples) ‘

Non-IPM based

Loss

-QNGAN-GP, 2017 (Gradient penalty on WGAN) )

HWGAN-CT, 2018 (Soft consistency on WGAN) )
H WGAN-LP, 2017 (Lipschitz penalty on WGAN, less sensitive))
-{ Regularization i‘—\MRGAN, 2016 (Penalize missing modes))
{SN-GAN, 2018 (Spectral normalization))

|(S5-GAN, 2019 (Self-
supervision avoid discriminator forgetting)
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Different GANSs

Model
GAN

LSGAN

WGAN

WGAN-
GP

cGAN

StyleG
AN

Stability
Low

Medium

High

Very High

Medium

High
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Mode Collapse
High

Medium

Low

Very Low

Medium

Low

Convergence
Unstable

More stable

More stable

Very stable

Stable

Stable

Sample
Quality

Medium

Medium

High

Very High

High

Very High

Special
Features

Baseline

Least squares
loss

Wasserstein
distance

Gradient
Penalty

Class
conditioning

Style control



Timeline of GAN architectures

Complexity and Mechanisms Quality and Diversity

w» Goodfellow et al.(Original GAN) Fully-connected network 2014
E — ©
o

Cascade of CNN within a

Denton et al.(LAPGAN) Laplacian pyramid framework ¢

2015

Mo

9pOW 3|8uls

Radford et al.(DCGAN) Deconvolutional CNN 2016
| : ]

Karras et al.(PROGAN) Progressive growing neural network
oy

Han Zhang et al. (SAGAN) Self-Attention CNN
I

Orthogonal regularization to generator.
By using deeper SAGAN with larger

Brock et al. (BigGAN) training batch size.
e

Latent space of the generator and the
discriminator are connected to share

Karnewar et al. (MSG-GAN) more information
| —

Complexity in blue stream refers to size of the architecture and computational cost such as batch size. Mechanisms
refer to the number of types of operations (e.g., convolution, deconvolution, self-attention) used in the architecture (e.g.,
FCGAN uses fully connected layers for both discriminator and generator. In this case, the value for mechanisms is 1).
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Loss-variant GANs

@ Jointly training two networks is challenging, can be unstable. Choosing objectives
with better loss landscapes helps training, and is an active area of research.

o X ~Px vs. G(Z) ~ Pg with Z ~ N(0,1)]

@ Training GAN is equivalent to minimizing Jensen-Shannon divergence between
generator and data distributions.

o D(Px,Pa) = supjer {Ex~py $1(£(X)) ~ Ey~poda(f(Y))}

GAN DISCRIMINATOR LOSS GENERATOR LOSS

MMGAN Lo = —E,.p, [10g(D(2))] = Esnp, [log(1 — D(2))] LY = Esnp, [log(1 - D(2))]
NS GAN Ly = —Egnp, [log(D(x))] — Egnp, [log(l — D(2))] L™ = —Eg~p, [log(D(3))]
WGAN LN = —E.wp, [D(2)] + Esnp, [D(#)] L5 = —Egnpy [D(2)]

WGAN GP  LNOANOP _ pWoan 4 AR, [(||[VD(az + (1 — ad)|lz = 1)3] LXAF — _E. _ [D(&
D D g G P

LSGAN L5 = _E,, [(D(2) — 1)?] + Esnp, [D(2)?) LEN = —Egnp, [(D(2 — 1))
DRAGAN ~ LBMOMN — £OMN L AR, o N(0.0[(IIVD(#)]l2 = 1)) LN = By pg [log(1 = D(2))]
BEGAN LN =E, . [l|lz — AE(z)||1] — keEsnp, [lI# — AE(#)|11]  LEF = Esp, (1|2 — AE(2)|]1]
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GAN-related Loss Functions

GANSs aim to approximate the real data distribution Pdata (X ) using a generator network  G(n) , where

n ~ pz(n) is drawn from a simple prior distribution.
W The training process is driven by a discriminator D(x), which distinguishes real from generated samples.

L2 The loss function should measure the divergence between Pdata ( X) and Pg ( X) - where Pg ( X) is the

distribution of generated samples
Minimax Loss: In the original GANs, the generator tries to minimize the following function while the discriminator
tries to maximize it:
min max V (D, G) = E[log(D(x))] + E,[log(1 — D(G(2)))]

G D
The formula derives from the cross-entropy between the real and generated distributions.

max V(D, G) = mgx{IE'JX,\,pdata [log D(x)] + Ex~p,[log(1 — D(x))]}

For a given x, the optimal discriminator is given by

D*(X) _ Pdata(X)

Pdata(x) + Pg(X)
Thus, minimizing the GAN objective i1s equivalent to minimizing the Jensen-Shannon divergence as follows:
mGjn V(G,D*) = mGin JS(Pyata|| Pg)+log 4 = mGin KL(Pgata||M) + KL(Pz||M)
M(x) = 3(Pdata(x) + Pg(x))
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Minimax L.oss

The Standard GAN loss function can further be categorized into two parts: Discriminator loss and Generator
loss. The diagram below summarizes how we train the discriminator and the generator using the corresponding
gradient.

m

T 3o (5) 1 (10 (0 (=)

M Discriminator] >» D —>» cost f-=-=-=-=--- I
»0O J

1

1

ZNJZr(O’ ? -—)[ Generator ] E
N . m 1
z~ U(1,1) A = Vog;%;log (1—D(G (z(i)))) or Vog%i log (D (G (z(i)))) E

Real image @

Non-Saturating GAN Loss
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f-diveroence 0 KL: f(x) = xlog(x) - x+ L.

The f-divergence between probability densities p and g 0 X23 f( ) %(X_1)2.
0= 1 (23)] - 1 (23) e 174
: 0 L (x)z\x—l].

here f : (O, — R | function with f(1) = 0.
where £ : (0, +00) s a convex function with f(1) 0 Jensen-Shannon (JS): f(x) = xlogx - (x + 1) log X£*
@ If p = q, then Dr(p||q) = 0. L o e

@ Jensen's inequality:

Dr(plla) 2 £ [Ex-q (253 ) | = 1) =0,

@ If f(x) is strictly convex in a neighborhood of 1, then
D¢(pllg) =0 <= p=gq.

@ The KL divergence is a special case by taking f(x) = xlog x — x + 1.
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Least Squares GAN (LSGAN)

* Objective: Improve stability and quality of GAN training by replacing standard binary cross-entropy

loss with least squares loss.
* Proposed by: Mao et al. (2017) in the paper "Least Squares Generative Adversarial Networks”
*  Key Motivation: Standard GANSs suffer from vanishing gradients when the discriminator becomes

too confident. Least squares loss provides stronger gradients and better sample quality.

In LSGAN, the discriminator is trained with the following least squares loss:

%]EXNPdata [(D(x) = 1)°]+ %EZNPZ[D(G(Z))z]

In LSGAN, the generator is trained to minimize:

1

SEzep.[(D(G(2)) - 1)7]

Minimizing LSGAN loss is equivalent to minimizing the Pearson y* divergence.

Lp =

Lg =

s LSGAN minimizes the Pearson y? divergence, making it more stable than standard GAN:Ss.
¢ Compared to Jensen-Shannon divergence (used in standard GANS), ¥ divergence is more sensitive

to small differences in distributions.
s LSGAN penalizes fake samples more aggressively, which helps avoid mode collapse.
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Wasserstein GAN (WGAN)

Let Q be a subset of R?. Let 13,(Q) be the set of Borel probability measures on Q with
finite pth moment. The p-Wasserstein metric is defined as

1/p
wi(uv) = (ot [x=ylParten)) . wand v e By(Q)

=)

For the special case of p = 1, the p-Wasserstein metric is also known as the Monge-Rubinstein metric, or the
earth mover distance.

The 1-Wasserstein metric can be expressed as (Villani, 2008),

Wi(u, v) = sup { [ et - | f(x)dv(x)},

feF

This expression of 1-Wasserstein metric is computationally convenient, which is used in the construction
of Wasserstein generative adversarial networks (WGAN) (Arjovsky et al., 2017).

K“\QGGOOC

Wasserstein GAN
Standard GAN N_critic=5

i \ | N N Samples ﬂ
Samples ‘ - ;

/

Epoch 0 Epoch 1 Epoch5  Epoch10  Epoch20 Epoch50 Epoch 100
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Training WGAN

Critic (Discriminator) Loss:

Lp = ExwPy | D(X)] = Eznp,[D(G(2))]

Methods to Enforce Lipschitz Constraint:
Weight Clipping (Original WGAN): Gradient Penalty (WGAN-GP):

—c<w<ec Lep = AEgp, [(|[V£D(R)]|2 — 1)2]

Voo Lo = Vo, (BxwPy, [D(X)] = Ezwp, [D(6(2))])

Op + 0p + nDVQD Lp

Generator Loss:

Le = —E,p.[D(G(2))] Vol = —VgE.up, [D(G(2))]

0c < 0c +n6Ve.Lc

Training Process:

1. Update the critic D multiple times per generator update.
2. Compute Wasserstein distance using the critic’s output.
3. Update generator G to minimize the critic’s output.
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WGAN vs WGAN-NP

Wasserstein GAN (WGAN)

H e I
-
k/
Gulrajani et al, “Improved Training of

Arjovsky, Chintala, and Bouttou, “Wasserstein GAN”, 2017 Wasserstein GANs”, NeurlPS 2017

WGAN with Gradient Penalty
(WGAN- GP)
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Progressive GAN (PGAN)

o Progressive GAN (PGAN) is a technique for progressive growth of layers in both the generator and discriminator.
J Introduced by Karras et al. (2017) for high-resolution image synthesis.
L Allows training GANSs stably at resolutions up to 1024x1024.

L Works by starting small and growing larger over training iterations.

Progressive Growing Mechanism

) . Latent Latent Latent
g Training begins with low-resolution images (e.g., 4x4). G I . i I !
New layers are added progressively to both generator and b & [ ba ]
| —
discriminator. ; g )
“oud layers remain trainable, allowing smooth transition. ! A
L2 Uses smooth transition (fade-1n layers) when adding new I[ TR ll

resolutions. . l &
i | " -
D | | Reals ' iReals ; | Reals

Architecture of Progressive GAN i i .
L Generator and Discriminator start with small networks (4%4). C ]
L New convolutional layers are added progressively to increase —_—
resolution. i —
L Uses skip connections to stabilize training. [ ] [0 ]

L Mini-batch standard deviation is used to improve diversity. Training progresses >
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Code: Vanilla GAN

import torch
import torch.nn as nn
import torchvision.models as models

# ————- Define Hyperparameters ---

lr = 0.0002 # Learning rate

z dim = 64 # Dimensionality of the noise vector

image dim = 28*28 # 784 for MNIST (28 x 28)

hidden dim = 128 # Hidden layer dimensionality for both Generator and Discriminator
batch size = 128

epochs = 50 # number of epoches

# —-——- Define the Generator -----

# A fully connected (MLP) generator that takes a random noise vector z and outputs a 28x28 image (784-dimensional
vector). We apply a Tanh activation to the final layer to constrain the pixel values between -1 and 1.
class Generator (nn.Module) :
def init (self, z dim, hidden dim, out dim):
super (Generator, self). init ()
self.net = nn.Sequential (
nn.Linear (noise dim, hidden dim),
nn.RelU (True),
nn.Linear (hidden dim, hidden dim),
nn.RelU (True),
nn.Linear (hidden dim, out dim),
nn.Tanh ()

)

def forward(self, x):
return self.net (x)
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Code: Vanilla GAN

import torch
import torch.nn as nn
import torchvision.models as models

i oee e Define the Discriminator -----

# A fully connected (MLP) discriminator that takes a 784-dimensional vector (flattened 28x28 image) and outputs a
single probability (real vs. fake). We apply a Sigmoid at the end to interpret the output as a probability.

class Discriminator (nn.Module) :

def init (self, in dim, hidden dim):
super (Discriminator, self). init ()
self.net = nn.Sequential (

nn.Linear (in dim, hidden dim),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear (hidden dim, hidden dim),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear (hidden dim, 1),
nn.Sigmoid ()

)

def forward(self, x):
return self.net (X)

# ————- Instantiate Model and Optimizers -----

# Initialize generator and discriminator

gen = Generator (z dim, hidden dim, image dim).to (device)

disc = Discriminator (image dim, hidden dim) .to (device)

criterion = nn.BCELoss () # Binary Cross Entropy loss

# Optimizers (use Adam for both)

optimizer gen = optim.Adam(gen.parameters(), lr=1lr, betas=(0.5, 0.999))
optimizer disc = optim.Adam(disc.parameters(), lr=lr, betas=(0.5, 0.999))
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Controllable Generation and Conditional GAN

Most of the practical applications require the ability to sample a
conditional distribution, like:

Noise Next frame prediction.
vector “in-painting”,
| —>|  Generator segmentation,
Gilss i style transfer.
(one-hot) |°] This would in particular address some of the shortcomings of
vector ] unconditional GANS.

lllustration of example to generate a breed of dog (source)

D CGANis a supervised extension of GANs where the generator and discriminator receive additional information.
I Allows generating samples based on specific conditions.
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https://avandekleut.github.io/vae/

CGAN

The CGAN proposed by Mirza and Osindero (2014) consists of parameterizing both G and D by a conditioning
quantity Y.

mGin mgx IE‘:x,yrvpdata(x,y)[Iog D(X7 y)] + EZNPz(Z)ayNPy(Y) [Iog(l a D(G(z,y),y))]

This adds semantic meaning to latent space manifold and provides more control in the types of output generated by
the generator.

Training Algorithm: —— -~ @ ~

1. Initialize generator G, discriminator D, and dataset.
2. For each iteration: |. 00 .]

» Sample real data (x,y) ~ pgata(X,y)-

» Generate fake samples G(z,y) with z ~ p,(z). > {. . . . .’ [O Q Q O O])

» Update D by minimizing:

L = ~E(x,y)mpuns 108 D%, Y)~Ezmpymp, llog(1-D(G (2, ¥), ¥))] (oo o 90000 h

» Update G by minimizing:
90000
LG = _Ezrvpz,yNPy [|Og D(G(Z, .y)7 y)]

3. Repeat until convergence. \Z[. 000 .J [O @O0 O]V/
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Pix2Pix
L Pix2Pix is a supervised image-to-image translation model based on cGANsS.
2 Introduced in Isola et al. (2017) for tasks like sketch-to-photo, satellite-to-map, and more.

Pix2Pix Objective: G* = arg mgn max Lecan(G, D) + AL11(G) L11(G) =Ex, .|ly — G(x,2)|1

— Training Algorithm
Lccan(G, D) = Ey y[log D(x, y)] + Ex -[log(1 — D(x, G(x, z)))] LR
1. Initialize generator G and discriminator D.
_ Encoder Generator 2. For each training step:
Slletled maps Transferred styled maps > Sample real image pairs (X, y) ~ Pdata (X,y).
» Generate fake image G(x, z).

i _> II—)-—>I| =d ' Diseniminatop » Update D by minimizing:
i Lp = —E[log D(x, y)] — Ellog(1 — D(x, G(x, 2)))]
I = Fake/Real

Target styled maps Map > Update G by minimizing:
L) Lc = —E[log D(x, G(x, z))] + Ally — G(x, 2)|l1
| 3. Repeat until convergence.

Pix2Pix Generator: U-Net Pix2Pix Discriminator: PatchGAN
J The generator is based on a U-Net architecture, using L Uses a convolutional PatchGAN discriminator instead of a
an encoder-decoder structure with skip connections. full-image classifier.

The encoder extracts deep features while the decoder & PatchGAN classifies small image patches instead of the
reconstructs the image. entire image.
> Skip connections help preserve fine-grained details. o Helps focus on local texture realism and prevents blurriness.
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Application of CGANs

Image-to-image translation

Labels to Street Scene _ Labels to Facade BW to Color

input otput input output
Edges to Photo

output input output

https://arxiv.org/pdf/1611.07004.pdf
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https://arxiv.org/pdf/1611.07004.pdf

Application of CGANs

This bird has a This flower has
This bird 1s white  yellow belly and  overlapping pink
with some black on tarsus, grey back, pointed petals
its head and wings, wings, and brown surrounding a ring
and has a long throat, nape with  of short yellow

orange beak a black face filaments

(a) StackGAN
Stage-1
64x64
images

(b) StackGAN
Stage-I1
256x256
1mages

(c) Vanilla GAN b
256x256
images
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Text to image synthesis

Comparison of StackGAN (stacked conditional
GAN) and a one-stage GAN for generating 256x256
images. (a) Given text descriptions, Stage-I of
StackGAN sketches rough shapes and basic colors
of objects, yielding low-resolution images. (b)
Stage-1I of StackGAN takes Stage-I results and text
descriptions as inputs, and generates high-resolution
images with photo-realistic details. (c) Results by a
vanilla 256x256 GAN which simply adds more
upsampling layers to state-of-the-art GAN-INT-CLS
[26]. It is unable to generate any plausible images of
256%256 resolution.

http://arxiv.org/pdf/1612.03242



http://arxiv.org/pdf/1612.03242

Code: Conditional GAN

import torch
import torch.nn as nn

# ————- Define Hyperparameters ---

lr = 0.0002 # Learning rate

z dim = 64 # Dimensionality of the noise vector

image dim = 28*28 # 784 for MNIST (28 x 28)

hidden dim = 128 # Hidden layer dimensionality for both Generator and Discriminator
batch size = 128

epochs = 50 # number of epoches

# —-——- Define the Generator -----

# We concatenate [z, label onehot] into a single vector of size z dim + label dim before passing through an MLP. The
output is a flattened 28x28 image (size 784), which we squish to [-1,1] using Tanh.
class Generator (nn.Module) :
def init (self, z dim, label dim, hidden dim, out dim):
super (Generator, self). init ()
self.net = nn.Sequential (
nn.Linear (noise dim, hidden dim),
nn.RelU (True),
nn.Linear (hidden dim, hidden dim),
nn.RelU (True),
nn.Linear (hidden dim, out dim),
nn.Tanh ()
)
def forward(self, Xx):
# labels: (batch size, label dim)
# z: (batch size, z dim)
X = torch.cat([z, labels], dim=1) # Concatenate noise + label
return self.net (X)
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Code: Conditional GAN

import torch
import torch.nn as nn

# -———- Define the Discriminator -----
# We concatenate [image, label onehot] into a single vector of size image size + label dim before passing through an
MLP. The final output is a single probability (real or fake), obtained via Sigmoid.
class Discriminator (nn.Module) :
def init (self, in dim, label dim, hidden dim) :
super (Discriminator, self). init ()
self.net = nn.Sequential (
nn.Linear (in _dim + label dim, hidden dim),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear (hidden dim, hidden dim),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear (hidden dim, 1),
nn.Sigmoid ()
)
def forward(self, x, labels):
# x: (batch size, image size)
# labels: (batch size, label dim)
X = torch.cat ([x, labels], dim=1) # Concatenate image + label
return self.net (X)

# ————- Instantiate Model and Optimizers -----

gen = Generator (z dim, label dim, hidden dim, image size) .to(device)

disc = Discriminator (image size, label dim, hidden dim).to(device)
criterion = nn.BCELoss ()

optimizer gen = optim.Adam(gen.parameters(), lr=1lr, betas=(0.5, 0.999))
optimizer disc = optim.Adam(disc.parameters(), lr=lr, betas=(0.5, 0.999))
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Cycle GAN to Transfer Image Domains

Monet <_ Photos Summer _ Winter

horse — zebra

_ " > N
Cezanne

Photograph Van Gogh
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Cycle GAN

> CycleGAN is an unsupervised image-to-image translation method.

2 Unlike Pix2Pix, it does not require paired data.

L2 Uses two generators and two discriminators for learning mappings between two domains.
L2 Useful for photo enhancement, style transfer, and domain adaptation.

s Convert an image from one representation to another.

¢ Capture characteristics of one image domain and figure out how these characteristics could be translated into
the other domain.

¢ Two mapping G : X — Y and F : Y — X. Two discriminators: Dy and Dy.

Dx Dy

Encourage G to generate images similar to images in domain Y and Dy to h G A
distinguish G(x) from vy. 5 /.-\

LGAN (Gr DY! X, Y)

="Ey s 11090y )] + B pua 109 (1 = Dy (6] Xl Y
Similarly, for F, we also have Lg 4y (F, Dy, X,Y).

F
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Consistency Loss

* Need extra regularization to make sure mapping function is cycle-consistent, (capable of mapping
the input images to any subsets of images in the target domain), 1.e., x — G(x) — F(G(x)) = x.

* Cycle consistency 10ss: Leyc(G,F) = Exp,_ .. (x) ”|F(G(x)) - xlu T
Ey~paata) ”lG(F(Y)) B y||1]

e The full ObjCCtiVe: L(G, F, DX' Dy) = LGAN(GI Dy, X, Y) + LGAN(F’ Dx, X, Y)

a W E e
7 N " 7N
e Y N~ * Y X Y
F F
x Y X Y

: cycle-consistency
: 5 > \.... loss
cycle-consistency |,..s 5
loss ) O : _/.
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Cycle GAN Example Result

Cyclealone ~ GANalone  GAN+forward GAN+backward CycleGAN

Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, in IEEE International
Conference on Computer Vision (ICCV), 2017
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Cycle GAN Example Result

Cezanne

MAIIITYY

LI Y

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017
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Tips to improve GAN performance

* Change the cost function for a better optimization goal.

* Add additional penalties to the cost function to enforce constraints.
* Avoid overconfidence and overfitting.

* Better ways of optimizing the model.

* Add labels (Conditional GAN).

*  More details and other implementation tips: https://towardsdatascience.com/gan-ways-to-improve-

gan-performance-acf37f9f59b
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https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b

Code: Cycle GAN

# The key idea is to learn two translation mappings
between two domains X and Y without requiring paired
examples.
# -———- Define Residual Blocks
class ResidualBlock (nn.Module) :
"""Residual Block with instance normalization."""
def init (self, channels):
super (ResidualBlock, self). init ()
self.block = nn.Sequential (
nn.ReflectionPad2d (1),
nn.Conv2d(channels, channels,

kernel size=3,

stride=1),

nn.InstanceNorm2d (channels),

nn.RelLU (True),

nn.ReflectionPad2d (1),

nn.Conv2d(channels, channels, kernel size=3,
stride=1),

nn.InstanceNorm2d (channels)
)
def forward(self, x):
return x + self.block(x)
(G: X—>Y,

# - Define ResNet-based Generators F: Y 5 X)—--

class GeneratorResNet (nn.Module) :

mwwmwn

Generator that transforms input images (domain X to
domain Y or vice versa).
Uses several downsampling layers,

upsampling layers.

mwwmwn
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residual blocks,

and

def init (self,
ngf=64) :

in channels, out channels, n res blocks=6,

__init_ ()

super (GeneratorResNet, self).
# Initial convolution block
model = [nn.ReflectionPad2d(3),
nn.Conv2d(in_ channels, ngf,
nn.InstanceNorm2d (ngf),
nn.RelLU (True) ]
# Downsampling
curr _dim = ngf
for in range(2):
model += [nn.Conv2d(curr dim,
padding=1),
nn.InstanceNorm2d (curr dim*2),
nn.ReLU (True) ]
curr dim *= 2
# Residual blocks
for in range(n_res blocks):
model += [ResidualBlock (curr dim) ]
# Upsampling
for in range(2):
model += [nn.ConvTranspose2d(curr dim, curr dim//2,
kernel size=3, stride=2, padding=1, output padding=1l),
nn.InstanceNorm2d (curr dim//2),nn.RelLU(True) ]
curr _dim //= 2
# Output layer
model += [nn.ReflectionPad2d(3), nn.Conv2d(curr dim,
out channels, kernel size=7, stride=1l), nn.Tanh()]
self.model = nn.Sequential (*model)

kernel size=7, stride=1l),

curr _dim*2, kernel size:

stride=2,

def forward(self, Xx):
return self.model (x)



Code: Cycle GAN

i oee e Define the Discriminator -----

class Discriminator (nn.Module) :
PatchGAN discriminator: tries to classify each NxN patch in the image
as real or fake. Output is a feature map of "realness" scores.

mwwmwn

def init (self, in channels=3, ndf=64):

super (Discriminator, self). init ()
# A small patch-based ConvNet
model = [

nn.Conv2d(in channels, ndf, kernel size=4, stride=2, padding=1l),
nn.LeakyReLU(0.2, inplace=True),

nn.Conv2d(ndf, ndf*2, kernel size=4, stride=2, padding=1l),
nn.InstanceNorm2d (ndf*2),
nn.LeakyReLU(0.2, inplace=True),

nn.Conv2d(ndf*2, ndf*4, kernel size=4, stride=2, padding=1l),
nn.InstanceNorm2d (ndf*4),
nn.LeakyReLU(0.2, inplace=True),

# Last convolution
nn.Conv2d(ndf*4, 1, kernel size=4, stride=1, padding=1l)
# No Sigmoid here, we use BCEWithLogitsLoss

]

self.model = nn.Sequential (*model)

def forward(self, x):
return self.model (x)
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Imaging Synthesis

Cross-Modal Image Synthesis via Deep Learning

Y. Pan, M. Liy, C. Lian, Y. Xia, and D. Shen. MICCAI, 2019
Y. Pan, M. Liy, C. Lian, T. Zhou, Y. Xia, and D. Shen. MICCAI, 2018
Y. Pan, M. Liy, C. Lian, L. Yue, S. Xiao, Y. Xia, and D. Shen. ISMRM, 2019
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Cross-Modal Image Synthesis for Diagnosis

* Multi-modal imaging data for disease diagnosis (e.g., MRI and PET)

* Providing complementary information of the brain
Subjects usually have incomplete multi-modal data

Diagnosis with complete multi-modal images Diagnosis with incomplete multi-modal images
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Cross-Modality Image Synthesis

* Generating missing PET/MRI scans for diagnosis

%

Xp
y
2

Y. Pan, M. Liu, C. Lian, T. Zhou, Y. Xia, and D. Shen. MICCAI 2018
Y. Pan, M. Liu, C. Lian, L. Yue, S. Xiao, Y. Xia, and D. Shen. ISMRM, 2019
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Synthetic PET Scans

GAN CGAN VGAN Ours Ground Truth

Y. Pan, M. Liy, C. Lian, T. Zhou, Y. Xia, and D. Shen. MICCAI, 2018
Y. Pan, M. Liu, C. Lian, L. Yue, S. Xiao, Y. Xia, and D. Shen. ISMRM, 2019
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e Landmark-based multi-scale network for classification

Down-samplin Channel concatenation 3x3x3 Convolution Fully-connected 2x2x2 Max-poolin
pling p g

i /] i
s )
i
...................... L
_____ i
T i
i
1 ]

i : *' P' O P'

DCM

™M [ DCM ';
>| : >' >’ van l »’ »' h'»‘ S 32
| : | : ‘ v
32 32 32 i 164 64 64

Sub-network 2

Y. Pan, M. Liy, C. Lian, T. Zhou, Y. Xia, and D. Shen. MICCAI, 2018
Y. Pan, M. Liy, C. Lian, L. Yue, S. Xiao, Y. Xia, and D. Shen. ISMRM, 2019



* Results of pMClI vs. sMCI with complete MRl and PET (after imputation)

m ROl mVoxel mLMF mLDSIL mLDMIL mLM3IL-C @LM3IL (Ours)

Y. Pan, M. Liy, C. Lian, T. Zhou, Y. Xia, and D. Shen. MICCAI, 2018
Y. Pan, M. Liy, C. Lian, L. Yue, S. Xiao, Y. Xia, and D. Shen. ISMRM, 2019



Imaging Synthesis

Diagnosis-Oriented GAN for PET/MRI Construction

Y. Pan, M. Liu, Y. Xia, and D. Shen. IEEE Trans. Pattern Analysis and Artificial Intelligence, 2022
Y. Liu, L. Yue, S. Xiao, W. Yang, D. Shen, M. Liu. Medical Image Analysis, 2022
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Diagnosis-Oriented PET/MRI Construction

* Generating diagnosis-oriented PET/MRI scans

Synthetic PET Real MRI
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Y. Pan, M. Liu, Y. Xia, and D. Shen. IEEE Trans. Pattern Analysis and Atrtificial Intelligence, 2022
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Feature-Consistent Component

« Joint classification-oriented image synthesis and classifier training

Feature-consistent
Constraint Fp
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Disease-Image Specific Neural Network (DSNN) for Classification

Y. Pan, M. Liu, Y. Xia, and D. Shen. IEEE Trans. Pattern Analysis and Artificial Intelligence, 2022
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Results of Image Synthesis

Averaged PSNR: 27.15 Averaged PSNR: 28.16 Averaged PSNR: 29.62

PET

MRI

GAN CGAN FGAN (Ours) Ground Truth

. Pan, M. Liu, Y. Xia, and D. Shen. IEEE Trans. Pattern Analysis and Artificial Intelligence, 2022
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Results of Image Synthesis

« Classification results using synthetic MRl and PET scans

Synthetic MRI

in

Synthetic PET

Y. Pan, M. Liu, Y. Xia, and D. Shen. |EEE Trans. Pattern Analysis and Artificial Intelligence, 2022
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Results of Classification

« MCI conversion prediction with complete MRI and PET (after imputation)

Generating task-oriented PET scans boost performance

. Pan, M. Liu, Y. Xia, and D. Shen. IEEE Trans. Pattern Analysis and Artificial Intelligence, 2022
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Content

6 Theoretical Properties
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The()]_’e tiC al P ]_‘OP er tie S GANSs aim to approximate complex probability

distributions through adversarial training.
Lemma 1 (Noise-Outsourcing Lemma) Key theoretical questions:

> . .
Q Let (X,Y) be a random pair taking values in X x ) with joint distribution Pxy. . H,OW t 0 mathematlcally characterize the
distribution of imaging and text datasets (e.g.,
@ Suppose Y is a standard Borel space. ImageNet)?
Then there exists a random variable 1 ~ Uniform|0,1] and a Borel-measurable function Why do we think that a specific GAN (loss
G :[0,1] x X = Y such that 1) is independent of X and function and architecture) can learn the key
(X,Y)= (X, G(n, X)) almost surely (2) | complexity of certain distributions?

/ Can GANSs converge to the true data distribution
of some complex datasets?
What distance measure is optimized in training?
How to rigorously evaluate GANs in complex
scenqrios?
** What is the Manifold Hypothesis? How do GANSs generalize to unseen data?
*» High-dimensional data (e.g., images, text) often lies on a lower-dimensional manifold embedded
in a higher-dimensional space.
* Learning this low-dimensional structure is crucial for improving generative models.
*¢* Why Study Generative Models from this Perspective?
+* Understanding DGMs through this lens helps explain their strengths and weaknesses.
+* Provides insights into why certain models (e.g., diffusion models, GANs) outperform others (e.g.,
VAEs, normalizing flows)
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