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Examples: 

• Social networks, citation networks, multi-agent systems

• Knowledge graphs

• Recommendation System

• Protein interaction networks

• Molecules

• Road maps

• Brain networks

Graph-Structured Data

Why Are Graph-structured Data Important?
Graphs capture complex relationships and dependencies between entities:

•Interconnected entities influence each other (e.g., in social networks, a person’s behavior depends on their connections).

•Knowledge is structured in relational forms (e.g., in knowledge graphs, concepts are linked based on meaning and context).

•Biological and medical data exhibit intricate interactions (e.g., protein-protein interaction networks, brain connectivity graphs).

By modeling data as graphs, we can better understand structures, uncover hidden patterns, and improve AI-driven decision-making.

Graph-structured data is a type of data representation where entities (nodes) and

their relationships (edges) are explicitly modeled as a graph. This structure captures the

connections between data points, allowing for more effective analysis of relational

patterns.

Graphs are a general

language for describing 

and analyzing entities with

relations/interactions
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Graph-Structured Data is Everywhere
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https://iit.adelaide.edu.au/news/list/2021/09/16/the-topology-of-e-commerce-governance



Challenges

3

Graph-structured data pose significant challenges due to their irregularity, high 

dimensionality, and computational complexity. The major challenges include:

➢ Scalability and computational inefficiency

➢ Irregular and dynamic nature

➢Data sparsity and missing values

➢ Complex relationships and non-Euclidean space

➢ Challenges in learning meaningful representations

➢ Privacy, security, and adversarial attacks



❖ Large graphs (e.g., social networks, citation networks) contain billions of nodes and edges.

❖ Many traditional graph algorithms (e.g., PageRank, shortest path) have O(n²) or worse complexity.

❖ Memory and computational demands increase exponentially as graphs grow.

Example:

❑  Google's PageRank algorithm operates on a massive web graph (~60 billion pages).

Solution with GNNs:

➢ GraphSAGE: Uses node sampling and aggregation to reduce computation.

➢ FastGCN: Uses importance-based sampling for efficient learning.

➢Distributed frameworks: Utilize tools like DGL and PyTorch Geometric for large-scale graphs.

Scalability and Computational Inefficiency



❖ Unlike images and sequences, graphs lack a fixed structure, making batch processing difficult.

❖ Nodes have varying numbers of neighbors, leading to inefficiencies in training.

❖Many graphs evolve over time (e.g., Twitter networks, citation graphs).

Example:

❑  Social networks such as Facebook continuously update with new friendships and interactions.

Solution with GNNs:

➢ Temporal Graph Networks (TGNs): Adapt GNNs to evolving graph structures.

➢ Graph Attention Networks (GATs): Assign different importance to neighbors for better learning.

➢ Dynamic GNNs: Handle time-dependent graphs (e.g., financial fraud detection).

Irregular and Dynamic Graph Structures

https://scitechdaily.com/scientists-discover-common-brain-network-for-psychiatric-illnesses/



❖  Many real-world graphs have missing nodes, edges, or attributes.

❖  Data imbalance can lead to poor generalization in machine learning models.

Data Sparsity and Missing Values

Example:

❑ Recommender systems (e.g., Netflix, Amazon) have incomplete user-item interactions.

❑ Knowledge graphs have incomplete links and entities. 

Solution with GNNs:

➢ Graph Autoencoders (GAEs): Predict missing edges and restore incomplete graphs.

➢ Self-supervised Learning: Leverages unlabeled data to enhance representations.

➢ Data Augmentation for Graphs: Synthesizes new nodes and edges to improve learning.



❖ Traditional ML assumes Euclidean space (e.g., CNNs for images, RNNs for text).

❖ Graphs exist in non-Euclidean space, making feature extraction difficult.

Example:

❑ Protein-protein interaction networks require specialized models beyond standard deep learning.

Solution with GNNs:

➢ Spectral GNNs: Use graph Fourier transforms to process signals on graphs.

➢ Spatial GNNs: Learn directly from local neighborhood structures.

➢ Hyperbolic GNNs: Embed graphs in hyperbolic space to improve distance preservation.

Non-Euclidean Nature of Graph Data



Challenges in learning meaningful representations
❖ Irregular and Non-Euclidean Structure. 

❖ Capturing Long-range Dependencies

❖ Handling Heterogeneous Graphs (Multi-type Nodes and Edges)

❖ Lack of Labeled Data for Training

Solution with GNNs:

➢ Graph Convolutional Networks (GCNs) generalize convolution operations to graphs.

➢ Graph Attention Networks (GATs) assign different importance to different neighbors.

➢ Residual connections (e.g., Graph Residual Networks) help preserve information from earlier layers.

➢ Jumping Knowledge Networks (JK-Nets) allow the model to learn adaptive neighborhood aggregation.

➢ Higher-order GNNs consider information from multi-hop neighbors. 

➢ Heterogeneous GNNs (e.g., HAN, R-GCN) learn different embeddings for different node and edge types.

➢ Meta-path-based methods extract structural patterns in heterogeneous graphs.

➢ Self-supervised learning (SSL) generates pseudo-labels from the graph itself (e.g., contrastive learning).

➢ Semi-supervised GNNs (e.g., GCNs) propagate labels from a few labeled nodes.

Examples:

❑ A social network where users have different numbers of connections. 

❑ Academic networks contain researchers, papers, and institutions, each connected by different relationships.

❑ Biomedical graphs contain vast amounts of unlabeled molecular structures.



Security and Adversarial Attacks

❖ Graphs are vulnerable to adversarial attacks where malicious modifications disrupt model predictions.

❖ Privacy concerns arise when handling sensitive data (e.g., financial transactions, medical records).

Example:

❑ - Fake social media accounts manipulate recommendation systems and misinformation spread.

Solution with GNNs:

➢ Adversarially Robust GNNs: Detect and mitigate fake node additions.

➢ Differential Privacy for Graphs: Ensures sensitive data is protected during training.

➢ Graph Sanitization: Removes malicious edges and nodes before training.

7
7
2

8

Financial Systems

Credit Card Fraud Detection

Recommender Systems

Social Recommendation

Product Recommendation
….
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Key Characteristics of Homogeneous Graphs
❖ Single Node Type: All nodes in the graph belong to the same category.

❖ Single Edge Type: All edges represent the same kind of relationship between nodes.

❖ Uniform Structure: The graph follows a consistent connectivity pattern, making it easier to apply 

traditional graph-based algorithms.

Examples of Homogeneous Graphs
➢ Social Networks (e.g., Facebook, Twitter, LinkedIn)

Nodes: Users.  Edges: "Friends" or "Follows" relationships between users.

➢ Citation Networks (e.g., Google Scholar, ArXiv, PubMed)

Nodes: Research papers. Edges: "Cites" relationships, where one paper references another.

➢ Protein Interaction Networks (e.g., Biological Networks)

Nodes: Proteins. Edges: "Interacts with" relationships, representing biological interactions between proteins.

Homogeneous Graph



How to build an effective graph?

❖ Nodes (or vertices) represent the fundamental entities in a graph. They can correspond to different 
objects depending on the problem domain.

❖ Edges (or links) define relationships or interactions between nodes. Edges can be:
➢ Directed or undirected (e.g., one-way vs. mutual friendships).
➢ Weighted or unweighted (e.g., flight routes with different distances).
➢ Static or dynamic (e.g., evolving relationships over time).

❖ Choosing the Proper Network Representation. The way we construct a graph determines our 
ability to extract meaningful insights. Different representations can lead to different outcomes.

➢ Cases Where Representation is Unique and Unambiguous
➢ Cases Where Representation is Not Unique 

❖ How the Choice of Links Affects the Questions You Can Study
➢ The way you define connections (edges) influences the type of insights you can extract.
➢ If you ignore certain relationships, you may miss critical aspects of the data.
➢ If you add unnecessary edges, you might introduce noise and bias in analysis.



Graph Set-up 

Graph 𝐺 = (𝑉, 𝐸) is defined by a set of nodes 𝑉 and a set of edges 𝐸 between these nodes. An edge going 

from node 𝑢 ∈ 𝑉 to node 𝑣 ∈ 𝑉 as (𝑢, 𝑣) ∈ 𝐸.

DirectedUndirected



Adjacency Matrix
A convenient way to represent graphs is through an adjacency matrix 𝐴 ∈ ℝ|𝑉|×|𝑉|. We order the nodes in 

the graph so that every node indexes a particular row and column in the adjacency matrix. 



Graphs and Graph Signals
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Spectral graph theory. American Mathematical Soc.; 1997.

Matrix Representations of Graphs
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𝑨

Adjacency Matrix

Adjacency Matrix: 𝐴 𝑖, 𝑗 = 1 if 𝑣𝑖 is adjacent to 𝑣𝑗
𝐴 𝑖, 𝑗 = 0, otherwise

Spectral graph theory. American Mathematical Soc.; 1997.

Matrix Representations of Graphs
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Spectral graph theory. American Mathematical Soc.; 1997.

Matrix Representations of Graphs
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Degree Matrix:  

Adjacency Matrix: 𝐴 𝑖, 𝑗 = 1 if 𝑣𝑖 is adjacent to 𝑣𝑗
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Spectral graph theory. American Mathematical Soc.; 1997.

Matrix Representations of Graphs



How to Deal with Multi-relation?



Heterogeneous Graph
Key Characteristics of Heterogeneous Graphs
❖Multiple Node Types: Nodes represent different entities, such as users, items, papers, or institutions.

❖Multiple Edge Types: Different relationships exist between nodes, such as "authored by," "cites"

❖ Rich Semantic Information: The diverse relationships provide deeper insights than homogeneous graphs.

Examples of Heterogeneous Graphs
➢ Academic Citation Network

Nodes: Papers, authors, journals. Edges: "Cites" (paper-to-paper), "Authored by" (paper-to-author). 

➢ Knowledge Graphs (e.g., Google Knowledge Graph, Wikidata)

Nodes: People, locations, organizations, events.

Edges: "Works at" (person-to-organization), "Located in" (place-to-country).

Why Are Heterogeneous Graphs Important?
❑More expressive than homogeneous graphs, capturing richer information.

❑ Essential for real-world applications in social networks, recommendation systems, and knowledge graphs.

❑ Enhance AI models by incorporating multi-type relationships in representation learning.



Node, Edge, and Global Features
Node features represent characteristics or attributes of individual nodes for downstream tasks like node classification, 

clustering, and link prediction.

Common Types of Node Features

❖ Categorical Features: Node types (e.g., "user" or "product" in a recommendation system).

❖ Numerical Features: Values like age, price, or degree centrality.

❖ Textual Features: Descriptions, reviews, or labels in textual form.

❖ Vectorized Embeddings: Learned representations from NLP models or pre-trained embeddings.

Edge features define relationships or interactions between nodes for link prediction and edge classification.

Common Types of Edge Features

➢ Weight: The strength or importance of a connection (e.g., frequency of interactions).

➢ Type: The kind of relationship (e.g., friendship, purchase, citation).

➢ Timestamp: When the connection was established (useful for dynamic graphs).

➢ Directionality: Whether the edge is directed or undirected.

Graph-Level Features: graphs have global properties or features that apply to the entire network.

Examples include:

➢ Graph Density (How connected is the graph?).

➢ Average Clustering Coefficient (Tendency of nodes to form clusters).

➢ Graph Size (Number of nodes and edges).



Different Types of Task

Graph-based machine learning involves multiple 

tasks categorized by the focus of analysis. The 

main categories of tasks include:

Node-Level Tasks: Predicting properties of 

individual nodes.

Edge-Level Tasks: Inferring relationships 

between node pairs.

Community-Level Tasks: Detecting and 

analyzing groups of closely connected nodes.

Graph-Level Tasks: Understanding global 

graph properties.



Node Level Task

Predict attributes or labels of individual nodes.

Common examples: 

Node Classification: Assign labels to nodes (e.g., 
fraud detection in financial networks).

Node Regression: Predict continuous values (e.g., 
influence score in social networks).

Applications:

Social network analysis

Protein function prediction

Fraud detection



Node-level Network Structure and Graphlets

The node-level network structure examines the local properties of 

individual nodes within a graph. It helps in understanding how a 

particular node is positioned within the overall graph.

Key Properties:

❖ Degree: The number of direct connections a node has.

❖ Clustering Coefficient: Measures how well a node’s neighbors 

are interconnected.

❖ Centrality Measures:

➢ Degree Centrality: The number of direct links a node has.

➢ Betweenness Centrality: Measures how often a node acts as a 

bridge.

➢ PageRank: Determines the importance of a node based on link 

structures.

Applications:
Social Networks: Identifying influential users and community

structures.

Biological Networks: Analyzing protein interactions and

genetic pathways.

Fraud Detection: Finding anomalous transaction patterns.

Recommendation Systems: Improving item similarity measures.

Graphlets are small, connected subgraphs used to 

analyze local graph structures.

Provide insights into:

Structural patterns in networks.

Node similarity based on shared subgraph structures.

Network motif detection.

Graphlets capture the building blocks of complex 

networks.



AlphaFolder

AlphaFold is a deep learning-based model for protein structure prediction.

It represents protein structures as spatial graphs, where:

Nodes: Amino acids (residues) in a protein sequence.

Edges: Defined by spatial proximity between amino acids.

These graphs capture important structural and functional relationships 

in proteins.

Captures long-range interactions between amino acids that influence 

folding.

Helps predict tertiary structure from primary sequence.

Facilitates learning of protein properties such as stability and function.

Applications: 
Drug Discovery: Identifying binding sites for drug molecules.

Protein Engineering: Designing proteins with desired properties.

Disease Research: Understanding mutations in protein structures.



Edge Level Task
Predict properties or existence of edges.

Common examples:

Link Prediction: Determine if an edge should exist (e.g., 
friend recommendations on social media).

Edge Classification: Categorize relationships (e.g., 
sentiment analysis in social interactions).

Applications:

Recommendation systems

Fraud detection in transactions

Predicting drug-target interactions



Community Level Task
Identify groups of nodes with similar properties or high connectivity.

Common examples:

Community Detection: Identifying clusters of related nodes

(e.g., social network communities).

Graph Partitioning: Dividing a graph into smaller, meaningful 
subgraphs.

Applications:

Social network analysis (detecting influencer groups)

Biological networks (identifying protein complexes)

Market segmentation in business analytics



Graph Level Task
Analyze entire graphs (or a subset) to understand global properties.

Common examples:
Graph Classification: Assign labels to entire graphs (e.g., molecule toxicity prediction).

Graph Clustering: Group similar graphs based on structure.

Applications:
Chemical compound analysis

Fake news detection

Biological network analysis
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Graph Representation Learning
Graph representation learning methods transform nodes, edges, or entire graphs into continuous vector representations

while preserving their structural and attribute-based properties. These embeddings make it possible to apply standard

machine learning models to graph-based problems, such as node classification, link prediction, and graph clustering.

Traditional Graph Embedding Methods:
Matrix Factorization (Laplacian Eigenmaps, HOPE).

Random Walk-Based (DeepWalk, node2vec).

Deep Learning-Based (Graph Autoencoders).

Graph Neural Networks (GNNs):
Spectral GNNs (GCN).

Spatial GNNs (GraphSAGE, GAT).

Dynamic GNNs (EvolveGCN).

Categories of graph representation learning methods for 

non-heterogeneity-aware graphs  (Khoshraftar and An, 2024).



Why Map Nodes to Embeddings
Goal: Represent nodes as dense vectors in a low-dimensional

space while preserving network relationships.

The similarity between node embeddings should reflect their

proximity in the original graph.

Nodes with similar embeddings:

Are structurally close (connected by an edge or via common

neighbors).

Share similar attributes (e.g., user preferences in a

recommendation system).

Encode network topology efficiently for various tasks.

Project nodes into a latent space Geometric relations in this 

latent space correspond to relationships in the original graph



An Encoder-Decoder Framework
Encoder maps each node 𝑣 ∈ 𝒱 to a vector embedding 𝑧𝑣 ∈ ℝ𝑑

ENC(𝑣): 𝒱 → ℝ𝑑 ENC 𝑣 = 𝑍[𝑣]

𝑍 = (𝑍 𝑣 ) ∈ ℝ 𝒱 ×𝑑 is a matrix containing the embedding vectors for all nodes. The encoder can also use node features or the 

local graph structure around each node as input to generate an embedding.

Decoder reconstructs certain graph statistics from the node embeddings that are generated by the encoder. 

Pairwise decoders (similarity): DEC: ℝ𝑑 × ℝ𝑑 → ℝ+

Reconstruction of the relationship: optimize the encoder and decoder to minimize the reconstruction loss so that

where 𝑆[𝑢, 𝑣] is a graph-based similarity measure. 



Optimizing an Encoder-Decoder Model

Minimize an empirical reconstruction loss over a set of 

training node pairs

The overall objective is to train the encoder and the decoder 

so that pairwise node relationships can be effectively 

reconstructed. 

Most approaches minimize the loss in using stochastic 

gradient descent, but there are certain instances when more 

specialized optimization methods can be used.

E



43

𝑣3

𝑣2

𝑣4

𝑣5
𝑣6

𝑣7
𝑣8

𝑣1

𝑨𝑫 𝑳

− =

Adjacency MatrixDegree Matrix Laplacian Matrix

Degree Matrix:  

Adjacency Matrix: 𝐴 𝑖, 𝑗 = 1 if 𝑣𝑖 is adjacent to 𝑣𝑗
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Spectral graph theory. American Mathematical Soc.; 1997.

Matrix Representations of Graphs
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Laplacian matrix is a difference operator:

Laplacian quadratic form:

“Smoothness” or “Frequency” of the signal 𝑓

Laplacian Matrix as an Operator

❖ L=D-A is symmetric and positive semi-definite. 

❖ The geometric multiplicity of the 0 eigenvalue of the 

Laplacian L corresponds to the number of connected 

components in the graph.

The symmetric normalized Laplacian is 

The random walk Laplacian is 

Spectral Clustering methods: 

❖ Select the k smallest nonzero eigenvectors.

❖ Construct the spectral embedding matrix (SEM). 

❖ Perform  clustering methods on SEM. 



Eigen-decomposition of Laplacian Matrix

45

Laplacian matrix has a complete set of orthonormal 

eigenvectors: 

Eigenvalues are sorted non-decreasingly:  

𝑼 𝚲 𝑼𝑻



Factorization-based approaches

❖ If 𝑆=A is the Laplacian matrix, then the node embeddings that minimize the loss in the loss function

are identical to the solution for spectral clustering.

❖ If we assume the embeddings are 𝑑-dimensional, then the optimal solution that minimizes the loss

function is given by the 𝑑 smallest eigenvectors of the Laplacian (excluding the eigenvector of all

ones).

L=2tr( (D-S)ZZ’)



Random Walk Embeddings

Random Walks generate node sequences that capture both

local and global structural features.

Motivation: Node pairs that frequently co-occur in random

walks are considered structurally similar.

Popular methods: DeepWalk (Perozzi et al. 2014) and 

node2vec (Grover and Leskovec 2016).

Why Random Walks?
❖ Multi-hop context: A random walk naturally explores k-hop 

neighborhoods, capturing global structure.

❖ Probabilistic exploration: Each walk is governed by  transition 

probabilities P(v |u).

❖ Efficiency: Only node pairs co-occurring in walks matter for training, 

reducing complexity compared to matrix factorization.

❖ Flexibility: Parameters like walk length (t), number of walks (R), and 

biases (p, q) in node2vec control exploration.



Core Idea of Random-Walk Embeddings



DeepWalk and  node2vec



Skip-Gram with Negative Sampling

Motivation: In large graphs, computing the full softmax over all nodes is  expensive. Negative sampling 

approximates this by only comparing each  positive pair to a small set of negative pairs.



BFS and DFS

Breadth-First Search (BFS)

Explores neighbors of a node first, layer by layer.

Naturally finds shortest paths in unweighted graphs.

Focuses on the breadth of the graph around each node.

Depth-First Search (DFS)

Proceeds along one path until no unvisited neighbors remain,

then backtracks.

Good for enumerating deep paths or checking connectivity.

Focuses on the depth of the graph from each node.



Definition: A Graph Autoencoder (GAE) is a neural network that learns low-dimensional node embeddings by 

reconstructing graph information (e.g., adjacency or node features).

Key Components:

Graph Autoencoder (GAE)

Objective: Minimize the reconstruction loss between the original graph and the reconstructed output.



❖ t-SNE (t-Distributed Stochastic Neighbor Embedding)  is a powerful tool for visualizing high-dimensional data by 

preserving local neighborhood relationships.

❖ It transforms high-dimensional similarities into probability distributions and minimizes the KL divergence between these 

distributions.

❖ Careful tuning of hyperparameters (perplexity, learning rate, iterations) is crucial for meaningful visualizations.

t-SNE

The goal is to minimize the Kullback-Leibler (KL) divergence between the high-dimensional and

low-dimensional distributions:



Combining Graph Autoencoders & t-SNE



Evaluation Metrics
❖ Graph embedding quality is often task-dependent.

❖ Common tasks: node classification, link prediction, clustering.

❖ Metrics should measure how well embeddings capture structural/semantic 

properties.

Node Classification Metrics
Typical Steps:

➢ Split nodes into train/test based on known labels.

➢ Use embeddings zu as features for a classifier (e.g., logistic

regression, SVM).

➢ Evaluate accuracy on the held-out test set.

Common Metrics:

➢ Accuracy: #correct #total .

➢ F1-score: harmonic mean of precision and recall.

➢ Macro/Micro-F1: for multi-class settings.

Reconstruction Error:

Factorization-based methods can measure how well the

adjacency or proximity matrix is reconstructed.

For example, |                              or variants.

Visualization:

Use dimensionality reduction (e.g., t-SNE) on embeddings to

see if clusters/communities are visually separable.

Qualitative check: do similar nodes appear close in 2D/3D

projection?



The Karate Club Graph is a well-known dataset in network science, 

commonly used in community detection, graph clustering, and Graph 

Neural Networks (GNNs) research.

1. Origin & Background

➢ The dataset was collected by Wayne W. Zachary in the 1970s.

➢ It represents the social interactions of 34 members in a 

university karate club over a period of time.

➢ Due to internal conflicts, the club eventually split into two 

groups, forming two communities.

2. Structure of the Graph

➢ Nodes (34): Each node represents a club member.

➢ Edges (78): An edge between two nodes indicates that the 

corresponding members interacted outside of the club.

➢ Two Communities:

• One group followed the instructor (Leader: Node 0)

• Another group followed the club administrator (Leader: Node 

33) 

Feature Description

Nodes (Members) 34

Edges (Interactions) 78

Communities
2 (Instructor's group vs. Administrator's 
group)

Real-World Labels Yes (Ground truth available)

Common Uses
Community detection, Graph 
Embedding, GNN Research

Karate Club Graph



1️⃣ Laplacian Eigenmaps (Matrix Factorization)

• Uses the graph Laplacian matrix for spectral decomposition.

• Captures global structure, but is limited to linear projections.

2️⃣ Random Walk-based Embeddings (DeepWalk-like)

• Simulates random walks on the graph.

• Uses t-SNE for dimensionality reduction.

• Inspired by word embeddings in NLP.

3️⃣ GNN-Based Embeddings (Graph Convolutional Networks)

• Uses message passing to learn node representations.

• Captures both local and global structure.

4️⃣ Deep Learning-Based (Graph Autoencoder-like using t-SNE)

• Further refines GNN embeddings for better visualization.

• Ensures local neighborhood relationships are well-preserved.

Four Graph Embedding Methods



Sample Code

File: graphEmbedding.ipynb

# Load the Karate Club Graph

G = nx.karate_club_graph()

# Convert NetworkX graph to PyTorch Geometric format

data = from_networkx(G)

# Define a simple Graph Neural Network (GNN) for learning 

embeddings

class GCN(torch.nn.Module):

def __init__(self, input_dim, hidden_dim, output_dim):

super(GCN, self).__init__()

self.conv1 = GCNConv(input_dim, hidden_dim)

self.conv2 = GCNConv(hidden_dim, output_dim)

def forward(self, x, edge_index):

x = self.conv1(x, edge_index)

x = F.relu(x)

x = self.conv2(x, edge_index)

return x

# Initialize random node features (no predefined features)

num_nodes = G.number_of_nodes()

input_dim = 5

hidden_dim = 8

output_dim = 2

x = torch.randn((num_nodes, input_dim))

# Initialize the GNN model

model = GCN(input_dim, hidden_dim, output_dim)

# 0. Forward pass to obtain node embeddings

node_embeddings = model(x, data.edge_index).detach().numpy()

# 1. Matrix Factorization (Laplacian Eigenmaps)

laplacian = nx.normalized_laplacian_matrix(G).toarray()

eigvals, eigvecs = np.linalg.eigh(laplacian)

laplacian_embeddings = eigvecs[:, 1:3]

# 2. Random Walk-Based (DeepWalk-like embeddings using t-SNE)

random_walk_embeddings = 

TSNE(n_components=2).fit_transform(laplacian_embeddings)

# 3. Deep Learning-Based (Graph Autoencoder-like using t-SNE)

deep_learning_embeddings = TSNE(n_components=2, 

perplexity=5).fit_transform(node_embeddings)

# Apply KMeans clustering to each embedding method

num_clusters = 2

kmeans_laplacian = KMeans(n_clusters=num_clusters, 

random_state=42).fit(laplacian_embeddings)

kmeans_random_walk = KMeans(n_clusters=num_clusters, 

random_state=42).fit(random_walk_embeddings)

kmeans_deep_learning = KMeans(n_clusters=num_clusters, 

random_state=42).fit(deep_learning_embeddings)

kmeans_gnn = KMeans(n_clusters=num_clusters, 

random_state=42).fit(node_embeddings)



• Applying K-Means Clustering: We cluster the node embeddings into two communities.

• How Do We Evaluate Clustering?

Silhouette Score measures clustering quality.
Higher score = better-defined clusters.

Clustering & Evaluation

Method Silhouette Score

Laplacian Eigenmaps 0.4252

Random Walk (DeepWalk-like) 0.4867

Graph Autoencoder (Deep Learning) 0.4408

GNN-Based Node Embeddings 0.4810
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Change Impact

Increased node feature dimension (5 → 10) Allows GNN to learn richer representations.

Increased GNN hidden layer size (8 → 16)
Improves model capacity for better feature 
extraction.

Adjusted t-SNE perplexity=5 for GNN 
embeddings

Focuses on local neighborhood structures, 
leading to more refined visualization.

Enhancement



# Load the Karate Club Graph

G = nx.karate_club_graph()

# Convert NetworkX graph to PyTorch Geometric format

data = from_networkx(G)

# Define a simple Graph Neural Network (GNN) for learning 

embeddings

class GCN(torch.nn.Module):

def __init__(self, input_dim, hidden_dim, output_dim):

super(GCN, self).__init__()

self.conv1 = GCNConv(input_dim, hidden_dim)

self.conv2 = GCNConv(hidden_dim, output_dim)

def forward(self, x, edge_index):

x = self.conv1(x, edge_index)

x = F.relu(x)

x = self.conv2(x, edge_index)

return x

# Initialize random node features (Karate Club has no 

predefined features)

num_nodes = G.number_of_nodes()

input_dim = 10 # Number of features per node 

hidden_dim = 16

output_dim = 2 # 2D embedding for visualization

x = torch.randn((num_nodes, input_dim))

# Initialize the GNN model

model = GCN(input_dim, hidden_dim, output_dim)

# 0. Forward pass to obtain node embeddings

node_embeddings = model(x, data.edge_index).detach().numpy()

# 1. Matrix Factorization (Laplacian Eigenmaps)

laplacian = nx.normalized_laplacian_matrix(G).toarray()

eigvals, eigvecs = np.linalg.eigh(laplacian)

laplacian_embeddings = eigvecs[:, 1:3]

# 2. Random Walk-Based (DeepWalk-like embeddings using t-SNE)

random_walk_embeddings = 

TSNE(n_components=2).fit_transform(laplacian_embeddings)

# 3. Deep Learning-Based (Graph Autoencoder-like using t-SNE)

deep_learning_embeddings = TSNE(n_components=2, 

perplexity=5).fit_transform(node_embeddings)

# Apply KMeans clustering to each embedding method

num_clusters = 2

kmeans_laplacian = KMeans(n_clusters=num_clusters, 

random_state=42).fit(laplacian_embeddings)

kmeans_random_walk = KMeans(n_clusters=num_clusters, 

random_state=42).fit(random_walk_embeddings)

kmeans_deep_learning = KMeans(n_clusters=num_clusters, 

random_state=42).fit(deep_learning_embeddings)

kmeans_gnn = KMeans(n_clusters=num_clusters, 

random_state=42).fit(node_embeddings)

File: graphEmbedding.ipynb

Code for Enhancement



• Applying K-Means Clustering: We cluster the node embeddings into two communities.

• How Do We Evaluate Clustering?

Silhouette Score measures clustering quality.
Higher score = better-defined clusters.

Method Silhouette Score

Laplacian Eigenmaps 0.5525

Random Walk (DeepWalk-like) 0.4889

Graph Autoencoder (Deep Learning) 0.6777

GNN-Based Node Embeddings 0.3688

Clustering & Evaluation



Figures
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CNN and RNN

Obama “I stand here today
humbled by the task before us,
grateful for the trust you have
bestowed, mindful of the sacrifices
borne by our ancestors. I thank
President Bush for his service to
our nation, as well as the
generosity and cooperation he has
shown throughout this transition.

CNN/RNN Key Modules

Modules CNN RNN

Core Concept Spatial feature extraction
Sequential dependency 
modeling

Kernel (Filters) Yes (learnable filters)
No kernels, uses weight 
matrices

Pooling (Downsampling) Yes No

Multi-Scale Processing Yes (hierarchical) No

Weight Sharing Yes
Partially (shared weights 
over time)

Handles Variable Input 
Length

No Yes

Long-Term Dependencies No Yes (with LSTMs/GRUs)
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Link Prediction

Node Classification

Graph Classification

？ ？

t t+a

？

？

？

Node-level Graph-level

Node- and Graph-level Tasks
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Node-level Graph-level

Node 

Representations

Graph Representations

Propagation/

Filtering

Pooling

Propagation and Pooling

Node 

Sampling
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Graph Propagation

Propagation

Group Propagation/Filtering

Propagation refines the node features

❖ A node’s representation is influenced by its neighbors.

❖ By stacking multiple GNN layers, each node can capture

information from multi-hop neighbors.
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Graph Pooling

Pooling

Graph pooling generates a smaller graph

Group Pooling
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…

Filtering Layer Activation
For node-level tasks

General GNN Framework
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For graph-level tasks

… ……

𝐵1 𝐵𝑛

Filtering Layer Activation Pooling Layer

General GNN Framework



Jie Zhou, et al. (2020). AI Open

GNN Designs
Step Task

1. Define Graph Nodes, edges, features

2. Feature Engineering Define node and edge features

3. Message Passing Select aggregation method

4. Choose Architecture GCN, GAT, GraphSAGE, etc.

5. Loss Function
Supervised (cross-entropy), unsupervised 
(contrastive)

6. Training Use mini-batching and optimizers

7. Evaluation
Classification, link prediction, graph-level 
tasks

8. Deployment Optimize for inference speed

Summary



Key Modules in Graph Neural Networks

GNNs process graph-structured data by propagating and aggregating information across nodes and edges.

Three key modules in GNNs:
❖ Sampling Module

Aims to reduce the size of each node’s neighborhood, especially for large graphs, preventing the neighbor explosion problem.

❖ Propagation Module

➢ Performs message passing via convolutions (e.g., GCNs) or recurrent operators (e.g., GRUs) on node features.

➢ Uses skip connections to mitigate over-smoothing and incorporate historical representations.

❖ Pooling Module

Aggregates node-level embeddings into subgraph or graph-level representations, extracting higher-level features needed for 

tasks like graph classification.



The Sampling Module
Efficient Graph Processing via Sampling

Direct propagation on large graphs is computationally infeasible.

The Sampling Module reduces cost by selecting subsets of nodes or edges.

Key Challenge: 
❖ Neighbor Explosion: The number of neighbors grows  exponentially with depth. GNNs aggregate messages from each 

node’s neighbors in the previous layer.  Tracking back multiple layers can exponentially increase the neighbor set. 

Storing and processing all neighborhood information becomes intractable for large graphs.

❖ Computational Efficiency: Full neighbor aggregation is  impractical for large graphs.

❖ Memory Constraints: Storing all neighborhood information  for each node is infeasible.

❖ Scalability: Enables GNNs to handle large graphs effectively. 

Common sampling techniques: Node Sampling; Layer Sampling; Subgraph Sampling. 

Impact on Permutation Properties:
Node-level predictions remain unchanged under node reordering.

Node representations transform consistently when input ordering changes.

Impact on Task Performance:
Preserve downstream performance in classification, link prediction, etc.

Sampling strategies must capture essential structural information despite reduced neighborhood size.

Aim for low variance while avoiding high computational costs.



Node Sampling: Selects a subset of nodes and their immediate neighbors.

Reduces computational complexity by limiting the number of participating nodes.

Often used in algorithms like GraphSAGE.

Layer Sampling: It selects a fixed number of neighbors per layer.

Controls exponential growth by restricting the number of aggregated neighbors.

Balances efficiency and performance in large-scale graphs.

Subgraph Sampling: Extracts a subgraph based on connectivity patterns.

Useful for mini-batch training by working on graph partitions.

Preserves graph topology while reducing computation.

Common Sampling Methods

Jie Zhou, et al. (2020). AI Open



The Propagation Module
Facilitates message passing between nodes to integrate structural and feature information.

Key operations:
❖ Convolution Operators: Aggregate neighbor information. 

❖ Recurrent Operators: Maintain temporal dependencies in dynamic graphs (e.g., Graph GRU, Graph LSTM).

❖ Skip Connections: Mitigate over-smoothing by retaining historical representations.

Jie Zhou, et al. (2020). AI Open



Permutation Equivariance (PE): Node embeddings maintain

structure when node order changes.

Permutation Invariance (PI): Graph-level representations 

remain

unchanged under different node orderings.

Permutation Equivariance and Invariance

Key Observation:

A graph does not have a fixed, canonical ordering of its nodes.

Any permutation of node indices can still represent the same 

underlying graph.

Implication:

The labeling or numbering of nodes is arbitrary.

Reorder node IDs without changing the graph’s  structure.



Definition of PE and PI

P



Designing GNN Layers must preserve or respect permutations at each update step.  PI and PE are crucial for robust GNN 

models that handle node reorderings gracefully.

❖ Sampling + Approximation: Avoid violating permutation properties in large-scale graphs (random sampling, etc.).

❖ Pooling Mechanisms: Summation/average pooling ensures invariant graph-level outputs.

❖ Challenges: Hierarchical pooling, dynamic graphs, and advanced aggregator designs can complicate these properties.

Designing GNN 

GNN consist of multiple permutation equivariant / invariant functions. A general GNN framework



The Pooling Module

Extracting High-Level Representations
❖ Generates compact representations of subgraphs or entire  graphs.

❖ Essential for tasks like graph classification and hierarchical learning.

Key pooling techniques:
❖ Node Dropout Pooling: Drops less informative nodes (e.g.,  Top-K pooling).

❖ Cluster-based Pooling: Merges similar nodes into clusters (e.g., DiffPool).

❖ Attention-based Pooling: Assigns weights to nodes based on learned importance.

❖ Maintaining Permutation Invariance: Ensures that graph representations remain unchanged.

Two main categories:
❖ Direct (Readout) Pooling Modules: Aggregate node embeddings into a single graph-level embedding in one step. 

❖ Hierarchical Pooling Modules: Iteratively coarsen (or cluster) the graph, creating a hierarchy of smaller graphs or subgraphs.

Jie Zhou, et al. (2020). AI Open



Training Approaches
❖ Supervised Learning: Uses labeled data to train GNNs for  node/graph classification.

❖ Semi-supervised Learning: Uses both labeled and unlabeled  data to improve training.

❖ Unsupervised Learning: Uses self-supervision (e.g., contrastive learning) to learn node embeddings.

GNN Training Framework

Prediction Tasks in GNNs
❖ Node-focused: Predicts node labels (e.g., node  classification) using an MLP or softmax layer.

❖ Edge-focused: Predicts relationships between nodes (e.g.,  link prediction) using similarity functions or MLPs.

❖ Graph-focused: Generates graph embeddings using pooling  layers for tasks like graph classification.

Types of Nodes in GNN Training
❖ Training Nodes: Used in loss computation.

❖ Transductive Test Nodes: Processed in GNN but not

included in loss computation.

❖ Inductive Test Nodes: Not included in GNN 

computation or loss function.

Example



GNN Training Pipeline
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Original GNN
(Scarselli et al. 

2005)

GCN
(Kipf & Welling. 

ICLR 2017)

GAT
(Veličković et al. 

ICLR 2018)

GraphSage
(Hamilton et al. 

NIPS 2017)

MPNN
(Glimer et al. 

ICML 2017)

Spectral 

Graph CNN
(Bruna et al. 

ICLR 2014)

ChebNet
(Defferard et al. 

NIPS 2016)…

Spatial Based Filtering Spectral Based Filtering

Spectral and Spatial GNN Framework



Spatial GNN Framework 
Key Concepts:
❖ Spatial approaches define convolutions directly on the graph using graph topology.

❖ Unlike spectral methods, these approaches operate in the  node domain without eigen-decomposition.

❖ The challenge lies in handling variable neighborhood sizes and preserving local invariance.

General Spatial Convolution:



Neural Message Passing

The defining feature of a GNN is that is uses a form of neural 

message passing.

During each iteration 𝑘, a hidden embedding ℎ𝑢
(𝑘)

for node 𝑢 is 

updated according to the information aggregated from its 

neighborhood 𝑵(𝒖), which can be expressed as follows:

ℎ𝑢
(𝑘+1)

= 𝑢𝑝𝑑𝑎𝑡𝑒 𝑘 ℎ𝑢
𝑘
, 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑘 { ℎ𝑣

𝑘
, ∀𝑣 ∈ 𝑁 𝑢 }

We often denote 𝑚𝑁(𝑢) = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑘 { ℎ𝑣
𝑘
, ∀𝑣 ∈ 𝑁 𝑢 } as 

the “message” aggregated from neighborhood. The initial 

embeddings at 𝑘 = 0 are set to the input features for all nodes, 

i.e., ℎ𝑢
(0)

= 𝑥𝑢. After running 𝐾 iterations of the GNN message 

passing, we can use the output of the final layer to define the 

embeddings for each node, i.e., 𝑧𝑢 = ℎ𝑢
(𝐾)

, ∀𝑢 ∈ 𝑉.



Intuition Behind Message-Passing Framework

❖ The core idea of message passing is simple:

➢ At each iteration, every node aggregates information from its 1-hop neighbors.

➢ As iterations progress, nodes encode information from progressively farther regions of the graph.

❖ This allows nodes to capture both local and global structures over time.

What Do Node Embeddings Encode?

Node embeddings contain two main types of information:

• Structural Information: Local connectivity patterns; Higher-

order graph structures; the importance of a node based on its 

graph position (e.g., centrality measures).

• Feature Information: Numerical attributes (e.g., temperature, 

population density in spatial graphs); Categorical attributes (e.g., 

user preferences in recommendation systems); Learned 

representations from deep neural networks.

Neural Message Passing: Intuition

Why is Message Passing Powerful?

❖ Combines local and global information efficiently.

❖ Enables deep learning models to capture rich relational patterns.

❖ Supports various tasks like node classification, link prediction, and graph generation .



The basic GNN message passing is defined in node-level:

ℎu
(𝑘)

= 𝜎 𝑊𝑠𝑒𝑙𝑓
𝑘 ℎ𝑢

𝑘−1 +𝑊𝑛𝑒𝑖𝑔ℎ
𝑘 ෍

𝑣∈𝑁 𝑢

ℎ𝑣
𝑘−1 + 𝑏 𝑘

where 𝑊𝑠𝑒𝑙𝑓,𝑊𝑛𝑒𝑖𝑔ℎ are trainable parameter and 𝜎 denotes an elementwise non-linearity such as ReLU. Alternatively, it can 

also be succinctly defined in graph-level:

𝐻(𝑡) = 𝜎(𝐻 𝑘−1 𝑊𝑠𝑒𝑙𝑓
𝑘
+ 𝐴𝐻 𝑘−1 𝑊𝑛𝑒𝑖𝑔ℎ

𝑘
)

GNN: Basic Form

The basic GNN message passing can be simplified by omitting the explicit update step:

ℎ𝑢
(𝑘+1)

= 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 { ℎ𝑣
𝑘
, ∀𝑣 ∈ 𝑁 𝑢 ∪ {𝑢}}

where now the aggregation is also taken over the node 𝑢 itself. Adding self-loops is equivalent to sharing parameters 

between self and neighbor transformations. 

The self-loop GNN approach balances simplicity and efficiency but has some limitations. Self-loops make it harder to 

differentiate between node and neighbor information. Blurs the distinction between structural and feature information

•



Permutation Invariant and Equivariant



Neighborhood Normalization
A basic approach is summing neighbor embeddings, but summing 

neighbor embeddings can create large magnitude differences. Nodes with 

significantly different degrees may lead to instability and optimization 

challenges. 

ℎ𝑢
(𝑘+1)

= 𝑢𝑝𝑑𝑎𝑡𝑒 𝑘 ℎ𝑢
𝑘
, 𝑚 𝑁 𝑢

Example: A node with 100× more neighbors than another will have 

drastically different embedding scales. Leads to numerical instability and 

difficulties in optimization.

A straightforward solution is degree-based normalization:

One solution to this problem is to normalize based upon the degrees of 

the nodes involved, which is called symmetric normalization: 

𝑚𝑁(𝑢) = ෍

𝑣∈𝑁(𝑢)

ℎ𝑣

|𝑁 𝑢 × 𝑁 𝑣

Graph convolutional networks (GCNs)



Deepset and Attention 

𝑚𝑁(𝑢) = 𝑀𝐿𝑃𝜃( ෍

𝑣∈𝑁 𝑢

𝑀𝐿𝑃𝜙 ℎ𝑣 )

Deepset/Set pooling
Another method would be to assign an attention weight on the 

importance to each neighbor so that the neighbor’s influence 

can be weighted during the aggregation step, as proposed in the 

Graph Attention Network (GAT):

𝑚𝑁(𝑢) = ෍

𝑣∈𝑁(𝑢)

𝛼𝑢,𝑣ℎ𝑣

In principle any standard attention model at large can be used, 

• The bilinear attention model, since the operation is linear in 

both ℎ𝑢 and ℎ𝑣 separately, and the weight matrix 𝑊 makes it 

more expressive than simple dot-product similarity

𝛼𝑢,𝑣 =
exp(ℎ𝑢

𝑇𝑊ℎ𝑣)

σ𝑣′∈𝑁(𝑢) exp(ℎ𝑢
𝑇𝑊ℎ𝑣′)

• The multi-head attention model, which is used in the 

Transformer architecture.

Adding attention is a useful strategy especially in cases where 

we have prior knowledge to indicate that some neighbors might 

be more informative than others.



Generalized Message Passing
As the last attempt to generalize the basic neural message passing framework, now we extend the approach beyond the node 

level, leveraging edge and graph-level information at each stage.

One more generalized message passing approach can be formulized according to the following equations:

ℎ 𝑢,𝑣
(𝑘)

= 𝑢𝑝𝑑𝑎𝑡𝑒𝑒𝑑𝑔𝑒 ℎ 𝑢,𝑣
𝑘−1

, ℎ𝑢
𝑘−1

, ℎ𝑣
𝑘−1

, ℎ𝐺
𝑘−1

𝑚𝑁(𝑢) = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑛𝑜𝑑𝑒 {ℎ 𝑢,𝑣
𝑘

, ∀𝑣 ∈ 𝑁 𝑢 }

ℎ𝑢
(𝑘)

= 𝑢𝑝𝑑𝑎𝑡𝑒𝑛𝑜𝑑𝑒 ℎ𝑢
𝑘−1

, 𝑚𝑁 𝑢 , ℎ𝐺
𝑘−1

ℎ𝐺
(𝑘)

= 𝑢𝑝𝑑𝑎𝑡𝑒𝑔𝑟𝑎𝑝ℎ(ℎ𝐺
𝑘−1

, {ℎ𝑢
𝑘
, ∀𝑢 ∈ 𝑉}, {ℎ 𝑢,𝑣

𝑘
, ∀ 𝑢, 𝑣 ∈ 𝐸})

The important innovation in this framework is that we generate hidden embeddings not only for each node ℎ𝑣
(𝑘)

, but also 

ℎ 𝑢,𝑣
(𝑘)

for each edge in the graph as well as an embedding ℎ𝐺
(𝑘)

that corresponds to the entire graph. This allows the message 

passing model to easily integrate edge and graph-level features and have enhanced performances compared to a standard 

basic GNN. Generating embeddings for edges and the entire graph also makes it trivial to define loss functions based on the 

graph or edge-level classification tasks.



What are Spectral GNNs?
➢ Spectral GNNs use graph signal processing techniques to define convolution operators in the spectral domain.

➢ They leverage the eigen-decomposition of the graph Laplacian  to transform signals to the frequency domain.

Spectral GNN Framework

𝑼 𝚲 𝑼𝑻
Eigen-decomposition of Normalized Laplacian Matrix Eigenvalues are sorted non-decreasingly:  

The frequency of an eigenvector of Laplacian matrix is its corresponding eigenvalue:

Frequency of the signal 𝒖𝒊

𝒖0 𝒖1 𝒖7
Low frequency High frequency

𝒖0
𝑻𝑳𝒖𝟎 = 𝝀𝟎 = 𝟎 𝒖1

𝑻𝑳𝒖𝟏 = 𝝀𝟏 𝒖7
𝑻𝑳𝒖𝟕 = 𝝀𝟕



Graph Fourier Transform (GFT) and Inverse GFT
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A signal 𝒇 can be written as graph Fourier series:   

𝒖𝒊: graph Fourier mode 𝝀𝒊: frequency
෠𝒇𝒊: graph Fourier coefficients

Spatial domain: 𝒇

෠𝒇 = 𝑼𝑇𝒇

Decompose signal 𝒇

Spectral domain: ෠𝒇

The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE signal processing magazine

𝒇 = 𝑼෠𝒇

Reconstruct signal 𝒇
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Recall:

Filter a graph signal 𝑓:

𝑓 𝑢𝑖
𝑇𝑓 ො𝑔 𝜆𝑖 ⋅ 𝑢𝑖

𝑇𝑓 ෍

𝑖=0

𝑁−1

ො𝑔 𝜆𝑖 ⋅ 𝑢𝑖
𝑇𝑓 ⋅ 𝑢𝑖

𝐺𝐹𝑇 𝑰𝑮𝑭𝑻ො𝑔(𝜆𝑖)

Filter

Example: 

𝜆𝑖 𝜆𝑖 𝜆𝑖

ො𝑔 ො𝑔 ො𝑔

𝐺𝐹𝑇: መ𝑓 = 𝑈𝑇𝑓 𝐼𝐺𝐹𝑇: 𝑓 = 𝑈 መ𝑓

Decompose Reconstruct

Coefficients Filtered coefficients

Filter ො𝑔 𝜆𝑖 : Modulating the frequency

Graph Spectral Filtering
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Filter a graph signal 𝑓:

𝒇 𝑼𝑻𝒇 ො𝑔(Λ)𝑈𝑇𝑓 𝑼ෝ𝒈(𝜦)𝑼𝑻𝒇
𝑮𝑭𝑻 𝑰𝑮𝑭𝑻ෝ𝒈(𝜦)

Filter

Example: 

𝜆𝑖 𝜆𝑖 𝜆𝑖

ො𝑔 ො𝑔 ො𝑔

Decompose Reconstruct

Coefficients Filtered coefficients

Graph Spectral Filtering

𝒇
Filtering

ෝ𝒈 𝑳 𝒇 = 𝑼ෝ𝒈(𝜦)𝑼𝑻𝒇



Convolution Theorem and Approximation

Key Properties:

❖ Computation requires eigen-decomposition of the Laplacian.

❖ Filters are defined in the spectral domain, enabling flexible frequency-based operations.

Chebyshev Approximation: Graph Convolutional Networks:



ℎ2, 𝑙2

ℎ1, 𝑙1

ℎ3, 𝑙3

ℎ4, 𝑙4

ℎ5, 𝑙5

ℎ6, 𝑙6

ℎ7, 𝑙7

𝑣2
𝑣8

𝑣1

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

ℎ8, 𝑙8

ℎ𝑖: The hidden features

𝑙𝑖:  The input features

𝒉𝒊
(𝒌+𝟏)

= ෍

𝒗𝒋∈𝑵(𝒗𝒊)

𝒇 𝒍𝒊, 𝒉𝒋
(𝒌)
, 𝒍𝒋 , ∀ 𝒗𝒊∈ 𝑽.

𝑓 ⋅ : Feedforward neural network.

𝑁(𝑣𝑖): Neighbors of the node 𝑣𝑖.

Graph neural networks for ranking web pages. WI. IEEE, 2005.

Graph Filtering in the First GNN paper



How to design the filter? 

Data-driven! Learn ො𝑔(Λ) from data!

How to deal with multi-channel signals?

𝑭𝑖𝑛 ∈ ℝ𝑁×𝑑1 → 𝑭𝑜𝑢𝑡 ∈ ℝ𝑁×𝑑2. 

Each input channel contributes to each output channel 

𝑭𝑜𝑢𝑡 : , 𝑖 =෍

𝑗=1

𝑑1

ො𝑔𝑖𝑗 𝐋 𝑭𝑖𝑛 : , 𝑗 𝑖 = 1,…𝑑2 Learn 𝑑2 × 𝑑1 filters

Filter each input channel

Graph Spectral Filtering for GNN



ො𝑔(Λ): Non-parametric

101

Graph Spectral Filtering for GNN



ෝ𝒈(𝜦) : Polynomial Parametrized 

102

𝑑2 × 𝑑1 × 𝐾 parameters

U ො𝑔 Λ 𝑈𝑇𝑓 = ෍

𝑘=0

𝐾

𝜃𝑘𝐿
𝑘 𝑓

No eigen-decomposition needed



Polynomial Parametrized Filter: a Spatial View

103

If the node 𝑣𝑗 is more than 𝐾-hops away from node 𝑣𝑖, then,

The filter is localized within 𝐾-hops neighbors in the spatial domain



Chebyshev Polynomials
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The polynomials adopted have non-orthogonal basis 1, 𝑥, 𝑥2, 𝑥3, …

Unstable under perturbation of coefficients

Chebyshev polynomials:

Recursive definition:

• 𝑇0 𝑥 = 1; 𝑇1 𝑥 = 𝑥
• 𝑇𝑘 𝑥 = 2𝑥𝑇𝑘−1 𝑥 − 𝑇𝑘−2(𝑥)

The Chebyshev polynomials 𝑇𝑘 form an 

orthogonal basis for the Hilbert space 

𝐿2( −1,1 ,
𝑑𝑦

1−𝑦2
).
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The polynomials adopted have non-orthogonal basis 1, 𝑥, 𝑥2, 𝑥3, …

Unstable under perturbation of coefficients

Chebyshev polynomials:

Recursive definition:

• 𝑇0 𝑥 = 1; 𝑇1 𝑥 = 𝑥
• 𝑇𝑘 𝑥 = 2𝑥𝑇𝑘−1 𝑥 − 𝑇𝑘−2(𝑥)

The Chebyshev polynomials 𝑇𝑘 form an 

orthogonal basis for the Hilbert space 

𝐿2( −1,1 ,
𝑑𝑦

1−𝑦2
).

Chebyshev Polynomials
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Parametrize ො𝑔(Λ) with Chebyshev polynomials 

𝑑2 × 𝑑1 × 𝐾 parameters

U ො𝑔 Λ 𝑈𝑇𝑓 = σ𝑘=0
𝐾 𝜃𝑘𝑇𝑘(෨𝐿) 𝑓, with ෨𝐿 =

2𝐿

𝜆𝑚𝑎𝑥
− 𝐼

Stable under perturbation of coefficients

No eigen-decomposition needed

ChebNet
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Use Chebyshev polynomials with 𝐾 = 1 and assume 𝜆𝑚𝑎𝑥 = 2

Further constrain 𝜃 = 𝜃0 = −𝜃1

Apply a renormalization trick

GCN: Simplified ChebNet



108

𝑭𝑜𝑢𝑡 : , 𝑖 =෍

𝑗=1

𝑑1

ො𝑔𝑖𝑗 𝐋 𝑭𝑖𝑛 : , 𝑗 𝑖 = 1,…𝑑2

Recall:

For GCN:

𝑭𝑜𝑢𝑡 : , 𝑖 =෍

𝑗=1

𝑑1

𝜃𝑗𝑖(෩𝐷
−
1
2 ሚ𝐴෩𝐷−

1
2)𝑭𝑖𝑛 : , 𝑗 𝑖 = 1,…𝑑2

Filter each input channel

GCN filter

In matrix form:

𝑭𝑜𝑢𝑡 = (෩𝐷−
1
2 ሚ𝐴෩𝐷−

1
2)𝑭𝑖𝑛Θ with Θ ∈ ℝ𝑑1×𝑑2 and Θ 𝑗, 𝑖 = 𝜃𝑗𝑖

GCN for Multi-channel Signal
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Denote 𝐶 = ෩𝐷−
1

2 ሚ𝐴෩𝐷−
1

2

• Then 𝐹𝑜𝑢𝑡 = 𝐶𝐹𝑖𝑛Θ

• For node 𝑣𝑖 , 𝐹𝑜𝑢𝑡 𝑖, : = σ𝑗 𝐶 𝑖, 𝑗 𝐹𝑖𝑛 𝑗, : Θ
𝐹[3, : ]

𝑣2
𝑣8

𝑣1

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

𝐹[1, : ]

𝐹[4, : ]

𝐹[5, : ]

𝐹[6, : ]

𝐹[7, : ]

𝐹[8, : ]

𝐹[2, : ]

Observe that:

𝐶[𝑖, 𝑗] = 0 for 𝑣𝑗 ∉ 𝑁 𝑣𝑖 ∪ 𝑣𝑖

Hence,

Feature transformation
Aggregation

A Spatial View of GCN Filter
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Neighbor Sampling

ℎ2, 𝑙2

ℎ1, 𝑙1

ℎ3, 𝑙3

ℎ4, 𝑙4

ℎ5, 𝑙5

ℎ6, 𝑙6

ℎ7, 𝑙7

𝑣2
𝑣8

𝑣1

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

ℎ8, 𝑙8

Aggregation

Filter in GraphSage
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ℎ2, 𝑙2

ℎ1, 𝑙1

ℎ3, 𝑙3

ℎ4, 𝑙4

ℎ5, 𝑙5

ℎ6, 𝑙6

ℎ7, 𝑙7

𝑣2
𝑣8

𝑣1

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

ℎ8, 𝑙8

Graph Attention Networks. ICLR 2018.

Filter in GAT
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ℎ2, 𝑙2

ℎ1, 𝑙1

ℎ3, 𝑙3

ℎ4, 𝑙4

ℎ5, 𝑙5

ℎ6, 𝑙6

ℎ7, 𝑙7

𝑣2
𝑣8

𝑣1

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

ℎ8, 𝑙8

𝛼13

𝛼18

𝛼15

Filter in GAT
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ℎ2, 𝑙2

ℎ1, 𝑙1

ℎ3, 𝑙3

ℎ4, 𝑙4

ℎ5, 𝑙5

ℎ6, 𝑙6

ℎ7, 𝑙7

𝑣2
𝑣8

𝑣1

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

ℎ8, 𝑙8

Message Passing

Feature Updating

𝑀𝑘(. ) and 𝑈𝑘(. ) are functions to be designed 
Neural Message Passing for Quantum Chemistry. ICML 2017.

Filter in MPNN
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A Unified View on Graph Neural Networks as Graph Signal Denosing. arXiv, 2020.

GCN

GAT

Filtering Operations

…

PPNP

APPNP

Graph Signal Denoising

UGNN: A Unified Framework



The Cora dataset is a benchmark dataset used in graph-based machine learning research.

It represents a citation network, where:

• Nodes: Research papers

• Edges: Citation relationships (A → B means A cites B)

• Features: Bag-of-words representation of paper content

• Labels: Paper categories (7 different topics)

Real-world Relevance:

Helps in developing models for document classification.

Can be extended to recommendation systems, knowledge graphs, and social network analysis.

Key Statistics of the Cora Dataset:

• Number of Nodes: 2,708 (papers)

• Number of Edges: 5,429 (citations)

• Number of Features: 1,433 (word-based features)

• Number of Classes: 7 (e.g., AI, databases, NLP, etc.)

Example: Cora Dataset



Goal: Compare different GNN models for node classification on the Cora dataset.

We explore a variety of spatial and spectral GNN architectures:

1. Spatial-based Models:

MPNN (Message Passing Neural Network)

LGCN (Learnable GCN)

GAT (Graph Attention Network)

GraphSAGE (Sample-based Aggregation GNN)

GIN (Graph Isomorphism Network)

2. Spectral-based Models:

GCN (Graph Convolutional Network)

ChebNet (Chebyshev Polynomial-based GNN)

Evaluation Metrics:

1️⃣ Accuracy: Fraction of correctly classified nodes.

2️⃣ AUC Score: Multi-class AUC using one-vs-rest approach.

3️⃣ t-SNE Visualization: Low-dimensional embeddings of node representations.

GNN Node Classification



GNN Node Classification - Results

Metric MPNN LGCN GAT GraphSAGE GIN GCN ChebNet

Test Accuracy 0.678 0.807 0.801 0.798 0.701 0.807 0.770

Test AUC 0.904 0.967 0.962 0.967 0.913 0.966 0.961



GNN Node Classification - Results

t-SNE Visualizations of Node Embeddings (color is based on true class labels)
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Graph Pooling

Graph Pooling Operation



gPool
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Downsample by selecting the most importance nodes

ℎ2, 𝑙2

ℎ1, 𝑙1

ℎ3, 𝑙3

ℎ4, 𝑙4

ℎ5, 𝑙5

ℎ6, 𝑙6

ℎ7, 𝑙7

𝑣2
𝑣8

𝑣1

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

ℎ8, 𝑙8

Importance Measure

𝒗𝒊 → 𝒚𝒊 𝒚𝒊 =
𝒉𝒊
𝑻𝒑

||𝒑||

Select top the 𝑛𝑝 nodes

𝒊𝒅𝒙 = 𝒓𝒂𝒏𝒌(𝒚, 𝒏𝒑)

Generate 𝐴𝑝 and intermediate 𝐻𝑖𝑛𝑡𝑒𝑟

𝑨𝒑 = 𝑨[𝒊𝒅𝒙, 𝒊𝒅𝒙]

𝑯𝒊𝒏𝒕𝒆𝒓 = 𝑯[𝒊𝒅𝒙, : ]

Generate 𝐻𝑝

𝐻𝑝 = 𝐻𝑖𝑛𝑡𝑒𝑟 ⊙ ෤𝑦

෥𝒚 = 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝒚 𝒊𝒅𝒙 )



DiffPool
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Downsample by clustering the nodes using GNN

𝑣2
𝑣8

𝑣1

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

ℎ𝑎2

ℎ𝑎1

ℎ𝑎3

ℎ𝑎4

ℎ𝑎5

ℎ𝑎6

ℎ𝑎7

ℎ𝑎8

2 filters

Filter2:

Generate new features

Filter1:

Generate a soft-assign matrix
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Downsample by clustering the nodes using GNN

𝑣2
𝑣8

𝑣1

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

ℎ𝑎2

ℎ𝑎1

ℎ𝑎3

ℎ𝑎4

ℎ𝑎5

ℎ𝑎6

ℎ𝑎7

ℎ𝑎8

Generated new features

Generated soft-assign matrix

Generate 𝐴𝑝

Generate 𝐻𝑝

DiffPool
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ℎ2, 𝑙2

ℎ1, 𝑙1

ℎ3, 𝑙3

ℎ4, 𝑙4

ℎ5, 𝑙5

ℎ6, 𝑙6

ℎ7, 𝑙7

𝑣2
𝑣8

𝑣1

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

ℎ8, 𝑙8

Learn 𝐴𝑝 using 

clustering methods

Focus on learning 

better 𝐻𝑝

Capture both feature 

and graph structure

Eigenpooling



Going Back to Graph Spectral Theory

124
Spatial domain: 𝒇

෠𝒇 = 𝑼𝑇𝒇

Decompose signal 𝑓

Spectral domain: ෠𝒇

Recall:
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Do we need all the coefficients to reconstruct a “good” signal?

Going Back to Graph Spectral Theory
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Do we need all the coefficients to reconstruct a “good” signal?

Going Back to Graph Spectral Theory



Eigenpooling: Truncated Fourier Coefficients
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Eigenvectors (Fourier Modes) of the subgraph

GFT
Fourier coefficients

Truncated Fourier coefficients

New features for the subgraph (a node in the smaller graph)



MUTAG is a dataset of molecular graphs, where:

Nodes: Atoms in molecules

Edges: Chemical bonds between atoms

Labels: Mutagenic vs. non-mutagenic molecules (Binary classification)

Key Statistics of the MUTAG Dataset:

• Number of Graphs: 188

• Average Nodes per Graph: ~17

• Average Edges per Graph: ~19.8

• Number of Features: Based on atom properties

• Number of Classes: 2 (Mutagenic vs. Non-Mutagenic)

MUTAG Dataset



• Goal: Compare GNN-based graph classification models using different graph pooling techniques.

• Model structure overview:

GCN→ Activation→ Graph Pooling (graph embeddings)→ Fully Connected→ Softmax outputs

• Graph Pooling methods compared:

Mean Pooling

Max Pooling

Sum Pooling

Attention Pooling

SAGPooling (Hierachical)

• Evaluation Metrics:

Test Accuracy 

AUC Score 

t-SNE Embeddings (Based on graph embeddings after pooling)

ROC Curves

Confusion Matrices

GNN Graph Pooling and Classification



GNN Graph Pooling and Classification - Results

Pooling methods mean max sum attention sag

Test Accuracy 0.684211 0.684211 0.657895 0.710526 0.815789

Test AUC 0.803922 0.725490 0.848739 0.826331 0.885154



GNN Graph Pooling and Classification - Results

ROC Curves for Different Pooling Methods



GNN Graph Pooling and Classification - Results

t-SNE Visualizations of Graph Embeddings from Different Pooling Methods



GNN Graph Pooling and Classification - Results

Confusion Matrix for Different Pooling Methods
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Application to “classical” network problems

Structured Deep Models Thomas Kipf 11

Node classification Graph classification

Link prediction



One fits all: Classification and link prediction with GNNs/GCNs

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

Input: Feature matrix , preprocessed adjacency matrix

Node classification:

softmax(zn)

e.g. Kipf & Welling (ICLR 2017)

Graph classification:

e.g. Duvenaud et al. (NIPS 2015)

Link prediction:

p(A i j ) = o-(zTzj)i

Kipf & Welling (NIPS BDL 2016)

“Graph Auto-Encoders”

Structured Deep Models Thomas Kipf 12



What do learned representations look like?

f( ) =
[Zachary’s Karate Club]

Forward pass through untrained 3-layer GCN model

Structured Deep Models Thomas Kipf 13

Parameters initialized randomly
2-dim output per node



Semi-supervised classification on graphs

Setting:

Some nodes are labeled (black circle) 
All other nodes are unlabeled

Task:
Predict node label of unlabeled nodes

Evaluate loss on labeled nodes only:

set of labeled node indices 

label matrix

GCN output (after softmax)

Structured Deep Models Thomas Kipf 14



Toy example (semi-supervised learning)

Video also available here:

http://tkipf.github.io/graph-convolutional-networks

Structured Deep Models Thomas Kipf 15

http://tkipf.github.io/graph-convolutional-networks


Interpretable Brain Graph Neural Network for fMRI Analysis

Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., Scheinost, D., Staib, L.H., Ventola, P. and Duncan, J.S., 2021. 

Braingnn: Interpretable brain graph neural network for fmri analysis. Medical Image Analysis, 74, p.102233.

16

1. Neurological Biomarker Discovery: Identify key brain regions associated with 

neurological disorders or cognitive tasks.

2. fMRI-Based Classification: Classify Autism Spectrum Disorder (ASD) patients 

vs. Healthy Controls (HC) and decode cognitive states from fMRI data.

3. Graph-Based Representation of the Brain: Model brain regions as nodes and 

functional connections as edges, using fMRI data.

Application 1: BrainGNN



Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., Scheinost, D., Staib, L.H., Ventola, P. and Duncan, J.S., 2021. 

Braingnn: Interpretable brain graph neural network for fmri analysis. Medical Image Analysis, 74, p.102233.

16

Graph Neural Network (GNN) Architecture:

• ROI-Aware Graph Convolutional Layer (Ra-GConv): Embeds nodes while considering brain region 

identities.

• ROI-Selection Pooling Layer (R-Pool): Selects the most relevant brain regions for classification.

• Regularization Losses:

a) Unit Loss: Ensures model stability.

b) Top-K Pooling (TPK) Loss: Encourages selection of the most informative brain regions.

c) Group-Level Consistency (GLC) Loss: Balances individual vs. group-level biomarker detection.

Application 1: BrainGNN



(Figure from: Bronstein, Bruna, LeCun, 

Szlam, Vandergheynst, 2016)

Input: Citation networks (nodes are papers, edges are citation links, 
optionally bag-of-words features on nodes)

Target: Paper category (e.g. stat.ML, cs.LG, …)

Model: 2-layer GCN

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

16

Application 2: Classification on citation networks



Application 2: Classification on citation networks

(Figure from: Bronstein, Bruna, LeCun, 

Szlam, Vandergheynst, 2016)

Input: Citation networks (nodes are papers, edges are citation links, 
optionally bag-of-words features on nodes)

Target: Paper category (e.g. stat.ML, cs.LG, …)

Model: 2-layer GCN

Classification results (accuracy)

no input features

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

16



DeepCDR is an end-to-end deep learning framework for predicting cancer drug response. DeepCDR contains a novel

UGCN architecture for representing topological information of drugs. 

Application 3: Cancer Drug Response Prediction

Liu, Qiao, Zhiqiang Hu, Rui Jiang, and Mu Zhou. "DeepCDR: a hybrid graph convolutional network for predicting cancer 

drug response." Bioinformatics 36, no. Supplement_2 (2020): i911-i918.

• Drug can be represented as where and is the feature

matrix and adjacent matrix of ith drug

• Each atom in a drug was represented as a 75-dimensional feature vector, including chemical and

topological properties (atom type, degree and hybridization)

• We extended the original GCN (Kipf et al., ICLR, 2017) for processing drugs with variable sizes and

structures by introducing complementary drug

• Layer-wise operation of UGCN is derived as

• Drugs with different size will be embedded into a fixed dimensional vector (default: 100)



DeepCDR takes chemical structures of drugs and multi-

omics data of cancer cell line as input and outputs the

sensitivity of drug. 

• Drug structure data (.MOL) were from Pubchem

database (Kim et al., 2018)

• Cancer cell lines data (genomic mutation, gene

expression and DNA methylation) were downloaded

from Cancer Cell Line Encyclopedia (CCLE) (Barretina

et al. 2012)

• Drug sensitivity data were obtained from Genomics of 

Drug Sensitivity in Cancer (GDSC) (Iorio et al. 2016)

• We finally collected a dataset containing 107446 

instances across 561 cancer cell lines and 223 drugs

• Each cell line corresponds to a TCGA cancer type.

DeepCDR



Content

1 Graph Construction and Tasks

2 Graph Representation Learning

3 GNN Design

4 GNN Architectures

0 Graph-Structured Data and Challenges

5 Applications

6 Theoretical Properties



❖ Expressivity: What graph structures can a GNN distinguish?

– Traditional results relate GNNs to the 1-WL test, but finer geometric 

notions are needed.

❖ Approximation: Under what conditions can GNNs

approximate continuous, permutation-invariant functions?

– Universal approximation results require a careful

treatment of the topology of graph space.

❖ Generalization: How well do GNNs perform on unseen

graphs?

– Existing VC-dimension based bounds are loose and do not

fully capture the influence of architectural choices and graph

structure.

Theoretical Properties

Morris, Christopher, Fabrizio Frasca, Nadav Dym, Haggai Maron, Ismail Ilkan Ceylan, Ron Levie, Derek Lim, Michael M. Bronstein, Martin Grohe, and Stefanie Jegelka. 

"Position: Future Directions in the Theory of Graph Machine Learning." In Forty-first International Conference on Machine Learning.

Future Directions
❖ Develop fine-grained expressivity results that quantify not only if two graphs are distinguishable, but how similar they are.

❖ Derive uniform approximation bounds for GNNs using a refined topology on graph space.

❖ Establish tighter generalization bounds that incorporate architectural choices and graph geometry.

❖ Explore the interplay between expressivity, optimization, and generalization to inform the design of more robust GNN 

architectures.



Deepset

de Finetti’s theorem states that any exchangeable model can be 

factored as

For Exponential Family with Conjugate Priors:



PINE

Then, PINE provides specific parameters for ℎ(·) and 𝑔 · , which can be trained as follows:

which requires ℎ(·) and 𝑔(·) to ensure permutation invariant : 

then the PINE framework provides a

Core Representation Theorem as



Accuracy (%) of multi-class classification in homogeneous and heterogeneous graphs

Evaluation
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