Bios 740- Chapter 5. Graph Neural Networks:
GNN, GCN

Acknowledgement: Many thanks to Mr. Shuai Huang for preparing some of these slides, and to Drs.
Shuiwang Ji, Qiao Liu, and Jiliang Tang for sharing their slides. | also drew on material from the

Stanford CS224w lecture presentations, Dr. Liu’s presentation, and Dr. Tang’s AAAI lecture, as well
as content generated by ChatGPT.
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Graph-Structured Data

[Graph-structured data Is a type of data representation where entities (nodes) and
their relationships (edges) are explicitly modeled as a graph. This structure captures the
connections between data points, allowing for more effective analysis of relational

_ patterns. y
Examples: G h |
* Social networks, citation networks, multi-agent systems rapns are a genera_
» Recommendation System and analyzing entities with
» Protein interaction networks relations/interactions
* Molecules
* Road maps
 Brain networks
4 )
Why Are Graph-structured Data Important?
Graphs capture complex relationships and dependencies between entities:
*Interconnected entities influence each other (e.g., in social networks, a person’s behavior depends on their connections).
‘Knowledge is structured in relational forms (e.g., in knowledge graphs, concepts are linked based on meaning and context).
‘Biological and medical data exhibit intricate interactions (e.g., protein-protein interaction networks, brain connectivity graphs).
By modeling data as graphs, we can better understand structures, uncover hidden patterns, and improve Al-driven decision-making. y
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Graph-Structured Data is Everywhere
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Graph-Structure

d Data is

Everywhere
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Graph-Structured Data is Everywhere
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Challenges

Graph-structured data pose significant challenges due to their irregularity, high
dimensionality, and computational complexity. The major challenges include:

» Scalability and computational inefficiency

» Irregular and dynamic nature

» Data sparsity and missing values

» Complex relationships and non-Euclidean space
» Challenges in learning meaningful representations

» Privacy, security, and adversarial attacks
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Scalability and Computational Inefficiency

s Large graphs (e.g., social networks, citation networks) contain billions of nodes and edges.
*» Many traditional graph algorithms (e.g., PageRank, shortest path) have O(n?) or worse complexity.
*» Memory and computational demands increase exponentially as graphs grow.

Example:
d Google's PageRank algorithm operates on a massive web graph (~60 billion pages).

Solution with GNNs:
(> GraphSAGE: Uses node sampling and aggregation to reduce computation.
» FastGCN: Uses importance-based sampling for efficient learning.

» Distributed frameworks: Utilize tools like DGL and PyTorch Geometric for large-scale graphs.
U J
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Irregular and Dynamic Graph Structures

*» Unlike iImages and sequences, graphs lack a fixed structure, making batch processing difficult.
*» Nodes have varying numbers of neighbors, leading to inefficiencies in training.
s Many graphs evolve over time (e.g., Twitter networks, citation graphs).

Example:
d Social networks such as Facebook continuously update with new friendships and interactions.

Solution with GNNSs:

> Temporal Graph Networks (TGNs): Adapt GNNs to evolving graph structures.

» Graph Attention Networks (GATS): Assign different importance to neighbors for better learning.
» Dynamic GNNSs: Handle time-dependent graphs (e.g., financial fraud detection).

O O 0 O
Text

Networks Images

https://scitechdaily.com/scientists-discover-common-brain-network-for-psychiatric-illnesses/
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Data Sparsity and Missing Values

* Many real-world graphs have missing nodes, edges, or attributes.
*» Data imbalance can lead to poor generalization in machine learning models.

Example:
(1 Recommender systems (e.gd., Netflix, Amazon) have incomplete user-item interactions.

1 Knowledge graphs have incomplete links and entities.

» Graph Autoencoders (GAESs): Predict missing edges and restore incomplete graphs.
» Self-supervised Learning: Leverages unlabeled data to enhance representations.
\> Data Augmentation for Graphs: Synthesizes new nodes and edges to improve learning.

? 2
O ®
- o .
] A )
- ?
® O
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Non-Euclidean Nature of Graph Data

¢ Traditional ML assumes Euclidean space (e.g., CNNSs for images, RNNs for text).
¢ Graphs exist in non-Euclidean space, making feature extraction difficult.

Example:
 Protein-protein interaction networks require specialized models beyond standard deep learning.

Solution with GNNs:

S Spectral GNNs: Use graph Fourier transforms to process signals on graphs. :
» Spatial GNNSs: Learn directly from local neighborhood structures.
» Hyperbolic GNNs: Embed graphs in hyperbolic space to improve distance preservation.
\_ /

T1037 / 6vr4d T1049 / 6yaf
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

@® Experimenta 1l result
@® Computational prediction
Image credit: DeepMind
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Challenges 1n learning meaningful representations

¢ Irregular and Non-Euclidean Structure.

¢ Capturing Long-range Dependencies

*» Handling Heterogeneous Graphs (Multi-type Nodes and Edges)
¢ Lack of Labeled Data for Training

Examples:
J A social network where users have different numbers of connections.

1 Academic networks contain researchers, papers, and institutions, each connected by different relationships.
1 Biomedical graphs contain vast amounts of unlabeled molecular structures.

Solution with GNNs:
~~ Graph Convolutional Networks (GCNs) generalize convolution operations to graphs. N\
» Graph Attention Networks (GATS) assign different importance to different neighbors.

» Residual connections (e.g., Graph Residual Networks) help preserve information from earlier layers.

» Jumping Knowledge Networks (JK-Nets) allow the model to learn adaptive neighborhood aggregation.
» Higher-order GNNs consider information from multi-hop neighbors.

» Heterogeneous GNNs (e.g., HAN, R-GCN) learn different embeddings for different node and edge types.
» Meta-path-based methods extract structural patterns in heterogeneous graphs.

» Self-supervised learning (SSL) generates pseudo-labels from the graph itself (e.g., contrastive learning).
» Semi-supervised GNNs (e.g., GCNSs) propagate labels from a few labeled nodes.
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Security and Adversarial Attacks

*» Graphs are vulnerable to adversarial attacks where malicious modifications disrupt model predictions.
¢ Privacy concerns arise when handling sensitive data (e.g., financial transactions, medical records).

Example:
1 - Fake social media accounts manipulate recommendation systems and misinformation spread.

Solution with GNNs:
> Adversarially Robust GNNs: Detect and mitigate fake node additions. h
» Differential Privacy for Graphs: Ensures sensitive data Is protected during training.

» Graph Sanitization: Removes malicious edges and nodes before training.
U J

v e Financial Systems
-//— Credit Card Fraud Detection

o. %/\‘? Recommender Systems

\e/ Social Recommendation
Product Recommendation
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Content

1 Graph Construction and Tasks
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Homogeneous Graph

Key Characteristics of Homogeneous Graphs

“* Single Node Type: All nodes In the graph belong to the same category.

“* Single Edge Type: All edges represent the same kind of relationship between nodes.

“* Uniform Structure: The graph follows a consistent connectivity pattern, making it easier to apply
traditional graph-based algorithms.

Examples of Homogeneous Graphs

» Soclal Networks (e.g., Facebook, Twitter, LinkedIn)

Nodes: Users. Edges: "Friends" or "Follows" relationships between users.

» Citation Networks (e.g., Google Scholar, ArXiv, PubMed)

Nodes: Research papers. Edges: "Cites" relationships, where one paper references another.

» Protein Interaction Networks (e.g., Biological Networks)

Nodes: Proteins. Edges: "Interacts with" relationships, representing biological interactions between proteins.
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How to build an effective graph?

X Nodes (or vertices) represent the fundamental entities in a graph. They can correspond to different
objects depending on the problem domain.

“»  Edges (or links) define relationships or interactions between nodes. Edges can be:
> Directed or undirected (e.g., one-way vs. mutual friendships).
> Weighted or unweighted (e.g., flight routes with different distances).
> Static or dynamic (e.g., evolvmg relationships over time).

“*  Choosing the Proper Network Representation. The way we construct a graph determines our
ability to extract meaningful insights. Different representations can lead to different outcomes.

> Cases Where Representation is Unigue and Unambiguous

> Cases Where Representation is Not Unique

*  How the Choice of Links Affects the Questions You Can Study

> The way you define connections (edges) influences the type of insights you can extract.
> If you ignore certain relationships, you may miss critical aspects of the data.

> If you add unnecessary edges, you might introduce noise and bias in analysis.
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Graph Set-up

Graph ¢ = (V, E) i1s defined by a set of nodes V and a set of edges E between these nodes. An edge going
fromnodeu € Vtonodev € Vas(uv) € E.

Undirected Directed

20 N/ N/
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Adjacency Matrix

A convenient way to represent graphs is through an adjacency matrix A € RIVIXIVI We order the nodes in
the graph so that every node indexes a particular row and column in the adjacency matrix.

Weighted Multigraph

(undirected) (undirected)

e S NN

if there is a link from node i to node j
A.-,-- 0 otherwlse Self-edges (self-loops)
(undirected)

(0 1 0 1) (0 0 0 1)
1 0 0 1 1 0 0 O -
A= A:
0 0 0 1 0 0 0 O O
1 1 1 0, 0 1 1 0,
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Graphs and Graph Signals

G={V,E&}
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Graphs and Graph Signals

@
Q
2
-
%
Q
-
D
<
<
=

<
I 1
P g
SRR NN N

G={V,E&}

ﬂ-’ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH



Graphs and Graph Signals

Graph Signal:f : V — N Xd

()
f(2)
i
4
YT 5)
f(6)
f(7)

G=1{V,&} RION
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Graphs and Graph Signals
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Matrix Representations of Graphs

Spectral graph theory. American Mathematical Soc.; 1997.
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Matrix Representations of Graphs

vg Adjacency Matrix: Ali,j] = 1 if v; is adjacent to v;
Ali, j] = 0, otherwise

Adjacency Matrix .

(01000000\
1 01 00100
01 01 01 10
001 01000
000 1 0100
01 1 01 010
001 0 01 0 1
\0 00000 1 0
A

Spectral graph theory. American Mathematical Soc.; 1997.
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Matrix Representations of Graphs

vg Adjacency Matrix: Ali,j] = 1 if v; is adjacent to v;
Ali, j] = 0, otherwise

v2 Degree MatriX:D = diag(degree(vy), ..., degree(vy))
Uy

Degree Matrix Adjacency Matrix e
(10000000\ (01000000\
03 00000 0 1 0100100
0040000 0 01010110
000 2000 0 _ 00101000
00002000 00010100
00000 40 0 01 101010
000 0O0O0 3 0 00100101
\0 000000 1 \0 000001 0f

D A

Spectral graph theory. American Mathematical Soc.; 1997.
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Matrix Representations of Graphs

vg Adjacency Matrix: Ali,j] = 1 if v; is adjacent to v;
Ali, j] = 0, otherwise

v2 Degree Matrix:D = diag(degree(vy), ..., degree(vy))
Uy
Degree Matrix Adjacency Matrix 27 Laplacian Matrix
(10000000\ (01000000\ (1 -1 0 0 0 0 0 0}
03000000 10100100 -1 3 -1 0 0 -1 0 0
00400000 010101 10 0 -1 4 -1 0 -1 -1 0
00020000 _ 001 0100 0 _ 0 0 -1 2 -1 0 0 0
00002000 0001010 0 0 0 0 -1 2 —1 0 0
00000400 01 1010 10 0 -1 -1 0 -1 4 -1 0
000000 30 00100101 0 0 -1 0 0 -1 3 -1
\0 000000 1 \0 000001 0f \0 0 0 0 0 0 -1 1)

D A L
Spectral graph theory. American Mathematical Soc.; 1997.
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How to Deal with Multi-relation?
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Heterogeneous Graph

Key Characteristics of Heterogeneous Graphs

“» Multiple Node Types: Nodes represent different entities, such as users, items, papers, or institutions.

“» Multiple Edge Types: Different relationships exist between nodes, such as "authored by," "cites"

“* Rich Semantic Information: The diverse relationships provide deeper insights than homogeneous graphs.

Examples of Heterogeneous Graphs
» Academic Citation Network

Nodes: Papers, authors, journals. Edges: "Cites" (paper-to-paper), "Authored by" (paper-to-author).
» Knowledge Graphs (e.g., Google Knowledge Graph, Wikidata)

Nodes: People, locations, organizations, events. .
Edges: "Works at" (person-to-organization), "Located In" (place-to-countryggrsn ®

Why Are Heterogeneous Graphs Important? S e
_1 More expressive than homogeneous graphs, capturing richer information. A

1 Essential for real-world applications in social networks, recommendation systems, and knowledge graphs.
1 Enhance Al models by incorporating multi-type relationships in representation learning.

ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




Node, Edge, and Global Features

Node features represent characteristics or attributes of individual nodes for downstream tasks like node classification,
clustering, and link prediction.

Common Types of Node Features

¢ Categorical Features: Node types (e.g., "'user" or "product” in a recommendation system).

*» Numerical Features: Values like age, price, or degree centrality.

*» Textual Features: Descriptions, reviews, or labels in textual form.

¢ Vectorized Embeddings: Learned representations from NLP models or pre-trained embeddings.

Edge features define relationships or interactions between nodes for link prediction and edge classification.
Common Types of Edge Features

» Weight: The strength or importance of a connection (e.g., frequency of interactions).

» Type: The kind of relationship (e.g., friendship, purchase, citation).

» Timestamp: When the connection was established (useful for dynamic graphs).

» Directionality: Whether the edge Is directed or undirected.

Graph-Level Features: graphs have global properties or features that apply to the entire network.
Examples include:

» Graph Density (How connected Is the graph?).
» Average Clustering Coefficient (Tendency of nodes to form clusters).
» Graph Size (Number of nodes and edges).
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Different Types of Task

Graph-based machine learning involves multiple
tasks categorized by the focus of analysis. The
Node level  mgjin categories of tasks include:
» Node-Level Tasks: Predicting properties of
Individual nodes.
- » Edge-Level Tasks: Inferring relationships
*: . Community between node pairs.
i (subgraph) » Community-Level Tasks: Detecting and
level analyzing groups of closely connected nodes.
» Graph-Level Tasks: Understanding global
graph properties.

Graph-level «—
prediction, :

Graph
generation

Edge-level
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Node Level Task

Predict attributes or labels of individual nodes. & A/\ Euie

Common examples: 8 & &/ & et?
accoun

» Node Classification: Assign labels to nodes (e.qg., / \ \ /&

fraud detection in financial networks). & / & &

» Node Regression: Predict continuous values (e.g., - &\ /

Influence score in social networks). &

Applications: ? ?

PP _ | 'Y @ & s

P Social network analysis ® o B ® e

» Protein function prediction WARN "‘ |

» Fraud detection o , o E”eaa‘iﬂ'iﬂé o ® &

® o & &
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Node-level Network Structure and Graphlets

The node-level network structure examines the local properties of Graphlets are small, connected subgraphs used to
Individual nodes within a graph. It helps in understanding how a analyze local graph structures.
particular node is positioned within the overall graph. Provide insights into:
Key Properties: » Structural patterns in networks.
s Degree: The number of direct connections a node has. » Node similarity based on shared subgraph structures.
¢ Clustering Coefficient: Measures how well a node’s neighbors » Network motif detection.
are interconnected. » Graphlets capture the building blocks of complex
*» Centrality Measures: networks.

» Degree Centrality: The number of direct links a node has.
» Betweenness Centrality: Measures how often a node acts as a

bridge = Example: All possible graphlets on up to 3 nodes
. G a b c

» PageRank: Determines the importance of a node based on link -

structures. d

Applications: Graphlet instances of node u:
» Social Networks: Identifying influential users and community a b c d
structures. C C C Graphlets of node u:
» Biological Networks: Analyzing protein interactions and a,b,c,d

genetic pathways. <: : C [2,1,0,2]

» Fraud Detection: Finding anomalous transaction patterns.
» Recommendation Systems: Improving item similarity measures.

ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




AlphaFolder

AlphaFold is a deep learning-based model for protein structure prediction.

» It represents protein structures as spatial graphs, where: MSA embedding  Sequence-residue edges

Nodes: Amino acids (residues) in a protein sequence. =
] - - . - _ : Confid
Edges: Defined by spatial proximity between amino acids. e | [ T il
» These graphs capture important structural and functional relationships oot BT EICEE I st | ,\
in proteins. Al A -ﬁ i i i
| — l'_ AT
Captures long-range interactions between amino acids that influence = L |
. quence | Structure |y
folding. [ ag] ks |
» Helps predict tertiary structure from primary sequence. z ~ S
.y - - . . S . Residues = Residues =
» Facilitates learning of protein properties such as stability and function. —— AEHE| | TGN
Enbed N .
outer sum ’g‘y LN c) I
ks | (Pjairwise
] ] R dlistances
Applications: ‘

» Drug Discovery: Identifying binding sites for drug molecules. ReOLE-1i g 3 stuctur

» Protein Engineering: Designing proteins with desired properties.
P Disease Research: Understanding mutations in protein structures.
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Edge Level Task

Predict properties or existence of edges.
Common examples:

» Link Prediction: Determine if an edge should exist (e.g.,

friend recommendations on social media).

» Edge Classification: Categorize relationships (e.g.,
sentiment analysis in social interactions).

Applications:

» Recommendation systems

» Fraud detection in transactions

» Predicting drug-target interactions

Users @ ’ @ @ Interactions

---»

“You might also like"

- il
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41 Gastrointestinal bleed side effect &——@ Drug-protein interaction
> Bradycardia side effect ©—© Protein-protein interaction
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Community Level Task

Identify groups of nodes with similar properties or high connectivity.

Common examples:
» Community Detection: Identifying clusters of related nodes
(e.g., social network communities).

» Graph Partitioning: Dividing a graph into smaller, meaningful
subgraphs.

Applications:

» Social network analysis (detecting influencer groups)
» Biological networks (identifying protein complexes)
» Market segmentation in business analytics
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Graph Level Task

Analyze entire graphs (or a subset) to understand global properties.
Common examples:

» Graph Classification: Assign labels to entire graphs (e.g., molecule toxicity prediction).
» Graph Clustering: Group similar graphs based on structure.

Applications:

» Chemical compound analysis
» Fake news detection

» Biological network analysis

ROCHN ROCHN \T:l\ ROCHth?;%T:l\
COzH Co 2H COZH
penicillins cephalosporins cephamycins
ROCHN, I o
ing
- L'JJ L'
o \f;l\x \T>_—
CoH CoH COH

oxacephems clavulanic acid penems
(an oxapenem)

H
HO/L\ T RHN RHN
NS ;L:L H ;I:T
o/ g Nxsos.

0
CO,H CO,H
carbapenems nocardicin monobactams
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Content

2 Graph Representation Learning
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Graph Representation Learning

Graph representation learning methods transform nodes, edges, or entire graphs into continuous vector representations
while preserving their structural and attribute-based properties. These embeddings make it possible to apply standard
machine learning models to graph-based problems, such as node classification, link prediction, and graph clustering.

Graph Representation
Learning
Traditional Graph Embedding Methods:
» Matrix Factorization (Laplacian Eigenmaps, HOPE). Traditional e baced
» Random Walk-Based (DeepWalk, node2vec).
» Deep Learning-Based (Graph Autoencoders).
Static Dynamic Static Spatial-temporal Dynamic

Graph Neural Networks (GNNSs):
> S pectral GNNS (G C N). Factorization Aggregation Recurrent  — Recurrent (— | Recurrent
» Spatial GNNs (GraphSAGE, GAT).
» Dynamic GNNSs (EvolveGCN).

Random Walk Random Walk Convolutional — Convolutional — | Convolutional

Non-GNN Deep Learning Non-GNN Deep Learning

Temporal Point Process

Categories of graph representation learning methods for
non-heterogeneity-aware graphs (Khoshraftar and An, 2024).
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Why Map Nodes to Embeddings

Goal: Represent nodes as dense vectors in a low-dimensional

space while preserving network relationships. vector
» The similarity between node embeddings should reflect their 1
proximity in the original graph. F-.--!
» Nodes with similar embeddings: LI
» Are structurally close (connected by an edge or via common R |
neighbors). Feature represfentatlon,
» Share similar attributes (e.g., user preferences in a EMUECing
recommendation system). Project nodes into a latent space Geometric relations in this
» Encode network topology efficiently for various tasks. latent space correspond to relationships in the original graph
% \ % N Bt \ Tasks
Input Structured Learning - * Node classification
Graph Features Algorithm Predetion | Link predictior
\ / \ y, \ IS J+ (raph classification
> » Anomalous node detection
i Representation Leamning~  Downstream + Clustering
EngioRdng Automatically prediction task :
learn the features original network embedding space
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An Encoder-Decoder Framework

Encoder maps each node v € V to a vector embedding z, € R

ENC(v):V - R ENC(v) = Z[v]
Z = (Z[v]) € RIVI*4 js a matrix containing the embedding vectors for all nodes. The encoder can also use node features or the
local graph structure around each node as input to generate an embedding.

Decoder reconstructs certain graph statistics from the node embeddings that are generated by the encoder.
Pairwise decoders (similarity): DEC: RY x R —» R*
Reconstruction of the relationship: optimize the encoder and decoder to minimize the reconstruction loss so that

DEC(ENC(u),ENC(v)) = DEC(Zy, Zy) = S|u, v].

where S|u, v] Is a graph-based similarity measure.

Goal: similarity(u,v) ~ zlz,
in the original network Similarity of the embedding

Need to definel

encode node

decode neiahborhood ’

(embgé‘ding)

original network embedding space
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Optimizing an Encoder-Decoder Model

Minimize an empirical reconstruction loss over a set of

. _ Table 3.1: A summary of some well-known shallow embedding algorithms. Note
training node pairs

that the decoders and similarity functions for the random-walk based methods
are asymmetric, with the similarity function pg(v|u) corresponding to the prob-

e 5 D ability of visiting v on a fixed-length random walk starting from u. Adapted
L= 4 . (DEC (Z“"’ Z“)’ S[u’ U]) ’ from Hamilton et al.'}lmll.
(u,v)€[& Method Decoder  Similarity measure Loss function
. 2 0 3
The overall objective is to train the encoder and the decoder La’g' Ef‘?maps ”Z“; Zl ieneral DEC(24,24) 2-.“” L
so that pairwise node relationships can be effectively raph fact. - ZyZ, v ”}k DEC(24, ;) - Sl 3
reconstructed GraRep 2,2 Aluv]..,Au,v]  |DEC(Zy,2,) - S[u, ][5
| HOPE AN general DEC(2y, 2,) — S[u, v]||3
zIzv
Most approaches minimize the loss in using stochastic DeepWalk Ekzvezgzk pg(vu) ~S]u, v} log(DEC(z, 2,))
gradient descent, but there are certain instances when more Hodedvec P R TN U, .
specialized optimization methods can be used. Yrey €' polvfe) (biasod) S, o] log(DEC(z, )
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Matrix Representations of Graphs

Degree Matrix

—

SO OO O oo
SO OO O o wo
O OO OO OO
S O OO NN O OO
S O o N OO oo
SO == OO oo O

~

D

S W o OO oo o

——

_ O O O O O O O

N—

—

O OO O oo+ O

~

Adjacency Matrix

1 0 0 O
0O 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0
1 1 0 1
0 1 0 0
0O 0 0 O
A

O RO, O F)kO

Adjacency Matrix: Ali,j] = 1 if v; is adjacent to v;
Ali, j] = 0, otherwise

Degree Matrix: D =c¢

43

0 0
00\
10
0 0 _
0 0
1 0
0 1
1 0

Spectral graph theory. American Mathematical Soc.; 1997.

AUNC
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Laplacian Matrix

-1 0 0 0 0
3 —1 0 0 -1
-1 4 -1 0 -1
o -1 2 -1 0
0 o -1 2 -1
-1 -1 0 -1 4
0 -1 0 0 -1
0 0 0 0 0

iag(degree(vy),...,degree(vy))




Laplacian Matrix as an Operator

Laplacian matrix is a difference operator: The symmetric normalized Laplacian is

h=Lf=(D— A)f =Df — Af e e

The random walk Laplacian is

h(i))= ) (£(i) —£())) Lrw = DL

v; eN(v;)
. _ ¢ L=D-A is symmetric and positive semi-definite.
Laplacian quadratic form: < The geometric multiplicity of the 0 eigenvalue of the
N Laplacian L corresponds to the number of connected
e 1 o . D components in the graph.
f7LE = o ) Al )(E() — £(5)
i,j=1 Spectral Clustering methods:
¢ Select the k smallest nonzero eigenvectors.

“Smoothness” or “Frequency” of the signal f

¢ Construct the spectral embedding matrix (SEM).
¢ Perform clustering methods on SEM.

ﬂ-’ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH



Eigen-decomposition of Laplacian Matrix

Laplacian matrix has a complete set of orthonormal
eigenvectors:

i | ‘ - AO 0 U _
L=|u - uyv
| ‘ 110 AN-1 | | — un—1 —
U A Ut

Eigenvalues are sorted non-decreasingly:

O0=Xog < A1 < - AnN_1
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Factorization-based approaches

DEC(Zy, Zy) = ||Zu — Zo || DELS. 0 z;—zﬂ.

L= Y DEC(zy,2y) S[u,] L~|2Z" -S|

L=2tr( (D-S)2Z2’)

 If S=AIs the Laplacian matrix, then the node embeddings that minimize the loss in the loss function
are identical to the solution for spectral clustering.

 If we assume the embeddings are d-dimensional, then the optimal solution that minimizes the loss
function is given by the d smallest eigenvectors of the Laplacian (excluding the eigenvector of all
ones).
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Random Walk Embeddings

Random Walks generate node sequences that capture both
local and global structural features.

» Motivation: Node pairs that frequently co-occur in random
walks are considered structurally similar.

» Popular methods: DeepWalk (Perozzi et al. 2014) and
node2vec (Grover and Leskovec 2016).

(=)

Given a graph and a starting
point, we select a neighbor of
it at random, and move to this
neighbor; then we select a
neighbor of this point at
random, and move to it, etc.

Why Random Walks?

< Multi-hop context: A random walk naturally explores k-hop
neighborhoods, capturing global structure.

*» Probabilistic exploration: Each walk Is governed by transition \ The (random) sequence of
N points visited this way is a
probabllltles P(V |U) @ random walk on the graph.

«» Efficiency: Only node pairs co-occurring in walks matter for training,
reducing complexity compared to matrix factorization.

» Flexibility: Parameters like walk length (t), number of walks (R), and
biases (p, g) in node2vec control exploration.
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Core Idea of Random-Walk Embeddings

Walk Generation: For each node u, run R random walks of > Walk length (t): Longer walks capture more distant

|ength L, forming sequences [U, Vi, V2,.. ., Vt]- relationships but increase cost.

Co-occurrence Collection: Within each walk, consider a » Number of walks (R): More walks => more coverage and
context window w. Node pairs (u, v) appearing within w co-occurrences.

steps are recorded. » Window size (w): Defines local context in a walk sequence.

» Embedding dimension (d): Higher d can capture more
complex structure.

» p,q in node2vec: Balance BFS (local) vs. DFS (global)
exploration.

Train Model: Often use a Skip-Gram approach maximizing
P(v|u) for co-occurring pairs.

Output: Each node u is assigned an embedding z, € R?
reflecting its structural context.

arnginL=z z —log(P(v|z,)) Lzz Z ~ log( exp(ZyZy)

T
UEV VENR (1) eV veNT W) 2inev €Xp(ZyZy)

A GZI Z ) /' \

DEC(Zu, Zv) o sum over all  sum over nodes v
ka cy €7 nodes u seen on random
— walks starting from u
~ pg,T(v|u), g
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DeepWalk and node2vec

Key Steps (Perozzi et al., 2014):
» Random Walk Generation:

Walk(u) = [u,vi, va,..., v],  P(viqalvi) =

where N (v;) are neighbors of v;.
» Skip-Gram Training;

max Z log P(v

z
(u,v)Eco-occurrences

u; z) (2)

» Window Size (w): Defines how far apart nodes can be in a
walk to be considered co-occurring.

» Embeddings z, learned via gradient-based optimization.
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» Introduces parameters p (return parameter) and g (in-out
parameter) to guide the transition probabilities.

» Transition probability:
P(vit1 = x|vi =y, Vi_1 = Z) X apq(z, X) - wyx
» «pq(z, x) controls BFS/DFS bias:

1/p, if d(z,x) =0,
apg(z,x) =< 1, if d(z,x) =1,
1/q, if d(z,x) =2

where d(z, x) is the shortest path distance between z and

» Skip-Gram objective as in DeepWalk.

> w, , = edge weight between y and x (often 1 for unweighted
graphs)




Skip-Gram with Negative Sampling

Motivation: In large graphs, computing the full softmax over all nodes is expensive. Negative sampling
approximates this by only comparing each positive pair to a small set of negative pairs.

exp(z.iz,) random distribution
log( =) over nodes
ZnEV exXp (Zu Zn) \

~ log (a(zuzv)) + Z log a(—zuzn )) n;~Py

= Sample k negative nodes n; each with prob.
proportional to its degree.

= Two considerations for k (# negative samples):

1. Higher k gives more robust estimates
2. Higher k corresponds to higher bias on negative events
In practice k =5-20.
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BFS and DFS

= Walker came over edge (s, w) and is at w. Breadth-First Search (BFS)
. o » Explores neighbors of a node first, layer by layer.
How to set edge transition probabilities? » Naturally finds shortest paths in unweighted graphs.
Targetx Prob. Dist. (tx) P> Focuses on the breadth of the graph around each node.
t[{1/p] O
wo S| 1]
s, | |1 2
| 1/ q BFS: DFS:
 BFS-like walk: Low value of i Ng (-) will provide Ng (-) will provide a
: segmented based a micro-view of macro-view of
* DFS-like walk: Low value of g RIS neighbourhood neighbourhood

Ny (u) are the nodes visited by the biased walk Depth-First Search (DFS)

= Return parameter p: » Proceeds along one path until no unvisited neighbors remain,

= Return back to the previous node then backtracks.
* In-out parameter q: » Good for enumerating deep paths or checking connectivity.
= Moving outwards (DFS) vs. inwards (BFS) from the previous node P Focuses on the depth of the graph from each node.

= Intuitively, g is the “ratio” of BFS vs. DFS
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Graph Autoencoder (GAE)

Definition: A Graph Autoencoder (GAE) Is a neural network that learns low-dimensional node embeddings by
reconstructing graph information (e.g., adjacency or node features).
Key Components:

1. Encoder (GCN-based) 2. Decoder (Inner-Product Reconstruction)
» Let X € RVX9 be the node feature matrix for N nodes with
d-dimensional features. A (ZZT)
=0 .

» Let A € {0,1}V*N be the adjacency matrix.

» A simplified graph convolution layer:
where o is an elementwise nonlinearity (e.g., sigmoid).

(I+1) _ (~-1 AD-iHD (/)) A , . . ..
H oDz ADTZ H W), > Aj; estimates the existence probability of edge (i, /).
where A = A + 1, and D is the diagonal degree matrix of A.

» After L layers, we obtain latent embeddings
Z = H(L) ¢ RNxk,

Objective: Minimize the reconstruction loss between the original graph and the reconstructed output.

» Objective: » Often use binary cross-entropy on adjacency reconstruction:
min  Lyecon,
) N N
where 6 are all learnable parameters of the encoder (and Lyecon = — Z Z [A:_'j |08(Aij) +(1—Aj) |08(1 - Au)]
decoder). i=1 j=1
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t-SNE

“ t-SNE (t-Distributed Stochastic Neighbor Embedding) is a powerful tool for visualizing high-dimensional data by
preserving local neighborhood relationships.

¢ It transforms high-dimensional similarities into probability distributions and minimizes the KL divergence between these
distributions.

¢ Careful tuning of hyperparameters (perplexity, learning rate, iterations) is crucial for meaningful visualizations.
For data points x;,x; € RP: After mapping high-dimensional points x; to low-dimensional
points y; € R¢:
» Define the similarity using a Student’s t-distribution (with one
exp (—[Ixi — x;||*/207) dogros of frasdom)s (
> - gree of freedom):
Zk;éi exp (—||x,- - xk||2/20i)

» Define the conditional probability:

Pjli =

1

A+ lyi—yili?)

_ —
>kt (L+llye = yill?)

for i # j, with g; = 0.

» o; is determined such that the perplexity of the distribution

qij
equals a user-defined value.

» The symmetric joint probability is:

Pj|i Tt Pil;j ., » The heavy-tailed t-distribution alleviates the crowding
pij = , 1 FJ, . .
2N problem by allowing moderate distances to be represented
: faithfully.
with pji = 0, where N is the total number of points. more Taithtully

The goal is to minimize the Kullback-Leibler (KL) divergence between the high-dimensional and

low-dimensional distributions: Pii oC _q
c=3"3 pytos () 2 3 (o ) 01— 3) (14 i~ )
’- J 1 1 .

J
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Combining Graph Autoencoders & t-SNE

Learn Node Embeddings: 1. Data Preparation: Adjacency A, node features X.

2. GAE Training:

Z ¢ RV*% = GAE(X, A).
» Encoder: GCN layers — Z.

Apply t-SNE: » Decoder: Inner product or MLP to reconstruct A.
Y = t-SNE(Z), » Loss: Cross-entropy or MSE on adjacency.
where Y € RNX2 or RNX3 3. Embedding Extraction: Take final Z.
Interpretation: Points close in Y-space share similar graph 4. t-SNE:
structure/features in Z. Y = t-SNE(Z).
5. Visualization & Evaluation:
» Plot Y in 2D.

» Color by labels or cluster IDs (e.g., KMeans).
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Evaluation Metrics

¢ Graph embedding quality is often task-dependent.
*» Common tasks: node classification, link prediction, clustering.
¢ Metrics should measure how well embeddings capture structural/semantic

properties.
Node Classification Metrics Reconstruction Error:
Typical Steps: » Factorization-based methods can measure how well the
» Split nodes Into train/test based on known labels. adjacency or proximity matrix Is reconstructed.

» Use embeddings zu as features for a classifier (e.g., logistic ~ » For example, HA _ ZZT\ ‘%__ or variants.
regression, SVM).

» Evaluate accuracy on the held-out test set. Visualization:

Common Metrics: » Use dimensionality reduction (e.g., t-SNE) on embeddings to
» Accuracy: #correct #total . see If clusters/communities are visually separable.

» F1-score: harmonic mean of precision and recall. » Qualitative check: do similar nodes appear close in 2D/3D

» Macro/Micro-F1: for multi-class settings. projection?
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Karate Club Graph

The Karate Club Graph is a well-known dataset in network science,

] _ ] . Feature Description

commonly used in community detection, graph clustering, and Graph yoges (vembers) ”
Neural Networks (GNNS) research. Edges (Interactions) 78
1. Orlgln & Background Communities 2 (Instructor's group vs. Administrator's
> The dataset was collected by Wayne W. Zachary in the 1970s. group) |

. . . ) Real-World Labels Yes (Ground truth available)
>t represents the social Interactions of 34 members in a N Community detection, Graph

university karate club over a period of time. Embedding, GNN Research

» Due to internal conflicts, the club eventually split into two
groups, forming two communities.

2. Structure of the Graph

» Nodes (34): Each node represents a club member.

» Edges (78): An edge between two nodes Indicates that the
corresponding members interacted outside of the club.

» Two Communities:
* One group followed the instructor (Leader: Node 0)
 Another group followed the club administrator (Leader: Node

33)

Karate Club Graph
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Four Graph Embedding Methods

Laplacian Eigenmaps (Matrix Factorization)

Uses the graph Laplacian matrix for spectral decomposition.

* Captures global structure, but is limited to linear projections.

2

Random Walk-based Embeddings (DeepWalk-like)

* Simulates random walks on the graph.

Uses t-SNE for dimensionality reduction.
nspired by word embeddings in NLP.

3

GNN-Based Embeddings (Graph Convolutional Networks)

Uses message passing to learn node representations.

e Captures both local and global structure.

4

Deep Learning-Based (Graph Autoencoder-like using t-SNE)

Further refines GNN embeddings for better visualization.

Ensures local neighborhood relationships are well-preserved.
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Sample Code

i Legiel Ehe Kara?ekClub S%?ph # 0. Forward pass to obtain node embeddings

€ = HXEkafaEf—v*fi—gfaff‘f N . node embeddings = model (x, data.edge index) .detach () .numpy ()

# Convert—ietworkX grapir Cco :y¢orch Geometric format # 1. Matrix Factorization (Laplacian Eiqenmaps)

data f from_petworkx(G) . laplacian = nx.normalized laplacian matrix (G) .toarray()

# Define a simple Graph Neural Network (GNN) for learning eigvals, eigvecs = np linglg eigh(lgplacian)

embedd1ng§ ] S laplacian embeddings = eigvecs[:, 1:3]

elase GCF\FQ%C“'H“'MQQU%S): . . . # 2. |Random Walk-Based| (DeepWalk-1like embeddings using t-SNE)
def mit  (self, Input dim, hidden dim, output dim):

— random walk embeddings =

super (GCN, self).__ln}t__() _ . . TSNE(n_compgnents=2).fit transform(laplacian embeddings)
s@.Loeonvl = GLNCony (dmput ¢im, hicden ckm) # 3. Dgep Learning—Based_(Graph Autoencoder-1ike using t-SNE)
seli.comyz = Clhiconw (alcden dim, oUEpIt ckim) deep learning embeddings = TSNE (n components=2,
perplexity=5).fit transform(node embeddings)

def forward(self, x, edge index):

x = seli.convl(x, edge index) # Apply|KMeans clustering)to each embedding method

R = Fo el (x) . num clusters = 2

X = seli.cemvs(x, sdge dndex) kmeans laplacian = KMeans (n clusters=num clusters,

return X random state=42).fit (laplacian embeddings)
# Initialize random node features (no predefined features) kmeans random walk = KMeaHs(n clusters—=num clustezs,
ool nedes = €. mumber of noces () B ~ random state=42).fit (random walk embeddings)
l? Y —dlm kmeans deep learning = KMeans (n clusters=num clusters,
2 den_d}m random state=427).fit (deep learning embeddings)
ou SR et . . kmeans gnn = KMeans(n_clusters=num clustgrs, B
X = : num_nodes, input_dim)) B ~ random StaEe=42).fit(node embeddings)
# Initialize the GNN model - -
model = GCP(input_dim, nidden dim, output dIim)

File: graphEmbedding.ipynb
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Clustering & Evaluation

* Applying K-Means Clustering: We cluster the node embeddings into two communities.
* How Do We Evaluate Clustering?

v Silhouette Score measures clustering quality.
v/ Higher score = better-defined clusters.

Method Silhouette Score
Laplacian Eigenmaps 0.4252
Random Walk (DeepWalk-like) 0.4867
Graph Autoencoder (Deep Learning) 0.4408
GNN-Based Node Embeddings 0.4810
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Figures

Matrix Factorization (Laplacian Eigenmaps)
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Random Walk-Based (DeepWalk-like)

7.2
. @ Clustero
@ Clusterl
7.0 1 @s
@°
6.8 1 ‘
6.6
6.4
6.2 ¢
@!
6.0- ﬁlﬁ pes
¢ & ol
2
5.8 1 ‘}' ‘5 ‘! .
@ @
ol e U ¢ ¢
' ¢
T T T T T T T
8.25 8.50 8.75 9.00 9.25 9.50 9.75
GNN-Based Node Embeddings
&3 @ @ Clustero
@ Clusterl
1.0 A
0.8
¢ @s
¢
¢ 4
0.6 ¢ ¢
gy %6
7
0.4 - @3 @° ¢ @3 ¢
¢ &
0.2 @1 @
‘6.2 ‘9
6
6 ¢’ ¢
T T T T T T
-0.3 -0.2 -0.1 0.0 0.1 0.2

Original Karate Club Graph




Enhancement

Change Impact
Increased node feature dimension (5 - 10) Allows GNN to learn richer representations.

Increased GNN hidden layer size (8 = 16) Improves model capacity for better feature

extraction.
Adjusted t-SNE perplexity=5 for GNN Focuses on local neighborhood structures,
embeddings leading to more refined visualization.
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Code for Enhancement

# Load the Karate Club Graph
G = nx.karate club graph ()
# Convert NetworkX graph to PyTorch Geometric format

data = from networkx (G)
# Define a simple Graph Neural Network (GNN) for learning
embeddings

class GCN(torch.nn.Module) :
super (GCN, self). 1init ()
self.convl = GCNConv (input dim, hidden dim)
self.conv2 = GCNConv (hidden dim, output dim)

def forward(self, x, edge index):

x = self.convl (x, edge index)
x = F.relu(x)
x = self.conv2(x, edge index)

return x
# Initialize random node features (Karate Club has no
predefined features)
num nodes = G.number of nodes()
rinpat_dim = 10 #| Number of features per node
‘hidden dim = 16 ]
output dim = 2 # 2D embedding for visualization
x = torch.randn ((num nodes, input dim))
# Initialize the GNN model
model = GCN (input dim, hidden dim, output dim)

def init (self, input dim, hidden dim, output dim):

# 0. Forward pass to obtain node embeddings

node embeddings = model (x, data.edge index) .detach () .numpy ()
# 1. Matrix Factorization (Laplacian Eigenmaps)

laplacian = nx.normalized laplacian matrix (G) .toarray ()
eigvals, eigvecs = np.linalg.eigh(laplacian)

laplacian embeddings = eigvecs([:, 1:3]

# 2. Random Walk-Based (DeepWalk-like embeddings using t-SNE)
random walk embeddings =

TSNE (n_components=2) .fit transform(laplacian embeddings)

# 3. Deep Learning-Based (Graph Autoencoder-like using t-SNE)
deep learning embeddings = TSNE (n components=2,
perplexity=5).fit transform(node embeddings)

# Apply KMeans clustering to each embedding method
num clusters = 2
kmeans laplacian = KMeans (n clusters=num clusters,
random state=42).fit (laplacian embeddings)
kmeans random walk = KMeans (n clusters=num clusters,
random state=42) .fit (random walk embeddings)

kmeans deep learning = KMeans (n clusters=num clusters,
random state=42) .fit (deep learning embeddings)
kmeans gnn = KMeans (n clusters=num clusters,

random state=42) .fit (node embeddings)

GILLINGS SCHOOL OF

File: graphEmbedding.ipynb




Clustering & Evaluation

* Applying K-Means Clustering: We cluster the node embeddings into two communities.
* How Do We Evaluate Clustering?

v Silhouette Score measures clustering quality.
v/ Higher score = better-defined clusters.

Method Silhouette Score
Laplacian Eigenmaps 0.5525
Random Walk (DeepWalk-like) 0.4889
Graph Autoencoder (Deep Learning) 0.6777
GNN-Based Node Embeddings 0.3688
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Matrix Factorization (Laplacian Eigenmaps)
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Random Walk-Based (DeepWalk-like)
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GNN-Based Node Embeddings
@6 @ Clustero
015 1 @ Clusterl
0.10 "] @2
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Original Karate Club Graph
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Graph with Embedded Positions
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3 GNN Design
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CNN and RNN

Fullv-éf)f;\ected FuIIv—(\;:;\iected C N N/ R N N Key M Od U I eS

Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution /—M
bt bl AL bt i Ll L ,_L =
(bl kel Max-Pooling (5x5) kernel - May.pooling (with Modules CNN RNN
valid padding 2x2) valid padding (2x2) .

Sequential dependency

0 Core Concept Spatial feature extraction

f*\ Ar*\rkﬂ

modeling
> No k I igh
2 Kernel (Filters) Yes (learnable filters) O RETNEL, LSes welg ‘
matrices
Pooling (Downsampling) Yes No
INPUT n1channels nl channels n2channels  n2 channels 9 Multi-Scale Processing Yes (hierarchical) No
(28 x 28 x 1) (24 x24 x n1) (12 x 12 x n1) (8 x8xn2) (4 x4 xn2) UTPUT , Iy (shared i
. i artially (shared weights
n3 units Weight Sharing Yes over time)
Obama I stand here today @ @ @ Handles Variable Input
humbled by the task before us, T T Length No Yes
grateful for the trust you have [ ‘_»f _ B )f \_’
bestowed, mindful of the sacrifices A @ Long-Term Dependencies No Yes (with LSTMs/GRUs)
borne by our ancestors. | thank A 1 I;’n L 7 A
President Bush for his service to > > >
. \J J y 9 J
our nation, as well as the | |
generosity and cooperation he has @ @ @

shown throughout this transition.
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Node- and Graph-level Tasks

Node-level Graph-level

Link Prediction Graph Classification

t t+a

Node Classification
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Propagation and Pooling

Node-level Graph-level

Propagation/ Pooling
Node Filtering
Sampling ‘ HEEER
Node Graph Representations

Representations
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Group Propagation/Filtering

Node Representation Update:

Graph Propagatio g (h,w, > g(f',j)),
JEN(J)
where:
> h'(.') represents the embedding of node i at layer /.
» N(i) denotes the set of neighbors of node i.

» f and g are learnable functions.

— [ ] ==

69

¢ A node’s representation is influenced by its neighbors.
¢ By stacking multiple GNN layers, each node can capture
information from multi-hop neighbors.

A € {07 1}n><n7X c Rnxd A € {07 1}n><n7xf c Rnxdnew

Propagation refines the node features
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Group Pooling

Graph Pooling

P
v

A €{0,1}"*" X e R"¥¢ A, € {0,1}wxme X, € RwXdnew <
Graph pooling generates a smaller graph

/
— = [
=
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General GNN Framework

For node-level tasks

Input graph GNN Layer 1 GNN Layer 2 Output Layer

ﬁ l l P I GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




General GNN Framework

For graph-level tasks

. Filtering Layer

£ -
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GNN Designs

# Summary
Step Task
1. Define Graph Nodes, edges, features
/ __________ \ 2. Feature Engineering Define node and edge features
:' Skip. \' 3. Message Passing Select aggregation method
"- -C.of rle-ct_lo_n_ _:' 4. Choose Architecture GCN, GAT, GraphSAGE, etc.

Supervised (cross-entropy), unsupervised

5. Loss Function i
(contrastive)

( : ( : X
N Sampling [Conv/ Recurrent Pooling ! 6. Training Use mini-batching and optimizers
Operator Operator I Operator
L SRR / . Classification, link prediction, graph-level
\ 7. Evaluation
= e tasks
\\\ /,/' 8. Deployment Optimize for inference speed
lnput \~‘~~\\ ”’I” 0utput Hidden layer Hidden layer
Node 4 Loss Function A
Embedding
GNN GNN [ \ ( \ hope Output
|:> i o = |:> Edge I:> Training Setting Task
Layer Layer , : . ] ReLU ReLU
Embedding * Supervised Node-level 4l
*  Semi-supervised * Edge-level 7 M e
Graph * Unsupervised * Graph-level
k- y 9 4
— — Embedding \ ) @ §

Jie Zhou, et al. (2020). AI Open
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Key Modules in Graph Neural Networks

GNNs process graph-structured data by propagating and aggregating information across nodes and edges.
Three key modules in GNNs:

* Sampling Module

AIms to reduce the size of each node’s neighborhood, especially for large graphs, preventing the neighbor explosion problem.
* Propagation Module

»  Performs message passing via convolutions (e.g., GCNSs) or recurrent operators (e.g., GRUs) on node features.

»  Uses skip connections to mitigate over-smoothing and incorporate historical representations.
¢ Pooling Module

Aggregates node-level embeddings into subgraph or graph-level representations, extracting higher-level features needed for

Tasks
Node classification

Propagation Module

QUNC

Sampling Module

o Reduces neighborhood
size

o Efficient processing on
large graphs

e Convolution / Recurrent
ops

e Skip connections mitigate
over-smoothing

o Aggregates feature +
topological info

Pooling Module

o Aggregates node reps
into subgraph/graph-
level reps

o Extracts high-level
features

GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH

Link prediction

Graph classification
Anomalous node detection
Clustering




The Sampling Module

Efficient Graph Processing via Sampling
» Direct propagation on large graphs is computationally infeasible.
» The Sampling Module reduces cost by selecting subsets of nodes or edges.

Key Challenge:

“* Neighbor Explosion: The number of neighbors grows exponentially with depth. GNNs aggregate messages from each
node’s neighbors in the previous layer. Tracking back multiple layers can exponentially increase the neighbor set.
Storing and processing all neighborhood information becomes intractable for large graphs.

< Computational Efficiency: Full neighbor aggregation is impractical for large graphs.

< Memory Constraints: Storing all neighborhood information for each node is infeasible.

< Scalability: Enables GNNs to handle large graphs effectively.

Common sampling technigues: Node Sampling; Layer Sampling; Subgraph Sampling.

Impact on Permutation Properties:

» Node-level predictions remain unchanged under node reordering.

» Node representations transform consistently when input ordering changes.

Impact on Task Performance:

» Preserve downstream performance in classification, link prediction, etc.

» Sampling strategies must capture essential structural information despite reduced neighborhood size.
» Aim for low variance while avoiding high computational costs.
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Common Sampling Methods

Node Sampling: Selects a subset of nodes and their immediate neighbors.

» Reduces computational complexity by limiting the number of participating nodes.
» Often used in algorithms like GraphSAGE.

Layer Sampling: It selects a fixed number of neighbors per layer.
» Controls exponential growth by restricting the number of aggregated neighbors.
» Balances efficiency and performance in large-scale graphs.

Subgraph Sampling: Extracts a subgraph based on connectivity patterns.
» Useful for mini-batch training by working on graph partitions.
» Preserves graph topology while reducing computation.

f , ---------- | 1 [ ]
| Node  r-- GraphSAGE VR-GCN PinSAGE
4 A | | :
Sampling d pmmmmmmeees . e |
_ Module 3 1 lajer r-- FastGCN LADIES
[ T — | |
_ ' Subgraph :r'" ClusterGCN GraphSAINT Jie Zhou, et al. (2020). Al Open
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The Propagation Module

Facilitates message passing between nodes to integrate structural and feature information.

Key operations:

= Convolution Operators: Aggregate neighbor information.

“ Recurrent Operators: Maintain temporal dependencies in dynamic graphs (e.g., Graph GRU, Graph LSTM).
% Skip Connections: Mitigate over-smoothing by retaining historical representations.

—

Spectral
S Sataiuiaiadiaty : Nk ChebNet GCN AGCN
| Spectral rTem memeem———— —
TARGET NODE | DGCN GWNN
(5) Learning objective ™ {ecananition 3= - TR
i Operator 1 e e l Neural FPs DCNN SAN LGCN
' """""" ! Basic ! &
prosm————— eI " L GraphSAGE
INPUT GRAPH : . ' ] Spatial i <
Aggregation R B (R .
! Attentional i GAT GAAN
Message [ Propagation ] < AR S
o 1
(3) Layer s Module _ i Framework r---  MoNet MPNN NLNN GN
con HECtIVIty ...........................................................
s ) s .
R . | Convergence r---  GNN GraphSEN SSE LP-GNN
y Recurrent ¢+ ) TTTTTTTTTT
i\ Operator 3 a
__________ R
|| Gate r--4  GGNN Tree LSTM Graph LSTM Sl‘igt;’;;e
{----SI:i;;---\' Highway
H I N i Yt o i
(4) Graph augmentation | i connestion | JKN o CLN DeepGCN

——————————

Jie Zhou, et al. (2020). AI Open
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Permutation Equivariance and Invariance

Image Maps x N

Input & '
: o r this: ™ SR

\ \ o , oL SYK
o ' N\ o - o9 o
Vol ‘\ M ”\ J ® Pl 7AW N
Convolutions Fully Connecte @ @ L /
Subsampling ® g

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Key Observation:

» A graph does not have a fixed, canonical ordering of its nodes.
» Any permutation of node indices can still represent the same

Permutation Equivariance (PE): Node embeddings maintain
structure when node order changes.

Permutation Invariance (PIl): Graph-level representations

underlying graph. remain
Im DllC&thﬂ_i _ _ _ unchanged under different node orderings.
» The labeling or numbering of nodes is arbitrary.

P Reorder node IDs without changing the graph’s structure.

Node features X;  Adjacency matrix 44 Node features X,  Adjacency matrix 4,

Order 1 Order 2 » GED ABCDEF

M m ONn W >
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Definition of PE and PI

Permutation Invariance:

» A function f(-) is invariant if permuting inputs does not
change the output:

f(n(A, X)) = f(A,X), V€S

» Typical for graph-level tasks (e.g., entire graph classification).

Permutation on Graphs:
» Let P be an n X n permutation matrix.

» Then A— PAP', X — PX.
= f(A,X) = 1' X : Permutation-invariant
= Reason: f(PAPT,PX) =1TPX =1"X = f(4,X)

" f(A4,X) = AX : Permutation-equivariant
o " Reason: f(PAPT,PX) = PAPTPX = PAX = Pf(4,X)

= f(A,X) = X : Permutation-equivariant
= Reason: f(PAPT,PX) = PX = Pf(4,X)

Permutation Equivariance:
» A function g(-) is equivariant if the output is permuted in the
same way:

g(n(A, X)) = 7(g(A X)), V€ Sp

» Typical for node-level tasks (e.g., node embeddings, node
classification).

Permutation-invariant
f(A,X) = f(PAP", PX)

Permutation-equivariant
Pf(A,X) = f(PAP",PX)

Orderi1: A, X4 Order 2: A3, X,

=9
= B

P

f(AZ'XZ) =

f(A, X ) =

-nrnoﬁw)>

.M m O N W >
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Designing GNN

Designing GNN Layers must preserve or respect permutations at each update step. Pl and PE are crucial for robust GNN
models that handle node reorderings gracefully.

«» Sampling + Approximation: Avoid violating permutation properties in large-scale graphs (random sampling, etc.).

*» Pooling Mechanisms: Summation/average pooling ensures invariant graph-level outputs.

% Challenges: Hierarchical pooling, dynamic graphs, and advanced aggregator designs can complicate these properties.

GNN consist of multiple permutation equivariant / invariant functions. A general GNN framework

TARGET NODE

|

(5) Learning objective

— I

(2) Aggregation

INPUT GRAPH

GNN Layer 2

., , (1) Message
(B8l layer PR S——

connect|V|ty ‘ ....... i

GNN Layer 1 .,

(4) Graph augmentation
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The Pooling Module

Extracting High-Level Representations
¢ Generates compact representations of subgraphs or entire graphs.
¢ Essential for tasks like graph classification and hierarchical learning.

Key pooling techniques:

» Node Dropout Pooling: Drops less informative nodes (e.g., Top-K pooling).

» Cluster-based Pooling: Merges similar nodes into clusters (e.g., DiffPool).

» Attention-based Pooling: Assigns weights to nodes based on learned importance.

» Maintaining Permutation Invariance: Ensures that graph representations remain unchanged.
Two main categories:
“ Direct (Readout) Pooling Modules: Aggregate node embeddings into a single graph-level embedding in one step.

“» Hierarchical Pooling Modules: Iteratively coarsen (or cluster) the graph, creating a hierarchy of smaller graphs or subgraphs.

o

%

N

o

Set2set | SortPooling

'_ o B | | Pooling | ] || |
[ Pooling ] >
Module T | | | | | ] | "
PREE—————— : Coarsening | BECC DiffPool gPool
Hierarchical 1 < | B | 1 |
b M s cne J
[ EigenPooling - SAGPool

Jie Zhou, et al. (2020). AI Open
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GNN Training Framework

Training Approaches

“ Supervised Learning: Uses labeled data to train GNNs for node/graph classification.

“» Semi-supervised Learning: Uses both labeled and unlabeled data to improve training.

“* Unsupervised Learning: Uses self-supervision (e.g., contrastive learning) to learn node embeddings.

Prediction Tasks in GNNSs

“» Node-focused: Predicts node labels (e.g., node classification) using an MLP or softmax layer.
“» Edge-focused: Predicts relationships between nodes (e.g., link prediction) using similarity functions or MLPs.
“» Graph-focused: Generates graph embeddings using pooling layers for tasks like graph classification.

Cross-Entropy Loss: Example Types of Nodes in GNN Training
¢ Training Nodes: Used in loss computation.
L= ) yilog(a(h/8))+ (1 —yi)log(l —a(h0)) < Transductive Test Nodes: Processed in GNN but not
i€ Vitrain Included Iin loss computation.
where: “ Inductive Test Nodes: Not included in GNN

computation or loss function.
» h; is the node embedding at the last GNN layer.

» y; is the true class label of node 1.
» 0O represents the classification weights.

» o is the sigmoid function.
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GNN Training Pipeline

INPUT GRAPH INPUT GRAPH INPUT GRAPH INPUT GRAPH

Graph Node

Evaluation
metrics
Neural embeddings
Network SR
2 head
Loss
function
Implementation resources:
PyG provides core modules for this pipeline

GraphGym further implements the full pipeline to facilitate GNN design
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Content

4 GNN Architectures
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Spectral and Spatial GNN Framework

Spatial Based Filtering Spectral Based Filtering

Original GNN
(Scarselli et al.

2005) \

GraphSage Spectral
GAT (Hamilton et al. . \ Graph CNN
(Veliékovié et all™ NIPS 2017) (Bruna et al.
ICLR 2018) - GCN ICLR 2014)
(Kipf & Welling.

ICLR 2017)
MPNN
(Glimer et al.
ICML 2017)

ChebNet
(Defferard et al.
NIPS 2016)
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Spatial GNN Framework

Key Concepts:
¢ Spatial approaches define convolutions directly on the graph using graph topology.
» Unlike spectral methods, these approaches operate in the node domain without eigen-decomposition.

¢ The challenge lies in handling variable neighborhood sizes and preserving local invariance.

TARGET NODE

General Spatial Convolution: l

Initial O-th layer embeddings are

hO — = __— equal to node features embedding of
he = % /

v at layer k

[
k+1 INPUT GRAPH
hl(; ¥ a(Wy z |Nztv)| i Bk.),‘v’k € {0, ...,.— 1}
pel” N \ Layer-2 .
(K) %, | ’ Total number T
Z, = h, Average of neighbor’s of layers ® <

\ Ebedding after K previous layer embeddings

layers of neighborhoo
aggregation
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" Non-linearity

(e s Re LU) Notice summation is a permutation
invariant pooling/aggregation.




Neural Message Passing

S The defining feature of a GNN is that is uses a form of neural
| message passing.
(5) Learning objective

‘ During each iteration k, a hidden embedding h,ftk) for node u Is
updated according to the information aggregated from its
MM O I """"""""""""""""""""""""""""""" ' neighborhood N (u), which can be expressed as follows:

(2) Aggregation Y = update® (hg{), aggregate ({ K vy e N (u)}))

: . We often denote my ) = aggregate(k) ({ h,(,k), Vv € N(u)}) as
(3) Layer —— the “message” aggregated from neighborhood. The initial
embeddings at k = 0 are set to the input features for all nodes,

.e., hfto) = x,,. After running K iterations of the GNN message
passing, we can use the output of the final layer to define the

embeddings for each node, I.e., z, = hg{),‘v’u ev.

INPUT GRAPH

GNN Layer 2

connectivity

GNN Layer 1 .,

(4) Graph augmentation

ﬂ—’ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




Neural Message Passing: Intuition

Intuition Behind Message-Passing Framework
¢ The core idea of message passing is simple:

» At each Iiteration, every node aggregates information from its 1-hop neighbors.

» As Iterations progress, nodes encode information from progressively farther regions of the graph.
¢ This allows nodes to capture both local and global structures over time.

What Do Node Embeddings Encode?
Node embeddings contain two main types of information: Aggregation
 Structural Information: Local connectivity patterns; Higher-
order graph structures; the importance of a node based on its
graph position (e.g., centrality measures).

» Feature Information: Numerical attributes (e.g., temperature,
population density in spatial graphs); Categorical attributes (e.qg.,
user preferences in recommendation systems); Learned
representations from deep neural networks.

Why iIs Message Passing Powerful?

* Combines local and global information efficiently.

*» Enables deep learning models to capture rich relational patterns.

¢ Supports various tasks like node classification, link prediction, and graph generation.
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GNN: Basic Form

The basic GNN message passing is defined in node-level:

k k k—1 k k-1
h£>=a(W$ez}h£ D W )R >+b<k>)

VEN(u)

where W ¢, Wheign are trainable parameter and o denotes an elementwise non-linearity such as ReLU. Alternatively, it can
also be succinctly defined in graph-level:

— k — k
H® = g(H* VW) + AHCDW ) Y

The basic GNN message passing can be simplified by omitting the explicit update step:

hg‘“) = aggregate ({ hl(,k), Vv € N(u) U {u}})

where now the aggregation is also taken over the node u itself. Adding self-loops is equivalent to sharing parameters
between self and neighbor transformations.
HO — ¢ ((A + I)H(*”W(*))

The self-loop GNN approach balances simplicity and efficiency but has some limitations. Self-loops make it harder to
differentiate between node and neighbor information. Blurs the distinction between structural and feature information
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Permutation Invariant and Equivariant

= Intuition: Network neighborhood defines a Natefare X, Adacncymavic, Embeddings
A - A
computation graph Order 1 : D
C C
E o
Every node defines a computation E z E
. . ' F - F
graph based on Its nelghborhood. Target Node Permute the input, the output also permutes
accordingly - permutation equivariant
NodefeatureX,  Adjacency matrixA, Embeddings H,
INPUT GRAPH Order 2 » D ABCDEF
A
B
o t C
o & & 0 s :
0~;’. e @ o\'";’o ; e o ." = Target Node F
C Siiet® %e oee®  Medg e’ e %eer et g, e
© 0
s -
: shared parameters :
‘n"---?i‘-%--bif_‘ --------------------------------------------------------------------------------------- ) ‘.’"-*.,' ------ .
. ....... ; ....j.,'...i‘:. ..... I........ ..............................................................................................
Average of neighbor’s previous layer 000

embeddings - Permutation invariant Compute graph for node A Compute graph for node B
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Neighborhood Normalization

A basic approach is summing neighbor embeddings, but summing gz @ e S-S
. . . . . Y ,| @
neighbor embeddings can create large magnitude differences. Nodes with
significantly different degrees may lead to instability and optimization =~ o =- m ® ‘@
challenges. el \ @ /0 )
- Bargtiie016> Manir. 202 ‘97
argotit .13/050-0 Bema.zozo
k+1 Chen¥2ol 7 '
KD = update® (1), m(Nw)) ¢
Example: A node with 100x more neighbors than another will have @ miy, @ﬁ A é.
drastically different embedding scales. Leads to numerical instability and “®
difficulties in optimization. A - ° ‘@
MGG Reomon 2015 R O‘

Li)2016

Christiansen, 2016

A straightforward solution is degree-based normalization:

m _ Z‘UEN(U) h,
N = M ()

Graph convolutional networks (GCNSs)

One solution to this problem is to normalize based upon the degrees of
the nodes involved, which is called symmetric normalization: h(®) = o | W® Z h

My = z hv veN (uw)u{u} \/|N(U)HN('U)|
VEN (1) \/lN(u) X [N (v)]
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Deepset and Attention

Deepset/Set pooling

mN(u) — MLPQ( z MLP¢(hv))
VEN(u)

- Given a set of embeddings {xi, x2, ..., X»}, a function f is
permutation-invariant if:

F(X1,X2, .0y Xn) = F(X5(1), X5(2)5 ++> Xor(n))

for any permutation o. - Any permutation-invariant function can
be approximated arbitrarily well by a function of the form:

F(X)=p (Z ¢(x;))
i=1

where ¢ is a transformation applied to each element, and p is a
post-aggregation transformation.
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Another method would be to assign an attention weight on the
importance to each neighbor so that the neighbor’s influence

can be weighted during the aggregation step, as proposed In the
Graph Attention Network (GAT):

Myw) = 2 ay vy

VEN (U)

In principle any standard attention model at large can be used,

* The bilinear attention model, since the operation is linear in
both h, and h, separately, and the weight matrix W makes it
more expressive than simple dot-product similarity

exp(hl,Wh,)

a —
wy Zv’EN(u) exp(h,Wh,,)
 The multi-head attention model, which is used in the
Transformer architecture.

Adding attention is a useful strategy especially in cases where
we have prior knowledge to indicate that some neighbors might
be more informative than others.



Generalized Message Passing

As the last attempt to generalize the basic neural message passing framework, now we extend the approach beyond the node
level, leveraging edge and graph-level information at each stage.

One more generalized message passing approach can be formulized according to the following equations:
(k=1) p(k=-1) ,(k=1) ;(k—1)
hgu)v) = updategg e (h(u’v) yhy ,hy T he )

k
My@) = aggregatenoge ({hgu)v),‘v’v EN (u)})
h(k) = update, 4. (h(k 1) My W) h(k 1))
hY = updateg, qpn (W ) (R vu e vy, (hF L v, v) € EY)

(u,v)’
The important innovation in this framework is that we generate hidden embeddings not only for each node hf,k), but also

h(u ») for each edge in the graph as well as an embedding hg‘) that corresponds to the entire graph. This allows the message

passing model to easily integrate edge and graph-level features and have enhanced performances compared to a standard

basic GNN. Generating embeddings for edges and the entire graph also makes it trivial to define loss functions based on the
graph or edge-level classification tasks.
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Spectral GNN Framework

What are Spectral GNNs?

» Spectral GNNs use graph signal processing techniques to define convolution operators in the spectral domain.
» They leverage the eigen-decomposition of the graph Laplacian to transform signals to the frequency domain.

Eigen-decomposition of Normalized Laplacian Matrix Eigenvalues are sorted non-decreasingly:
U A U’
i 1| Ao 0 11 U ]
L =Iy—DY2AD71/2 _ ’110 LN 1 . . 0=MXA <A1 < -~ An_1
i | | 110 Avor || — uver Frequency of the signal u;

The frequency of an eigenvector of Laplacian matrix is its cor esponding_eigenvalue: u;-rLui — u;.r)\iui = \,

uO u7

Low frequency

High frequency
T _ 7 —
ugLlug = 29 = 0 u;Luy = 44 Lu; = 47
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Graph Fourier Transform (GFT) and Inverse GFT

A signal f can be written as graph Fourier series:
N-—1
F=>ji-u 7 (x) = U'x,
i—0 s 5
S,

A;: frequency f:: graph Fourier coefficients
f=Uf

I

Decompose signal f

& [ L H L. HTLM b

N

Spatial domain: f Reconstruct signal f Spectral domain: f

u;: graph Fourier mode

The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE signal processing magazine
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Graph Spectral Filtering

Recall:
GFT:f = UTf IGFT: f = Uf

Filter a graph signal f:

GFT ien IGFT N-1
f R qu — g‘(/li) : u{f S g\(ﬂi) . u'lrf U
Decompose Filter Reconstruct =
Coefficients Filtered coefficients
Example:

Filter g(4;): Modulating the frequency p - |
Ll

Low-pass 4
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Graph Spectral Filtering

f > giLf =UgnU'f

Filtering
Filter a graph signal 1
GFT g(/l) IGFT
f E—— UTf E—) g(A)UTf Eni— Ug(/l)UTf
Decompose Filter Reconstruct
Coefficients Filtered coefficients

i Example:
9(Xo) 0

g(A) = | O g(/\N_l)— g | ﬁ‘ [_’ ﬁ‘ m

Low-pass 4 High-pass  A; Band-pass  A;
ﬁ UNC GILLINGS SCHOOL OF
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Convolution Theorem and Approximation

gxf=F Y F(g)oF(F)=UUTgo UTF) gy *f=Ug, U'f

Key Properties:
s Computation requires eigen-decomposition of the Laplacian.
¢ Filters are defined in the spectral domain, enabling flexible frequency-based operations.

Chebyshev Approximation: Graph Convolutional Networks:

» Hammond et al. (2011) introduced Chebyshev approximation. » Simplifies Chebyshev approximation to first-order (K = 1):

» Avoids explicit eigen-decomposition.

» Approximates filters with Chebyshev polynomials: gw * F = wof +wi(L — In)f.

K » Further simplifies to:

gw *xf ~ Z Wik Tk(’-)fa gw *f ~ W(IN 1 D_l/zAD_1/2)f.
k=0

» Final N ' le:
where Ty(-) are Chebyshev polynomials. inal GCN propagation rule

» Reduces computational complexity. A=A+Iy, Di=)> Ay HUFY = o(D-Y2AD~Y2HD W)y,
J
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Graph Filtering in the First GNN paper

h;: The hidden features

;> The Input features

pD = z F(LLhL),  vvev

vjEN(Vv;)

N (v;): Neighbors of the node v;.

f(-): Feedforward neural network.
Graph neural networks for ranking web pages. WI. IEEE, 2005.

NUNC
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Graph Spectral Filtering for GNN

How to design the filter?

Data-driven! Learn g(A) from data!

How to deal with multi-channel signals?

F,, € RV*d1 - F_ . € RV¥dz,

Each input channel contributes to each output channel

d,
Foul:, il = zgij(L)Fin[:;j] i=1,..d, Learn dz X d1 filters
=1 Filter each input channel
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Graph Spectral Filtering for GNN

g(A): Non-parametric
g(Ao) 0

g(A) =




g(A) : Polynomial Parametrized

K
> Ok}
k=0

K
. 0. \E
Q(A) — kz::o k72

> O
k=0

d, X d; X K parameters

K
UgADUTf = ) O, L*f

No eigen-decomposition needed
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Polynomial Parametrized Filter: a Spatial View

Ug(MUTF@) = 0uLE. £ (5)

i=0 k=0

If the node v; Is more than K-hops away from node v;, then,

,
D OLE; =0
k=0

The filter Is localized within K-hops neighbors in the spatial domain
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Chebyshev Polynomials

The polynomials adopted have non-orthogonal basis 1, x, x4, x3,

g(x) =0y + 01z + O2° + - -

Unstable under perturbation of coefficients

Chebyshev polynomials:

Recursive definition: The Chebyshev polynomials {T;} form an
e To(x)=1;T;(x) =x orthogonal basis for the Hilbert space
* Tr(x) = 2xTy_1(x) — Ti—2(x) L*([-1,1], W)
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Chebyshev Polynomials

The polynomials adopted have non-orthogonal basis 1, x, x2, x>, ...
g(x) =0y + 012 + O2° + - -

Unstable under perturbation of coefficients

Chebyshev polynomials:

Recursive definition: The Chebyshev polynomials {T;} form an
e To(x)=1;T;(x) =x orthogonal basis for the Hilbert space
* T(x) = 2xTy_1(x) — T2 (%) LZ([—1,1],\/1d_LyZ).

g(x) = 00To(x) + 01Ty (x) + 2T (x) + - -
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ChebNet

Parametrize g(A) with Chebyshev polynomials

- 2A
G(A) =N 0xT(A), with A = S 1
L—=0 max
d, X d; X K parameters
UGUTf = 3K 0k Te(D) f,with L = ——— 1

No eigen-decomposition needed

Stable under perturbation of coefficients
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GCN: Simplified ChebNet

Use Chebyshev polynomials with K = 1 and assume 4,,,,,, = 2

g(A) =0p + 01 (A— 1)
Further constrain 8 = 6, = —6,
g(A) =0(21 — A)

Ug(MUTf =021 — L)f = 6 (1 D—%AD—%> f

Apply a renormalization trick

~

Ug(MUT f =6 (1’3—%AD—%) fowith A= A+ 1
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GCN for Multi-channel Signal

Recall: ? \‘===
T EmE
bl =Y 0y WFals) =10 EHEE b B
/=1 Filter each input channel mmmm T
For GCN:
1 __ 1
F,.l 2 (D 2AD 2)F.,|:,j] i=1,..d,

=1 GCN filter
In matrix form:

1
F,,. = (D 2AD 2)Fm® with ® € R%*%2 and 0[}, i] = 6,
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A Spatial View of GCN Filter

~_1__ 1
Denote C =D 2AD 2
 Then F,,; = CF;,0

» Fornode v;, Foyuli,:] =2%;Cli,jlFinlj,: 10
Observe that:

+ C[i,j] = 0 for v; & N(v;) U {v;}
F[6,:]

Hence,

Fout [Za :] — Z C[Zaj]an [.]7 ]@
v €N (vi)U{ws } Feature transformation
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Filter in GraphSage

Neighbor Sampling
N(”Uz) — NS(UZ')

Aggregation
6 Lo k k
hiy',)) = AGG({h{"),v; € Ni(v;)})

h{**Y = o(0[h” n{* 1))

ﬁ | l P I GILLINGS SCHOOL OF
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Filter in GAT

\ softmax; o

A/
A

a

l111 . . . . . . .

Wh; Wh,

) exp (LeakyReLU (§T [WH’&HWEJ]))
T 2 _keN; eXP (LeakyReLU (aT [ng‘l‘v};k]))

Graph Attention Networks. ICLR 2018.
GILLINGS SCHOOL OF
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Filter in GAT

\ softmax; o

A/
A

a

l 112 . . . . . . .

— —

W h; Wh,

- exp (LeakyReLU (é’T [Wi'z}uwﬁ'j]))

S ien €XP (LeakyReLU (&7 [Wh; W] ) )
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Filter in MPNN

Message Passing

m§k+1) — Z Mk (hik), hgk), 62'3')
v; €N (v;)

Feature Updating

j (k1) U, (h(k) m(k+1))

(/

M, (.) and U, (.) are functions to be designed

ﬁ’ﬁ ' NC ge Rassinglornua
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UGNN: A Unified Framework

Filtering Operations

: T

- —

11

argmin £ (Xy) = || X — X' +c 5 Z Z X ¢[d, 2] — X[, 115
X ZEV ]EN(@')

A Unified View on Graph Neural Networks as Graph Signal Denosing. arXiv, 2020.
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Example: Cora Dataset

The Cora dataset is a benchmark dataset used in graph-based machine learning research.
It represents a citation network, where:

» Nodes: Research papers

« Edges: Citation relationships (A — B means A cites B)

» Features: Bag-of-words representation of paper content

« Labels: Paper categories (7 different topics)

Real-world Relevance:

Helps in developing models for document classification.

Can be extended to recommendation systems, knowledge graphs, and social network analysis.
Key Statistics of the Cora Dataset:

* Number of Nodes: 2,708 (papers)

* Number of Edges: 5,429 (citations)

* Number of Features: 1,433 (word-based features)

* Number of Classes: 7 (e.g., Al, databases, NLP, etc.)
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GNN Node Classification

Goal: Compare different GNN models for node classification on the Cora dataset.

We explore a variety of spatial and spectral GNN architectures:
1. Spatial-based Models:

MPNN (Message Passing Neural Network)

LGCN (Learnable GCN)

GAT (Graph Attention Network)

GraphSAGE (Sample-based Aggregation GNN)

GIN (Graph Isomorphism Network)

2. Spectral-based Models:

GCN (Graph Convolutional Network)

ChebNet (Chebyshev Polynomial-based GNN)

Evaluation Metrics:

1| Accuracy: Fraction of correctly classified nodes.

2 | AUC Score: Multi-class AUC using one-vs-rest approach.

t-SNE Visualization: Low-dimensional embeddings of node representations.

3
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GNN Node Classification - Results

Test Accuracy 0.678 0.807 0.801 0.798 0.701 0.807 0.770
Test AUC 0.904 0.967 0.962 0.967 0.913 0.966 0.961
Lo Test Accuracy Comparison Lo Test AUC Comparison

0.8 - 0.8 -

0.6 - 0.6 -

Accuracy
AUC

0.4 - 0.4 -

0.2 1 0.2 -

0.0 -
MPNN  LGCN GAT GraphSAGE GIN GCN ChebNet MPNN  LGCN GAT GraphSAGE GIN GCN ChebNet

0.0 -
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GNN Node Classification - Results

MPNN GraphSAGE

ChebNet

t-SNE Visualizations of Node Embeddings (color is based on true class labels)
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Graph Pooling Operation

£ 7

A c {07 1}n><n7X c R xd Ap c {O, 1}np><np7Xp c R”Panew,np <n
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oPool

Downsample by selecting the most importance nodes

Importance Measure
[Pl

V; 2 Y Vi

Select top the n, nodes
idx = rank(y,n,)
Generate 4, and intermediate Hy, e

120

A, = Alidx, idx]

A €{0,1}"*" H e R"¥¢ H;,..., = Hlidx,: ]
1 Generate H,
A, € {0, 1} H, ¢ Randnewjnp <n y = Slngld(y[ldX])

Hp = Hipter Oy
ﬁ UNC GILLINGS SCHOOL OF
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DiffPool

Downsample by clustering the nodes using GNN

2 filters

A € {07 1}n><n’H c Rnxd
Filterl: l

Generate a soft-assign matrix
A c {O7 1}n><’n7Ha c R’anp

121

A € {O, 1}n><n7H c Rnxd
Filter2:
!
A € {0,1}"*" H ¢ R"*¢ Generate new features

|

A, € {0, 1Y»X" H, e R"Xdnew p < p

A € {0,1}"" Hy € R™new
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DiffPool

Downsample by clustering the nodes using GNN

Generated soft-assign matrix H, € R"*"»

Generated new features H,; c R"*new

122

Generate Ap

T
Ap — Ha AH,
Generate H,

H,=H, H;

A €{0,1}"*" H e R"¥¢

|

A, € {0, 1Y»X" H, e R"Xdnew p < p
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Eigenpooling

Learn 4, using
clustering methods

Focus on learning
better H,

Capture both feature
A € {0,1}"*" H € R"* and graph structure

|

A, € {0, 1Y»X" H, e R"Xdnew p < p
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Going Back to Graph Spectral Theory

Recall:

f=UTf

Decompose signal f

L ' L
000000

Spatial domain: f . Spectral domain: f

I = fouo T flul T . fN—1UN—1
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Going Back to Graph Spectral Theory

Do we need all the coefficients to reconstruct a "good” signal?
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Going Back to Graph Spectral Theory

Do we need all the coefficients to reconstruct a "good” signal?

10
0 1] 08
08
> 5 06
10 06 10 04
15 15
04 0.2
20 20
b 00
02
5 L
-0.2
5 10 15 20 5 0 5 10 15 20 25
0.0
126

4
3
2
|

1
0
=1 A
-7 4

T T

00 02
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Eigenpooling: Truncated Fourier Coefficients

mmmm Eigenvectors (Fourier Modes) of the subgrapl

mmmm Fourier coefficients

BE  Truncated Fourier coefficient:

-

New features for the subgraph (a node in the smaller graph)
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MUTAG Dataset

MUTAG Is a dataset of molecular graphs, where:

Nodes: Atoms in molecules

Edges: Chemical bonds between atoms

Labels: Mutagenic vs. non-mutagenic molecules (Binary classification)

Key Statistics of the MUTAG Dataset:

* Number of Graphs: 188

» Average Nodes per Graph: ~17

» Average Edges per Graph: ~19.8

* Number of Features: Based on atom properties

* Number of Classes: 2 (Mutagenic vs. Non-Mutagenic)
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GNN Graph Pooling and Classification

* Goal: Compare GNN-based graph classification models using different graph pooling techniques.
* Model structure overview:

GCN - Activation - Graph Pooling (graph embeddings) - Fully Connected - Softmax outputs
* Graph Pooling methods compared:

Mean Pooling

Max Pooling

Sum Pooling

Attention Pooling

SAGPooling (Hierachical)
« Evaluation Metrics:

Test Accuracy

AUC Score

t-SNE Embeddings (Based on graph embeddings after pooling)

ROC Curves

Confusion Matrices
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GNN Graph Pooling and Classification - Results

Test Accuracy 0.684211 0.684211 0.65/895 0.710526 0.815789
Test AUC 0.803922 0.725490 0.848739 0.826331 0.885154

Lo Test Accuracy Comparison Lo Test AUC Comparison

0.8 - 0.8

0.6 - 0.6

Accuracy
AUC

0.4 1 0.4 -

0.2 - 0.2

0.0 - 0.0 -

mean max sum attention sag mean max sum attention sag
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GNN Graph Pooling and Classification - Results

ROC Curves for Different Pooling Methods

1.0 -
X
7’
I”
’I
,l
0.8 A R
’/
,I
,I
I’,
5 0.6 - ~
® .~
] ,1'
%‘ ,’/
:
0.4 1 .
g
,/
/”
/' —— mean (AUC = 0.80)
0.2 A | —— max (AUC = 0.73)
L7 —— sum (AUC = 0.85)
T —— attention (AUC = 0.82)
7’
7 —— sag (AUC = 0.89)
00~ e === Random
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

ROC Curves for Different Pooling Methods
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GNN Graph Pooling and Classification - Results

t-SNE Visualization of Graph-Level Embeddings
su

mean max m attention sag
% :; \. i % .... ..
b | # “
° ° [ 4
* ' o ° ‘s ‘ :‘
¢ “ ® % ' ]
°
* L ° . .
&
ry . : [ \ .. ° ° @ - ..
b ®
o de 'Y 'o

t-SNE Visualizations of Graph Embeddings from Different Pooling Methods
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GNN Graph Pooling and Classification - Results

Confusion Matrix: mean Confusion Matrix: max Confusion Matrix: sum Confusion Matrix: attention Confusion Matrix: sag
20.0 18
: 17.5 _
17.5 17.5 175 6
o - 7 15.0 o - 7 15.0 o - 6 15.0 o - 7 15.0 14
12.5 12.5 12.5 12.5 12
W v (i) w L
= 100 £ 100 2 100 £ 100 2 10
-7.5 -7.5 -75 =75 -8
- - 2 19 - - 2 19 - - 2 g - - 1 5o
-5.0 -5.0 -5.0 : -6
-2.5 L
. -25 . -25 . -2.5 , ¢
0 1 0 1 0 1 0 1
Predicted Predicted Predicted Predicted Predicted

Confusion Matrix for Different Pooling Methods
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Content

S5 Applications
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Application to “classical” network problems

Node classification Graph classification

Link prediction

ﬁ l l P I GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




One fits all: Classification and link prediction with GNNs/GCNs

Input: Feature matrix X & RN X b , preprocessed adjacency matrix A
Node classification:

Hidden layer Hidden layer
: Z \ : \ softmax(zn)
o o
\‘ - ® {. o e.g. Kipf & Welling (ICLR 2017)
Input © o ® o Output
~ A

( .. \ .\.L RelLU 0\.; I RelU .
*« 4 EERI \\ B BN \'\- (P> ¢« '—3 Graph classification:

- ) . . e.g. Duvenaud et al. (NIPS 2015)
X = HO . . Z=HWN
o« ! /! Link prediction:
N B A\ ) p(Aij) = o{zzj)
Kipf & Welling (NIPS BDL 2016)
H(H_l) =0 (AHU)W(Z)) “Graph Auto-Encoders”
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What do learned representations look like?

Forward pass through untrained 3-layer GCN model

o 2-dim output per node
Parameters initialized randomly

0.10

0.08} O
®—o
0.06 |
o ® 0.04} ® o
o * WM g
] [ °® O I 0.02} ® .. ‘
O ¢ o )
® ) ®
® o — 0.001
¢ o o ® o °®
@ ® o ¢ -0.02 O
e O ® ®
® ¢ ® ~0.04}
® o o
—0.06 | ®
® g , ® o]
[Zachary’s Karate Club] 008 | | | | |
7202 -0.1 0.0 0.1 0.2 0.3 0.4
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Semi-supervised classification on graphs

Setting: o

®
Some nodes are labeled (black circle)
All other nodes are unlabeled o ®
O O ® o)
Task: o , oy o
Predict node label of unlabeled nodes ¢ O ® o ;°
®
o 0 o o
» O
O e @
® g

Evaluate loss on labeled nodes only:

F
set of labeled node indices
L=-) ) Yylnz; “ |
Y label matrix
ey f=1

Z, GCN output (after softmax)

ﬂ—’ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




Toy example (semi-supervised learning)

1.0

0.5}

"

-0.5
®—o
@ a »
-1.0 @ @ ® ®
10 05 0.0 0.5 1.0 ¢ ® » * o
o o d ® -
@
° T e °
Video also available here: o oo s ¢
http://tkipf.github.io/graph-convolutional-networks e 4
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http://tkipf.github.io/graph-convolutional-networks

Application 1: BrainGNN

Interpretable Brain Graph Neural Network for fMRI Analysis

[mean, max] global pooling (*) ! H
fMRI fMRIROI Functional Functional BrainGNN oredict Label d (NK“;';{’ dm), “(ﬁ‘;‘)" gf,’zd',‘,) Rg‘g’l gg Lo Claiv
ooy Mean Time Series  Correlation Graph . i e \ b z‘
AR i - _ (d©-d') (d-dt) ®n @asse)
i B
: Biomarkers . - (a) BrainGNN Architecture
s N gl ~ver il
Parcellation [T % : , from Neighbors g
~/ |Interpret
a b a \ b a b
Communities f|§§| ;|‘ - '|§§|'z ‘- - \/; ': .
g , e d e d e d
. . . . . . . . Node Embedding Projectl:::(()):e - Ra.GCl)‘:cal:):rScore Keeping High-score
1. Neurological Biomarker Discovery: Identify key brain regions associated with A oy Faokee Veco Asgent Nodes
. . .. : . ; a(0.8) b(0.3) 0.8)
neurological disorders or cognitive tasks. f A -y
. [ AT (1.0 o (1.0
2. fMRI-Based Classification: Classify Autism Spectrum Disorder (ASD) patients =1, (\d( ) |
d 6 .7 810 @(0.6) 0.2 el0s

vs. Healthy Controls (HC) and decode cognitive states from fMRI data. -
3. Graph-Based Representation of the Brain: Model brain regions as nodes and

functional connections as edges, using fMRI data.

Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., Scheinost, D., Staib, L.H., Ventola, P. and Duncan, J.S., 2021.
Braingnn: Interpretable brain graph neural network for fmri analysis. Medical Image Analysis, 74, p.102233.
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Application 1: BrainGNN

Graph Neural Network (GNN) Architecture:

 ROI-Aware Graph Convolutional Layer (Ra-GConv): Embeds nodes while considering brain region
identities.

* ROI-Selection Pooling Layer (R-Pool): Selects the most relevant brain regions for classification.

* Regularization Losses:

a) Unit Loss: Ensures model stabllity.

b) Top-K Pooling (TPK) Loss: Encourages selection of the most informative brain regions.

c) Group-Level Consistency (GLC) Loss: Balances individual vs. group-level biomarker detection.

Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., Scheinost, D., Staib, L.H., Ventola, P. and Duncan, J.S., 2021.
Braingnn: Interpretable brain graph neural network for fmri analysis. Medical Image Analysis, 74, p.102233.
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Application 2: Classification on citation networks

Input: Citation networks (nodes are papers, edges are citation links,
optionally bag-of-words features on nodes) " 1

Target: Paper category (e.g. stat.ML, cs.LG, ...)

Model: 2-layer GCN Z = f(X, A) = softmax(/i ReLU (AXW(O)> W(l))

el

(Figure from: Bronstein, Bruna, LeCun,
Szlam, Vandergheynst, 2016)

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

ﬂ—’ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




Application 2: Classification on citation networks

Input: Citation networks (nodes are papers, edges are citation links,
optionally bag-of-words features on nodes) k 1

Target: Paper category (e.g. stat.ML, cs.LG, ...)

Model: 2-layer GCN Z = f(X, A) = softma,x(/i ReLU (AXW(O)> W(l))

Classification results (accuracy) R iy
Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [24] 59.6 59.0 71.1 26.7 &
_ LP [27] 45.3 68.0 63.0 26.5 7
no input features - DeepWalk [18] 43.2 67.2 65.3 58.1 7
Planetoid* [25] 64.7 (26s)  75.7 (13s) 77.2(25s) 61.9 (185s) | |
GCN (this paper) 70.3(7s) 81.5(4s) 79.0(38s) 66.0 (48s) - (Figure from: Bronstein, Bruna, LeCun,

Szlam, Vandergheynst, 2016)

GCN (rand. splits) 67.9+0.5 80.1+£05 789+£0.7 5844+1.7

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017
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Application 3: Cancer Drug Response Prediction

DeepCDR is an end-to-end deep learning framework for predicting cancer drug response. DeepCDR contains a novel
UGCN architecture for representing topological information of drugs.

« Drug can be represented as {G; = (Xi, As)|;2, }where X; € RNixXC and A; € RYN:ixNi js the feature
matrix and adjacent matrix of it drug

« Each atom In a drug was represented as a 75-dimensional feature vector, including chemical and
topological properties (atom type, degree and hybridization)

* We extended the original GCN (Kipf et al., ICLR, 2017) for processing drugs with variable sizes and
structures by introducing complementary drug

e Layer-wise operation of UGCN 1Is derived as
H " = o((D; + DP)"2A,(D; + DP) 2 H""+ H = (D¢ + DE) 2B (D, + DP)2H 4
(D; + DF)~4B,(D; + DF) 2 H"")e") (D¢ +DF)"2A(D; + DF')2H")e )

« Drugs with different size will be embedded into a fixed dimensional vector (default: 100)

Liu, Qiao, Zhigiang Hu, Rui Jiang, and Mu Zhou. "DeepCDR: a hybrid graph convolutional network for predicting cancer
drug response." Bioinformatics 36, no. Supplement_2 (2020): i1911-i1918.
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DeepCDR

DeepCDR takes chemical structures of drugs and multi-
omics data of cancer cell line as input and outputs the
sensitivity of drug.

i iy 1y /
‘ " ' "y ' e g
( A /Ll"'o A""r /L""' g
}O) N—N) ' ‘m f 'IH : ' "" . &
NN ) aai e\
NSNS N 3 S s |
" 9{/ o ::"f'.RéLu ::'f"ﬁ'é,l.u ::.,f,nél.ug e i -
)|/ ' /0 J \,/ 0 e - . Sensitive
Anti-cancer “ 1| & Z of |
drug Chemical structure Uniform graph convolutional network 3 —> 5 ks :>: @
B / Genomics \ / \ .'é | a E : .
4 Ll . N |8 = '
(Y %q\ il 4 AN |
| ' "I'L Transcriptomics < | -
Ilf ! '. Epigenomics < F
1 il /_/ / /‘é L
Cancer X / ¥\ /
patient Multi-omics data Omics-specific subnetworks
Methods Pearson’s correlation Spearman’s correlation RMSE
Ridge Regression 0.780 0.731 2.368
Random Forest 0.809 0.767 2.270
MOLI 0.81340.007 0.78240.005 2.282+0.008
CDRscan 0.871£0.004 0.852+0.003 1.982+0.005
tCNNs 0.8854-0.008 0.86210.006 1.782+0.006
DeepCDR 0.9231-0.006 0.903+0.004 1.058+-0.006
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o
EaN

True Positive Rate (Sensitivity)
o

 Drug structure data (.MOL) were from Pubchem
database (Kim et al., 2018)

 Cancer cell lines data (genomic mutation, gene
expression and DNA methylation) were downloaded
from Cancer Cell Line Encyclopedia (CCLE) (Barretina
etal. 2012)

 Drug sensitivity data were obtained from Genomics of
Drug Sensitivity in Cancer (GDSC) (lorio et al. 2016)

* We finally collected a dataset containing 107446
Instances across 561 cancer cell lines and 223 drugs

» Each cell line corresponds to a TCGA cancer type.

o
o

00

ROC curve PR curve AUC Boxplot across Cancer Types auPR Boxplot across Cancer Types
i = : :
ull ~ DeepCOR (auPR=0.502) —— 0 |
{CNNs (auPR=0.350) i I | |
i ‘ CDRscan (auPR=0.343) WY 08| M “‘
/ \ MOLI (auPR=0.295) a o | M
g " go.e‘ v/ ) 3 06
[ /7 [ \ Y B ¢
: g 80.7\ " ’ | it
0 3 | Qo4
B \\\ Log| | \ |/ @
~ DeepCOR (AUC=0.841) 04 \w 0.2, |
tCNNs (AUC=0.755) N 05 ‘
CDRscan (AUC=0.746) 3 00
MOLI (AUC=0699) N[ |
02 04 06 08 10 02 04 06 08 10 0.3 ~0.2° :
False Positive Rate (1-Specificity) Recall DeepCOR tCNNs CDRscan MOLI DeepCOR tCNNs CDRscan MOLI
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Theoretical Properties

Expressivity

/[Graph Structure ~ Data]\"’ [ Applications ]

[ Graph classes ] [Generalization ]: Influences :[ Optimization]

[_ural choices]

[ Model parameters ]

Figure 1: Interactions of the four challenges within graph machine learning: Fine-grained
expressivity, generalization, optimization, applications, and their interactions. The
green boxes architectural choices (hyperparameter and other design choices like
normalization layers), model parameters, and graph classes (different types of graphs)
represent aspects of all four challenges.

Future Directions

o%

o

o

\/
‘0

®

architectures.

“» Expressivity: What graph structures can a GNN distinguish?
— Traditional results relate GNNs to the 1-WL test, but finer geometric
notions are needed.

¢ Approximation: Under what conditions can GNNs
approximate continuous, permutation-invariant functions?

— Universal approximation results require a careful

treatment of the topology of graph space.

** Generalization: How well do GNNs perform on unseen
graphs?

— Existing VC-dimension based bounds are loose and do not
fully capture the influence of architectural choices and graph

structure.

» Develop fine-grained expressivity results that guantify not only if two graphs are distinguishable, but how similar they are.
» Derive uniform approximation bounds for GNNSs using a refined topology on graph space.

» Establish tighter generalization bounds that incorporate architectural choices and graph geometry.

Explore the interplay between expressivity, optimization, and generalization to inform the design of more robust GNN

Morris, Christopher, Fabrizio Frasca, Nadav Dym, Haggai Maron, Ismail llkan Ceylan, Ron Levie, Derek Lim, Michael M. Bronstein, Martin Grohe, and Stefanie Jegelka.
"Position: Future Directions in the Theory of Graph Machine Learning." In Forty-first International Conference on Machine Learning.
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Deepset

A function f transforming a set X = {x1,...,xy} into Y should The standard neural network layer is represented as:
be:
.. . fo(x) = 0(©x)
» Permutation invariant: The output does not change under
reordering. where © € RMXM s the weight matrix.
Theorem. A function fg : RM — RM s permutation equivariant
f({xlv'“axM}) — f({xﬂ'(].))"')xﬂ'(M)}) If:

© =\ +~(117)

for an rm ion 7.
or any permutation 7 where:

» Permutation equivariant: The output follows the

_ » [ is the identity matrix,
permutation.

> 1=11,...,1]7,

> A\, v eR.
de Finetti’s theorem states that any exchangeable model can be
factored as

F([xr)s -« s Xe(m)]) = @) (%) - - -5 Frany (X)]

M
Theorem. A function f(X) is invariant to the permutation of p(X|a, Mp) = _/d9 [H p(xm|9)] p(0|c, Mp).
instances in X if and only if it can be decomposed as: m=1
where 0 is a latent feature and o, My are hyper-parameters of the
F(X) = (Z ¢(x)) pricr o
xeX For Exponential Family with Conjugate Priors:

where ¢ and p are suitable transformations. p(X|o, Mp) = exp (h (a + Zgb(xm), Mo + M) — h(a, Mo))
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PINE

Let £ be a continuous real-valued function defined on a compact set with the following form

f(Xl’l,Xl’Q,"' 7X1,N17X2,17'” 7X2,N27'“ 7XK,17'” 7XK,NK)7
G4 Ga Gk

where Xy, n, € RMx . If function £ is partial permutation invariant, then the PINE framework provides a

Core Representation Theorem as

Ny Ny Nk
f(-) = h(z g (Il,n):-z g, (X2),- - 12 gK(IK,n)) —I—O(].)

which requires h(-) and g(-) to ensure permutation invariant :

Then, PINE provides specific parameters for h(:) and g(-), which can be trained as follows: J((u R a 1) x -+ b’

o((u® as)x+ b))

h([Z;r? e ?Z}]T —: Z ‘ C,W,b) = CT{T(WE‘I_ b) g(x ‘ T:u:{at:b;}tj;l) =
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Evaluation

Accuracy (%) of multi-class classification in homogeneous and heterogeneous graphs
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How to succeed in this course?

.Module):
(self):
(Net, self).__init__Q)

f.convl = nn.Conv2d(:3,
elf.pool = nn.MaxPool2d(2,
elf.conv2 = nn.Conv2d(5,
w *

f.fc1 = nn.Linear(

elf.fc2 = nn.Linear( . )

elf.fc3 = nn.Linear(54, )

(self, x):

self.pool(F.relu(self.convi(x)))
1f.pool(F.relu(self.conv2(x})}

x.view(-1, * 5 * 5)

F.relu(self.fcl(x))

F.relu(self.fc2(x))

self.fc3(x)

o® ’

X

Practice

Explore

DISCUSS
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