
Bios 740- Chapter 4.. Sequence Modeling:

RNNs, LSTM, and GRU

Acknowledgement: Thanks to Mr. Shuai Huang for preparing some of

the slides! I copied some pictures from the lecture presentations of

StanfordCS224n. I also use some materials generated by chapgpt.

Content

1 Introduction to Language Modeling

2 Introduction to Recurrent Neural Networks (RNNs)

3 Problems with RNNs

4 LSTM and GRU

0 Motivation to Sequence Modeling

5 Genomic Sequence Analysis

Content

1 Introduction to Language Modeling

2 Introduction to Recurrent Neural Networks (RNNs)

3 Problems with RNNs

4 Extensions of RNNs

0 Motivation to Sequence Modeling

5 Genomic Sequence Analysis

Recurrent Neural Networks (RNNs) are motivated by their ability to address challenges inherent in sequential data.

Weather
forecasting

Stock market
trends

Autocomplete
for texting

Genetic
sequencing

Speech
recognition

Video frame
prediction

Music
composition

…

Motivation

Many real-world datasets are inherently sequential, where the order of data points is crucial.

❖ Time series: Stock prices, weather forecasts, and sensor data require capturing patterns over time.

❖ Text: The meaning of a sentence depends on word order (``The cat chased the dog'' vs. ``The dog chased the cat'').

❖ Speech: Phonemes and intonation must be processed sequentially to understand spoken language.

❖ Video: Frames in a video sequence have temporal relationships that determine the flow of events.

Examples:

• Letters (words)

• Words (sentences)

• Sentences (documents)

• Frames (video)

• Amino-acids (genetic code)

• fMRI/ECG signals

Sequences

Why Are Sequences Important?
Unlike independent data points, sequences contain temporal or contextual dependencies:

• Future values depend on past values (e.g., predicting tomorrow’s weather).

• Words in a sentence rely on context (e.g., in "bank deposit" vs. "river bank").

• Biological sequences determine genetic functions.

A sequence is an ordered list of elements, where the order of the elements

matters. They are fundamentally different from unordered data because each

element is dependent or influenced by the previous elements.

e.g., "ACGTAGCTAGT" represents a biological sequence.

e.g., A security camera capturing a person walking.

"Hello, how are you?" (chatbot input).

Challenges in modeling sequential data

▪ Infinite number of possible sequences:

❖ Sequences can vary in length (short vs. long sequences).

❖ Sequences can have variable patterns (e.g., DNA sequences, language models).

❖ Order matters, meaning different orders of the same elements can have different meanings.

▪ Need for Probability Distributions Over Sequences:

➢ Since an infinite number of sequences exist, we cannot store all possible sequences explicitly.

➢ Instead, we model a probabilistic function that assigns a likelihood to each possible sequence.

➢ Example: Given a sequence S=(x1,x2,...,xT), we want to learn a probability distribution P(S).

Sequences

RNNs are designed for modeling sequences

• Sequences of any length in the input, in the output, or in both

• They can remember past information

• Apply the same weights on each step

Different Categories of Sequence Modeling

Source: https://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sentiment Analysis and Video Analytics

Sentiment Analysis is a NLP technique used to determine the

emotional tone of a given text. It helps identify whether the

sentiment of the text is positive, negative, or neutral. Video analytics enable machines to recognize

actions, objects, and scenes in videos.
https://imerit.net/blog/using-neural-networks-for-video-classification-blog-all-pbm/

https://www.gosmar.eu/machinelearning/2020/08/23/recurrent-neural-networks-for-sentiment-analysis/

Machine Translation
Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a

sentence y in another language (the target language).

Goal: Produce translations that are both fluent and faithful to the meaning of the source text.

Applications: Global communication, localization cross-lingual information retrieval, etc.

x: L'homme est né libre, et partout il est dans les fers

y:
English:

Man is born free, but everywhere he is in chains

9

Chinese:

“人生而自由，但无处不在被枷锁束缚。”

Japanese:

「人間は自由に生まれるが、どこにいても鎖に縛られてい
る。」

The early history of MT: 1950s

Rule-Based MT: Early

systems used manually-

crafted rules and

bilingual dictionaries.

StanfordCS224n

1990s-2010s: Statistical Machine Translation
Core idea: Utilized probabilistic models (e.g., IBM Models) and phrase-based translation. Relied on large

parallel corpora to learn translation probabilities

• Suppose we’re translating French → English.

• We want to find best English sentence y, given French sentence x

• Use Bayes Rule to break this down into two components to be learned separately:

Translation Model

Models how words and phrases
should be translated (fidelity).

Learned from parallel data.

Language Model

Models how to write
good English (fluency).

Learned from monolingual data.

.

StanfordCS224n

Not trivial to model!

1519年600名西班牙人在墨西哥登陆，去征服几百万人口

的阿兹特克帝国，初次交锋他们损兵三分之二。
In 1519, six hundred Spaniards landed in Mexico to conquer the Aztec Empire with a
population of a few million. They lost two thirds of their soldiers in the first clash.

translate.google.com (2009): 1519 600 Spaniards landed in Mexico, millions of people to
conquer the Aztec empire, the first two-thirds of soldiers against their loss.
translate.google.com (2013): 1519 600 Spaniards landed in Mexico to conquer the Aztec
empire, hundreds of millions of people, the initial confrontation loss of soldiers two-thirds.

translate.google.com (2015): 1519 600 Spaniards landed in Mexico, millions of people to
conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash. StanfordCS224n

1990s–2010s: Statistical Machine Translation
SMT was once a huge research field aimed at automatically translating text between languages. It relied on

probabilistic models and large parallel corpora to learn translation patterns.

Despite its success in the past, SMT required extensive manual design and engineering. The best SMT systems were

extremely complex, involving hundreds of important details. Systems were built from many separately-designed

subcomponents, each addressing a specific aspect of translation. Every component was carefully engineered to optimize

the overall translation quality.

SMT required extensive feature engineering to capture specific language phenomena: Designing features to model

syntax, semantics, and context. Crafting features to capture idiomatic expressions and local linguistic patterns. Each

feature was manually designed, tested, and fine-tuned. This process was both time-consuming and highly dependent on

expert knowledge.

SMT systems often required compiling and maintaining extra resources: Tables of equivalent phrases, bilingual

dictionaries, and syntactic rules. Language-specific resources had to be built and maintained. A large amount of human

effort was needed to manage these resources. The process had to be repeated for each language pair, making it labor-

intensive and costly.

2014

1
4

(dramatic reenactment)

StanfordCS224n

NMT: the first big success story

• This was amazing!

• SMT systems, built by hundreds of engineers over many years, were outperformed by NMT systems trained by

small groups of engineers in a few months

Neural Machine Translation (NMT): Uses deep learning and end-to-end training to model translation and

offers improved fluency and the ability to capture complex dependencies.

Neural Machine Translation went from a fringe research attempt in 2014 to the leading standard method in 2016

• 2014: First seq2seq paper published [Sutskever et al. 2014]

• 2016: Google Translate switches from SMT to NMT – and by 2018 everyone had

• https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

StanfordCS224n

http://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Deepseek v.s. OpenAI

Modern NLP Systems

https://huggingface.co/blog/large-language-models

https://ai.plainenglish.io/deepseek-r1-vs-chatgpt-01-my-experience-ddbe09e80aa9

Challenges
• Standard NN models (MLPs, CNNs) are not able to handle sequences of data

❖ They accept a fixed-sized vector as input and produce a fixed-sized vector as output.

❖ The weights are updated independently, meaning there is no memory of past computations.

❖ The models do not have recurrence, so they cannot learn patterns across time steps.

• Many real-world problems require capturing context over time:
❖ Speech Recognition – Words depend on previous words.

❖ Time-series Prediction – Future values depend on past observations.

❖ DNA Sequencing – Genetic patterns unfold over long sequences.

❖ Natural Language Processing (NLP) – Meaning depends on word order.

• Example: Simple Context-Dependent Problem: Output YES if the number of 1s in the sequence is

even; otherwise, output NO.

• Input: 1000010101 → YES; Input: 100011 → NO

Challenges

High Dimensionality and Complexity - Sequential data often involves high-dimensional inputs with complex

interdependencies:

❖ Text: Words and phrases have semantic and syntactic relationships across sentences.

❖ Time Series: Multivariate time series data (e.g., temperature, humidity, and pressure) exhibit interdependencies

between variables over time.

❖ Biological Data: DNA sequences and protein structures involve intricate, sequential patterns.

Solution: RNNs address this by learning hierarchical representations through their recurrent structure, encoding both

local and global patterns.

Noise and Missing Data - Sequential data often contains noise or missing values:

➢ Noise: Sensor readings and time series data may have irregularities or anomalies.

➢ Missing values: Gaps in sequences arise from interruptions in data collection.

Solution: RNNs aggregate information over time, making them robust to noise and capable of interpolating missing

values using contextual information.

Challenges

Temporal Dependencies
❖ Short-term dependencies: In text, the current word depends on immediately preceding words (e.g., ``I want to eat

a...’’).
❖ Long-term dependencies: Distant elements in the sequence can influence the current state (e.g., in a paragraph, the

topic sentence affects subsequent sentences).
Solution: RNNs maintain memory through hidden states, enabling them to model temporal dependencies. Variants like
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) address challenges such as vanishing gradients,
allowing effective modeling of long-term dependencies.

Variable-Length Inputs and Outputs - Many real-world tasks involve sequences of varying lengths, which

traditional models struggle to handle. RNNs process inputs dynamically, making them ideal for tasks with variable-

length data.

Examples:

❖ Natural Language Processing (NLP): Sentences have varying word counts, and RNNs can process each word

without requiring fixed input dimensions.

❖ Speech Recognition: Audio recordings vary in duration depending on the speaker or content.

❖ Time Series: Data collected over irregular time intervals often results in sequences of differing lengths.

Content

1 Introduction to Language Modeling

2 Introduction to Recurrent Neural Networks (RNNs)

3 Problems with RNNs

4 Extensions of RNNs

0 Motivation to Sequence Modeling

5 Genomic Sequence Analysis

Large Language Models

https://dataforest.ai/blog/large-language-models-advanced-communication

Text Processing for RNN

Word Embeddings
Word embeddings are a fundamental technique in NLP. They

convert words into dense, continuous vector representations. Word

embeddings place similar words closer in vector space. Unlike

traditional one-hot encoding, embeddings preserve:

❖ Semantic relationships between words.

❖ Contextual meaning of words in sentences.

❖ Word similarity and analogies.

Types of Word Embeddings
➢ Frequency-Based Methods

▪ TF-IDF (Term Frequency-Inverse Document Frequency)

▪ LSA (Latent Semantic Analysis)

➢ Prediction-Based Methods (Neural Networks)

✓ Word2Vec (CBOW & Skip-gram)

✓ GloVe (Global Vectors for Word Representation)

✓ FastText (Subword Embeddings)

✓ Transformer-Based (BERT, GPT)

Word Embeddings Dimensions
Word

Embeddings
Dimensio

n Key Features

Word2Vec 50-300
Trained on large corpora like Google

News

GloVe 50-300 Uses word co-occurrence statistics

FastText 50-300 Handles subword information

ELMo 1024
Contextual embeddings from
bidirectional LSTMs

BERT (base) 768 Transformer-based, context-aware

BERT (large) 1024 More parameters than BERT base

GPT-2 (small) 768 Transformer-based generative model

GPT-2 (medium) 1024 More layers and parameters

GPT-3 12288 High-dimensional transformer model

from transformers import BertTokenizer, BertModel

import torch

Load BERT model

tokenizer = BertTokenizer.from_pretrained("bert-base-
uncased")

model = BertModel.from_pretrained("bert-base-uncased")

Tokenize and get embedding

text = "Hello world"
tokens = tokenizer(text, return_tensors="pt")

with torch.no_grad():

output = model(**tokens)

print("BERT Embedding Dimension:",
output.last_hidden_state.shape[-1])

For small models or mobile applications →

Use 50-300 dimensions (Word2Vec, GloVe).

For NLP applications with context-

awareness → Use 512-1024 dimensions (BERT,

ELMo).

For large-scale generative AI →

Use 1024+ dimensions (GPT-3, Transformers).

Train an RNN Language Model

25

Obama “I stand here today humbled by the task before us,
grateful for the trust you have bestowed, mindful of the
sacrifices borne by our ancestors. I thank President Bush for his
service to our nation, as well as the generosity and cooperation
he has shown throughout this transition. Forty-four Americans
have now taken the presidential oath. The words have been
spoken during rising tides of prosperity and the still waters of
peace. Yet, every so often the oath is taken amidst gathering
clouds and raging storms. At these moments, America has
carried on not simply because of the skill or vision of those in
high office, but because We the People have remained faithful
to the ideals of our forbearers, and true to our founding
documents. “

Task 1: How to import this paragraph for training the language

model?

26

import re

import torch

import torch.nn as nn

import torch.optim as optim

import matplotlib.pyplot as plt

from gensim.models import Word2Vec

import numpy as np

import random

For reproducibility

torch.manual_seed(42)

np.random.seed(42)

random.seed(42)

===============================

1. Define and Preprocess the Text

===============================

text = (

"I stand here today humbled by the task before us, grateful

for the trust you have bestowed, "

"mindful of the sacrifices borne by our ancestors. I thank

President Bush for his service to our nation, "

"as well as the generosity and cooperation he has shown

throughout this transition.\n\n"

"Forty-four Americans have now taken the presidential oath.

The words have been spoken during rising tides "

"of prosperity and the still waters of peace. Yet, every so

often the oath is taken amidst gathering clouds "

"and raging storms. At these moments, America has carried on

not simply because of the skill or vision of "

"those in high office, but because We the People have

remained faithful to the ideals of our forbearers, and "

"true to our founding documents."

)

print("\n--- Original Text ---\n")

print(text)

Split the text into sentences using a simple regex

sentences = re.split(r'(?<=[.!?])\s+', text.strip())

print("\n--- Split Sentences ---")

for i, s in enumerate(sentences):

print(f"Sentence {i+1}: {s}")

def tokenize(text):

Convert to lowercase and split using regex for word

boundaries

return re.findall(r'\b\w+\b', text.lower())

Tokenize each sentence

tokenized_sentences = [tokenize(sentence) for sentence in

sentences]

print("\n--- Tokenized Sentences ---")

for i, tokens in enumerate(tokenized_sentences):

print(f"Sentence {i+1} Tokens: {tokens}")

Build vocabulary (set of unique words)

vocab = sorted(set(word for sentence in tokenized_sentences

for word in sentence))

word_to_idx = {word: idx for idx, word in enumerate(vocab)}

idx_to_word = {idx: word for word, idx in word_to_idx.items()}

vocab_size = len(vocab)

print("\n--- Vocabulary ---")

print(word_to_idx)

print(f"Vocabulary Size: {vocab_size}")

===============================

2. Train Word2Vec and Build Embedding Matrix

===============================

embedding_dim = 100

w2v_model = Word2Vec(sentences=tokenized_sentences,

vector_size=embedding_dim, window=5, min_count=1, workers=4)

Build the embedding matrix (vocab_size x embedding_dim)

embedding_matrix = torch.zeros(vocab_size, embedding_dim)

for word, idx in word_to_idx.items():

embedding_vector = w2v_model.wv[word]

if embedding_vector is not None:

embedding_matrix[idx] = torch.tensor(embedding_vector)

===============================

3. Prepare Input and Target Sequences for Language Modeling

===============================

For language modeling, we treat the text as one continuous

sequence.

indices = [word_to_idx[word] for sentence in

tokenized_sentences for word in sentence]

Create input sequence and target sequence.

The target is the next word (shifted by one position). The

last target is omitted.

input_indices = indices[:-1] # all except last

target_indices = indices[1:] # all except first

Convert to PyTorch tensors. We use batch_size = 1 for

simplicity.

input_seq = torch.tensor([input_indices], dtype=torch.long) #

Shape: (1, seq_len)

target_seq = torch.tensor([target_indices], dtype=torch.long)

Shape: (1, seq_len)

27

Sentence 1: I stand here today humbled by the task before us,

grateful for the trust you have bestowed, mindful of the

sacrifices borne by our ancestors.

--- Sentence 1 Tokens: ['i', 'stand', 'here', 'today',

'humbled', 'by', 'the', 'task', 'before', 'us', 'grateful',

'for', 'the', 'trust', 'you', 'have', 'bestowed', 'mindful',

'of', 'the', 'sacrifices', 'borne', 'by', 'our', 'ancestors’]

--- Vocabulary --- {'america': 0, 'americans': 1, 'amidst': 2,

'ancestors': 3, 'and': 4, 'as': 5, 'at': 6, 'because': 7,

'been': 8, 'before': 9, 'bestowed': 10, 'borne': 11, 'bush':

12, 'but': 13, . . . 'we': 88, 'well': 89, 'words': 90,

'yet': 91, 'you': 92}

Vocabulary Size: 93

--- Training Word2Vec Model --- Word2Vec training completed. -

-- Embedding Matrix ---

Embedding Matrix Shape: torch.Size([93, 100]) Sample

Embeddings: america: tensor([-0.0081, -0.0009, 0.0064, 0.0087,

-0.0050])... americans: tensor([0.0010, 0.0086, -0.0040,

0.0030, 0.0032])... amidst: tensor([-0.0065, 0.0073, 0.0061, -

0.0049, -0.0017

--- Token Indices --- [37, 68, 33, 81, 36, 14, 74, 72, 9, 85,

29, 22, 74, 84, 92, 31, 10, 41, 47, 74, 61, 11, 14, 52, 3, 37,

73, 55, 12, 22, 35, 62, 80, 52, 43, 5, 89, 5, 74, 28, 4, 17,

32, 30, 63, 78, 76, 82, 24, 26, 1, 31, 45, 71, 74, 56, 46, 74,

90, 31, 8, 67, 19, 60, 79, 47, 57, 4, 74, 69, 87, 47, 53, 91,

20, 66, 49, 74, 46, 40, 71, 2, 27, 16, 4, 58, 70, 6, 75, 42,

0, 30, 15, 50, 44, 64, 7, 47, 74, 65, 51, 86, 47, 77, 39, 34,

48, 13, 7, 88, 74, 54, 31, 59, 21, 80, 74, 38, 47, 52, 23, 4,

83, 80, 52, 25, 18] --- Input and Target Indices --- Input

Indices (first 20): [37, 68, 33, 81, 36, 14, 74, 72, 9, 85,

29, 22, 74, 84, 92, 31, 10, 41, 47, 74] Target Indices (first

20): [68, 33, 81, 36, 14, 74, 72, 9, 85, 29, 22, 74, 84, 92,

31, 10, 41, 47, 74, 61] Input Sequence Shape: torch.Size([1,

126]) Target Sequence Shape: torch.Size([1, 126])

More formally: given a sequence of words

compute the probability distribution of the next word

,
:

where can be any word in the vocabulary

Formulation: Language Modeling (LM)

A language model (LM) is a statistical or machine learning model

that predicts the next word in a sequence or assigns

probabilities to sequences of words.

28

the students opened their

Books

Laptops

Lunch Boxes

Exams

Example:

➢ Input: "I am going to the"

➢ Model prediction: "store" (80%), "beach" (15%), "moon" (5%)

➢ The model assigns probabilities and selects the most likely next word.

Predicts the likelihood of a sequence of words

Generates human-like text (e.g., GPT models)

Understands context and meaning

Enables AI systems to process and generate natural language

Language Modeling

• You can also think of a Language Model as a system that assigns a probability
to a piece of text

• For example, if we have some text , then the probability of this text
(according to the Language Model) is:

This is what our LM provides

29

StanfordCS224n

You use Language Models every day!

30

StanfordCS224n

n-gram Language Models

31

the students opened their

❑ Question: How to learn an n-gram Language Model during the pre-DL period?

❑ Answer: An n-gram is a sequence of n consecutive words from a text. The larger the n, the more context

the model considers when making predictions.

❑ Definition: An n-gram is a chunk of n consecutive words.

• unigrams: “the”, “students”, “opened”, ”their”

• bigrams: “the students”, “students opened”, “opened their”

• trigrams: “the students opened”, “students opened their”

• four-grams: “the students opened their”

❖ Idea:
• Collect statistics on how frequently different n-grams appear in a corpus.

• The probability of the next word is estimated using the previous (n-1) words.

StanfordCS224n

n-gram Language Models

• Question: How do we get these n-gram and (n-1)-gram probabilities?

• Answer: By counting them in some large corpus of text!

(statistical approximation)

(definition of
conditional prob)

• Under the Markov assumption: 𝑥(t+ 1) depends only on the preceding n-1 words

n-1 words

(assumption)

32

prob of a n-gram

prob of a (n-1)-gram

StanfordCS224n

n-gram Language Models: Example
Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their
discard

condition on this

For example, suppose that in the corpus:

• “students opened their” occurred 1000 times

• “students opened their books” occurred 400 times

• ➔ P(books | students opened their) = 0.4

• “students opened their exams” occurred 100 times

• ➔ P(exams | students opened their) = 0.1

Should we have discarded
the “proctor” context?

33

StanfordCS224n

Major Challenges

Increasing n makes

sparsity problems worse.

Typically, we can’t have n

bigger than 5.

Problem: What if “students opened

their” never occurred in data? Then we

can’t calculate probability for any 𝑤!

MC2

Problem: What if “students

opened their 𝑤” never

occurred in data? Then 𝑤 has

probability 0!

MC1

(Partial) Solution: Add small 𝛿 to

the count for every 𝑤 ∈ 𝑉. This is

called smoothing.

(Partial) Solution: Just condition on

“opened their” instead.

This is called backoff.

34

Storage: Need to store count

for all n-grams you saw in the

corpus. Increasing n or

increasing corpus increases

model size!

MC3

MC4

Data Sparsity – Rare n-grams may not appear frequently in training data.

Fixed Context Window – Cannot capture long-range dependencies beyond n words.

Poor Generalization – Cannot understand unseen word sequences.

Generating text with a n-gram Language Model
You can also use a Language Model to generate text

condition on

this

company 0.153
bank 0.153
price 0.077

italian 0.039
emirate 0.039

…

get probability
distribution

sample

35

today the today the price

of 0.308
for
it
to
is

0.050
0.046

0.046
0.031
…

condition on

this

get probability
distribution

sample

the
18
oil

its
gold

0.072
0.043
0.043
0.036
0.018
…

today the price

condition on

this

get probability
distribution

sample

StanfordCS224n

Generating text with a n-gram Language Model

36

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size… StanfordCS224n

How to build a neural language model?
• Recall the Language Modeling task:

• Input: sequence of words

• Output: prob. dist. of the next word

• How about a window-based neural model?

• We saw this applied to Named Entity Recognition (NER):

in Paris are amazingmuseums

37

NER is a fundamental NLP task that involves identifying and classifying specific entities in a given text into

predefined categories such as names of people, organizations, locations, dates, monetary values, and more.

Location

StanfordCS224n

A Fixed-window Neural Language Model

the students opened their

books
laptops

Concatenated Word Embeddings

Words /One-hot vectors

Hidden Layer

a zoo

Output Distribution

38

StanfordCS224n

A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:

• No sparsity problem

• Don’t need to store all observed n-grams

39

Remaining problems:

• Fixed window is too small

• Enlarging window enlarges 𝑊
• Window can never be large enough!

• 𝑥 (1) and 𝑥(2) are multiplied by completely

different weights in 𝑊. No symmetry in how

the inputs are processed.

We need a neural architecture

that can process any length input

Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

StanfordCS224n

Content

1 Introduction to Language Modeling

2 Introduction to Recurrent Neural Networks (RNNs)

3 Problems with RNNs

4 Extensions of RNNs

0 Motivation to Sequence Modeling

History of Deep RNNs
The Rise of Deep RNNs (2010s - Present)

RNNs in NLP and AI
•2013 – Google used LSTM for speech recognition.

•2014 – Seq2Seq Models (Sutskever et al.) used LSTMs for machine translation.

•2015 – Google Translate adopted LSTMs for neural machine translation (NMT).

Attention and Transformers Change the Game
•2015 – Bahdanau et al. introduced Attention Mechanisms, improving Seq2Seq models.

•2017 – Vaswani et al. introduced Transformers, replacing RNNs with a more parallelizable model.

Key Concept:
Transformers like BERT (2018), GPT-3 (2020), and ChatGPT (2022) outperformed RNNs, leading to their decline in NLP.

StanfordCS224n

Recurrent Neural Networks (RNN)
A family of neural architectures

hidden

states

input sequence
(any length)

…

…

…

Core idea: Apply the same
weights 𝑊 repeatedly

outputs
(optional)

42

nn.RNN(input_size, hidden_size, num_layers, batch_first=True)

StanfordCS224n

A Simple RNN Language Model

the students opened their
words / one-hot vectors

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could be much
longer now!

hidden states

is the initial hidden state

StanfordCS224n

RNN Language Models

the students opened their

books
laptops

a zoo

RNN Advantages:

• Can process any length input

• Computation for step t can (in

theory) use information from many

steps back

• Model size doesn’t increase for longer

input context

• Same weights applied on every

timestep, so there is symmetry in how

inputs are processed.

RNN Disadvantages:

• Recurrent computation is slow

• In practice, difficult to access

information from many steps back
More on
these later

44

StanfordCS224n

Training an RNN Language Model

❖ Prepare the dataset (tokenize text into words) and convert words to numerical tensors (word embeddings).

for every step t.

❖ Loss function on step t is cross-entropy loss between predicted probability distribution

and the true next word (one-hot for):

❖ Average this to get the overall loss for entire training set:

45

❖ Build an RNN-LM and compute output distribution

StanfordCS224n

= negative log prob
of “students”

Loss

Predicted
prob dists

…

Corpus the students opened their exams …

46

Training an RNN Language Model

StanfordCS224n

Loss

Predicted
prob dists

…

= negative log prob
of “opened”

Corpus the students opened their exams …

47

Training an RNN Language Model

StanfordCS224n

Loss

Predicted
prob dists

…

= negative log prob
of “their”

Corpus the students opened their exams …

48

Training an RNN Language Model

StanfordCS224n

Loss

Predicted
prob dists

…

= negative log prob
of “exams”

Corpus the students opened their exams …

49

Training an RNN Language Model

StanfordCS224n

+ + + + … =

…

Loss

Predicted
prob dists

“Teacher forcing”

Corpus the students opened their exams …

50

Training an RNN Language Model

Embedding Layer

RNN Layer

FC Layer

StanfordCS224n

Dimensions and Parameters
Input dimension (D): Size of each input vector (e.g., 100 for Word2Vec embeddings).

Hidden dimension (H): Size of the hidden state vector (e.g., 64).

Batch size (B): Number of sequences processed in parallel.

Sequence length (S): Number of time steps (tokens) per sequence.

Output dimension (V): For example, vocabulary size in language modeling or the number of classes in classification.

• Memory Constraints: Storing all word embeddings, gradients, and activations requires enormous memory.

• Computational Cost: Performing backpropagation over the entire dataset in a single step is impractical.

• Batching is Required: Instead of processing all data at once, models use mini-batches to update weights

efficiently.

52

Training Challenges

Challenges Solution

Too much memory usage Mini-batch training

Long sequences overflow
memory

Truncated BPTT (TBPTT)

Exploding gradients Gradient clipping

Slow training
Efficient batching and

parallelization

Truncate the sequence into smaller sub-sequences

(e.g., 20 time steps at a time).

Divide the entire dataset into mini-batches

(e.g., batch size = 32).

Clip gradients to a maximum norm (e.g., 5).

Backpropagation for RNNs

……

Question: What’s the derivative of w.r.t. the repeated weight matrix ?

Answer:
“The gradient w.r.t. a repeated weight

is the sum of the gradient
w.r.t. each time it appears”

53

Why?

StanfordCS224n

Backpropagation for RNNs

43

……

Question: How do we calculate this?

Answer: Backpropagate over timesteps
i = t, … ,0, summing gradients as you go.
This algorithm is called “backpropagation
through time” [Werbos, P.G., 1988, Neural
Networks 1, and others]

Apply the multivariable chain rule:
= 1

In practice, often
“truncated” after ~20
timesteps for training
efficiency reasons

StanfordCS224n

Generating roll outs
Just like an n-gram Language Model, you can use a RNN Language Model to

generate text by repeated sampling. Sampled output becomes next step’s input.

<s> my favorite season

my

sample

favorite

sample

season

sample

is

sample

is
44

spring

sample

spring

</s>

sample

StanfordCS224n

Train an RNN Language Model

56

Obama “I stand here today humbled by the task before us,
grateful for the trust you have bestowed, mindful of the
sacrifices borne by our ancestors. I thank President Bush for his
service to our nation, as well as the generosity and cooperation
he has shown throughout this transition. Forty-four Americans
have now taken the presidential oath. The words have been
spoken during rising tides of prosperity and the still waters of
peace. Yet, every so often the oath is taken amidst gathering
clouds and raging storms. At these moments, America has
carried on not simply because of the skill or vision of those in
high office, but because We the People have remained faithful
to the ideals of our forbearers, and true to our founding
documents. “

Tasks 2 & 3: How to train an RNN-LM on this paragraph and

then generate text in that style?

57

===============================

4. Define the RNN Language Model in PyTorch

===============================

class RNNLanguageModel(nn.Module):

def __init__(self, vocab_size, embedding_dim, hidden_size,

num_layers, embedding_matrix):

super(RNNLanguageModel, self).__init__()

self.embedding = nn.Embedding(num_embeddings=vocab_size,

embedding_dim=embedding_dim)

self.embedding.weight.data.copy_(embedding_matrix)

Optionally freeze the embeddings if desired:

self.embedding.weight.requires_grad = False

self.rnn = nn.RNN(input_size=embedding_dim,

hidden_size=hidden_size, num_layers=num_layers,

nonlinearity='tanh', batch_first=True)

Fully connected layer to map hidden state to vocabulary

logits

self.fc = nn.Linear(hidden_size, vocab_size)

def forward(self, x, h0):

x: (batch_size, seq_len)

x_embed = self.embedding(x) # (batch_size, seq_len,

embedding_dim)

out, hn = self.rnn(x_embed, h0) # out: (batch_size, seq_len,

hidden_size)

logits = self.fc(out) # (batch_size, seq_len, vocab_size)

return logits, hn

hidden_size = 64

num_layers = 1

model = RNNLanguageModel(vocab_size, embedding_dim,

hidden_size, num_layers, embedding_matrix)

===============================

5. Define Loss Function, Optimizer, and a Learning Rate

Scheduler

===============================

criterion = nn.CrossEntropyLoss() # for next-word prediction

optimizer = optim.Adam(model.parameters(), lr=0.01)

scheduler = optim.lr_scheduler.StepLR(optimizer,

step_size=50, gamma=0.5)

===============================

6. Training (Fitting) Process

===============================

num_epochs = 200

model.train()

loss_history = []

batch_size, seq_len = input_seq.shape

for epoch in range(1, num_epochs + 1):

h0 = torch.zeros(num_layers, batch_size, hidden_size)

optimizer.zero_grad()

Forward pass: get logits over vocabulary

logits, hn = model(input_seq, h0)

logits shape: (1, seq_len, vocab_size)

Reshape logits and target for loss computation

logits = logits.view(-1, vocab_size) # shape:

(batch_size*seq_len, vocab_size)

targets = target_seq.view(-1) # shape: (batch_size*seq_len)

loss = criterion(logits, targets)

loss.backward()

optimizer.step()

scheduler.step() # update learning rate

loss_history.append(loss.item())

print("\n--- Training Completed ---")

58

===============================

7. Text Generation Based on the Trained Model

===============================

def generate_text(model, seed_text, length, word_to_idx,

idx_to_word, hidden_size, num_layers):

model.eval()

seed_tokens = tokenize(seed_text)

seed_indices = [word_to_idx.get(word, 0) for word in

seed_tokens] # default to 0 if not found

input_seq = torch.tensor([seed_indices], dtype=torch.long)

h = torch.zeros(num_layers, 1, hidden_size)

generated_indices = seed_indices.copy()

Generate tokens one by one

for _ in range(length):

logits, h = model(input_seq, h)

last_logits = logits[:, -1, :]

next_token = last_logits.argmax(dim=1).item()

generated_indices.append(next_token)

Prepare input for next iteration: the newly generated token

becomes the next input.

input_seq = torch.tensor([[next_token]], dtype=torch.long)

generated_words = [idx_to_word[idx] for idx in

generated_indices]

return " ".join(generated_words)

Generate text from a seed

seed_text = "Obama"

generated_text = generate_text(model, seed_text, length=50,

word_to_idx=word_to_idx,

idx_to_word=idx_to_word, hidden_size=hidden_size,

num_layers=num_layers)

print("\n--- Generated Text ---")

print(generated_text)

--- RNN Language Model Architecture ---

RNNLanguageModel((embedding): Embedding(93, 100) (rnn):

RNN(100, 64, batch_first=True) (fc): Linear(in_features=64,

out_features=93, bias=True))

--- Loss Function and Optimizer ---

Loss Function: CrossEntropyLoss()

Optimizer: Adam (Parameter Group 0 amsgrad: False betas:

(0.9, 0.999) capturable: False differentiable: False eps: 1e-

08 foreach: None fused: None initial_lr: 0.01 lr: 0.01

maximize: False weight_decay: 0) Scheduler:

<torch.optim.lr_scheduler.StepLR object at 0x7fc1615ae210>

--- Training Started ---

Epoch 1/200 | Loss: 4.5318 Epoch 20/200 | Loss: 0.5003 Epoch

40/200 | Loss: 0.0104 Epoch 60/200 | Loss: 0.0037 Epoch

80/200 | Loss: 0.0029 Epoch 100/200 | Loss: 0.0026 Epoch

120/200 | Loss: 0.0024 Epoch 140/200 | Loss: 0.0023 Epoch

160/200 | Loss: 0.0022 Epoch 180/200 | Loss: 0.0021 Epoch

200/200 | Loss: 0.0020

--- Training Completed ---

Outputs

48

--- Generated Text ---

america has carried on not simply because of the skill or vision of those in high office

but because we the people have remained faithful to the ideals of our forbearers and

true to our founding documents for the trust you have bestowed mindful of the

sacrifices borne by our ancestors

- --- Generated Text ---
bush for his service to our nation as well as the generosity and cooperation he has

shown throughout this transition forty four americans have now taken the presidential

oath the words have been spoken during rising tides of prosperity and the still waters

of peace yet every so often the oath

Evaluating Language Models

Perplexity: Measures how well a model predicts a sample.

BLEU, ROUGE, METEOR: Compare generated text to reference texts.

Accuracy and F1 Score: Used in tasks with classification elements.

Human Evaluation: Judges quality, fluency, and relevance.

Task-Specific Metrics: Tailored metrics for particular applications.

Lower perplexity is better!

60

Inverse probability of corpus, according to Language Model

Normalized by.
number of words

Fluency: Is the generated text grammatically correct and natural?

Coherence: Does the text flow logically from one sentence to the next?

Relevance: How well does the generated text answer a prompt or capture key details?

Engagement and Creativity: Particularly important in creative writing or dialogue systems.

RNNs greatly improved perplexity

n-gram model

Increasingly
complex RNNs

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

61

StanfordCS224n

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

62

Usually better:
Take element-wise
max or mean of all

hidden states

Sentiment Classification

StanfordCS224n

Question Answering

Context: Ludwig
van Beethoven was
a German
composer and
pianist. A crucial
figure …

Beethoven ?Question: what nationality was

Here the RNN acts as an
encoder for the Question (the
hidden states represent the
Question). The encoder is part
of a larger neural system.

Answer: German

63

StanfordCS224n

Speech Recognition

what’s the

the weatherwhat’s

This is an example of a conditional language model.

Input (audio)

<START>

conditioning

64

StanfordCS224n

Example: Classifying Names

File: char_rnn_classification_tutorial.ipynb
This is from the official PyTorch tutorial: https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

import torch.nn as nn

import torch.nn.functional as F

class CharRNN(nn.Module):

def __init__(self, input_size, hidden_size, output_size):

super(CharRNN, self).__init__()

self.rnn = nn.RNN(input_size, hidden_size)

self.h2o = nn.Linear(hidden_size, output_size)

self.softmax = nn.LogSoftmax(dim=1)

def forward(self, line_tensor):

rnn_out, hidden = self.rnn(line_tensor)

output = self.h2o(hidden[0])

output = self.softmax(output)

return output

n_hidden = 128
rnn = CharRNN(n_letters, n_hidden, len(alldata.labels_uniq))
print(rnn)

This tutorial serves as an introduction

to sequence modeling with RNNs and

shows how character-level information

can be used for text classification.

❖ Input: A name (e.g., "Schmidt") is

provided as a sequence of characters.

❖ Processing: Each character is converted

into a numerical tensor (one-hot

encoding or embeddings). The RNN

processes the character sequence,

updating its hidden state at each step.

❖ Output: The model predicts

the nationality/language of the name

(e.g., "German").

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Example: Classifying Names

File: char_rnn_classification_tutorial.ipynb
This is from the official PyTorch tutorial: https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

import random

import numpy as np

def train(rnn, training_data, n_epoch = 10, n_batch_size = 64,

report_every = 50, learning_rate = 0.2, criterion = nn.NLLLoss()):

"""

Learn on a batch of training_data for a specified number of

iterations and reporting thresholds

"""

Keep track of losses for plotting

current_loss = 0

all_losses = []

rnn.train()

optimizer = torch.optim.SGD(rnn.parameters(), lr=learning_rate)

start = time.time()

print(f"training on data set with n = {len(training_data)}")

for iter in range(1, n_epoch + 1):

rnn.zero_grad() # clear the gradients

batches = list(range(len(training_data)))

random.shuffle(batches)

batches = np.array_split(batches, len(batches) //n_batch_size)

for idx, batch in enumerate(batches):

batch_loss = 0

for i in batch: #for each example in this batch

(label_tensor, text_tensor, label, text) = training_data[i]

output = rnn.forward(text_tensor)

loss = criterion(output, label_tensor)

batch_loss += loss

optimize parameters

batch_loss.backward()

nn.utils.clip_grad_norm_(rnn.parameters(), 3)

optimizer.step()

optimizer.zero_grad()

current_loss += batch_loss.item() / len(batch)

all_losses.append(current_loss / len(batches))

if iter % report_every == 0:

print(f"{iter} ({iter / n_epoch:.0%}): = {all_losses[-1]}")

current_loss = 0

return all_losses

all_losses = train(rnn, train_set, n_epoch=27, learning_rate=0.15)

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Content

1 Introduction to Sequence Modeling

2 Introduction to Recurrent Neural Networks (RNNs)

3 Problems with RNNs

4 Extensions of RNNs

5 Genomic Sequence Analysis

Vanishing gradient intuition

?

68

This decay makes it difficult for RNNs to learn long-term dependencies.

Empirical evidence shows rapid gradient norm decay.

StanfordCS224n

Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

backpropagates further

69

StanfordCS224n

• Recall:

• What if were the identity function, ?

57

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

If Wh is “small”, then this term gets
exponentially problematic as becomes large

(chain rule)

• Consider the gradient of the loss on step , with respect
to the hidden state on some previous step . Let

(chain rule)

(value of)

Vanishing gradient intuition

StanfordCS224n

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

• What’s wrong with ?

• Consider if the eigenvalues of are all less than 1:

• We can write as a basis:

• What about nonlinear activations (i.e., what we use?)

• Pretty much the same thing, except the proof requires

for some dependent on dimensionality and

58

(eigenvectors)

using the eigenvectors of

Approaches 0 as grows, so gradient vanishes

sufficient but
not necessary

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Vanishing gradient intuition

StanfordCS224n

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Why is vanishing gradient a problem?

➢ Short-Range vs. Long-Range: Imagine a long chain of dominos where each domino represents a layer or time step. If

the force transferred from one domino to the next diminishes (say by a constant factor each time), then after a long chain,

the force reaching the first domino becomes nearly zero. This means the first few dominos (or layers) barely "feel" the

impact of the initial force (or error), and thus they do not adjust effectively based on long-term dependencies.

➢ Resulting Behavior: The model ends up "paying attention" only to the parts of the sequence that are immediately

relevant (the nearby gradient signals) while ignoring distant context. This leads to challenges such as:

❖ Inability to learn relationships or dependencies that span many time steps.

❖ Poor performance on tasks that require integrating information over long sequences.

72

Effect of vanishing gradient on RNN-LM

73

• LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her

Problem:
The training example requires the model to understand that the first occurrence of "tickets" should influence the final

output. However, due to the vanishing gradient, the error signal indicating that "tickets" was the correct prediction does

not effectively travel back to where it is needed.

Outcome:
The model primarily updates its weights based on more immediate context (such as the recent words about installing

toner), and as a result, it struggles to predict long-range dependencies like the repeated "tickets" at the end.

Key Takeaway:
When gradients vanish over long sequences, the model learns only the short-term (local) dependencies and fails to capture

the long-term (global) context required to accurately model relationships spanning many time steps.

Why is exploding gradient a problem?
➢ Big Gradients = Big Updates:

If the gradient becomes too large, then multiplying it by the learning rate yields an

update step that is far too big. This can drastically change the model’s parameters in a

single update, causing the model to jump to a region in parameter space where the

loss is extremely high.

➢ Overshooting and Divergence:

The model may overshoot any potential minima and end up in a poor configuration—

figuratively, you might think you're following a path upward (finding a local

minimum), but instead, you are suddenly in an entirely different and suboptimal

region (like ending up in Iowa, far from your intended destination).

➢ Numerical Problems:

If updates are too extreme, you might encounter numerical issues like Inf or NaN

values, which can halt training and require you to restart from a safe checkpoint.

74

?

Gradient clipping

62

• Gradient clipping: if the norm of the gradient is greater than some threshold, scale it
down before applying SGD update

Stability:

With gradient clipping, you are less likely to encounter the situation where your network's parameters become so large

that they result in numerical overflow (Inf or NaN values), which would require you to restart training.

Convergence:

Although exploding gradients can disrupt convergence, clipping helps maintain a controlled learning process where the

update steps are kept within a safe range, thereby supporting steady convergence.

Focus on Other Challenges:

Since exploding gradients can be managed relatively easily through clipping, you can often shift your focus to more

challenging issues like vanishing gradients or designing architectures that capture long-term dependencies.

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf

How to fix the vanishing gradient problem?

➢ Gated Architectures:
LSTM and GRU models include gates that help regulate the flow of information and gradients over long time

sequences, mitigating the vanishing gradient problem.

➢ Activation Functions:
ReLU and similar activations help reduce the saturation effect (common in sigmoid or tanh⁡tanh), which can

cause gradients to vanish.

➢ Normalization Techniques:
Batch or layer normalization helps to standardize activations and gradients, ensuring that they remain within

a reasonable range.

➢ Residual Connections:
Adding skip connections enables gradients to flow directly from later layers to earlier layers, bypassing some

of the multiplicative effects that cause vanishing.

➢ Weight Initialization:
Using initialization strategies like Xavier or He initialization keeps the scale of the activations and gradients

more controlled.

76

Content

1 Introduction to Sequence Modeling

2 Introduction to Recurrent Neural Networks (RNNs)

3 Problems with RNNs

4 Extensions of RNNs

5 Genomic Sequence Analysis

LSTMs: Apple WWDC Keynote 2016

Apple WWDC 2016: Apple is tentatively dipping its toe into the AI waters with technologies that can analyze your
photos for faces and context - all done locally - and by applying LSTM deep learning technologies to Messaging.

StanfordCS224n

Long Short-Term Memory RNNs (LSTMs)
➢ The original proposal by Hochreiter and Schmidhuber in 1997 as a solution to the vanishing

gradient problem.

➢ Although that paper is widely cited, the modern LSTM architecture also owes much to

innovations by Gers et al. (2000).

➢ The work of Alex Graves around 2006, who not only helped demonstrate the potential of LSTM

models but also invented CTC for speech recognition.

➢ LSTM gained widespread attention when Hinton introduced it at Google in 2013, with Graves

contributing significantly as his postdoc.

Hochreiter and Schmidhuber, 1997. Long short-term memory. https://www.bioinf.jku.at/publications/older/2604.pdf

Gers, Schmidhuber, and Cummins, 2000. Learning to Forget: Continual Prediction with LSTM. https://dl.acm.org/doi/10.1162/089976600300015015
Graves, Fernandez, Gomez, and Schmidhuber, 2006. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets.

https://www.cs.toronto.edu/~graves/icml_2006.pdf

http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.cs.toronto.edu/~graves/icml_2006.pdf

LSTMs: real-world success

8
0

• In 2013–2015, LSTMs started achieving state-of-the-art results

• Successful tasks include handwriting recognition, speech recognition, machine
translation, parsing, and image captioning, as well as language models

• LSTMs became the dominant approach for most NLP tasks

• Now (2019–2024), Transformers have become dominant for all tasks

• For example, in WMT (a Machine Translation conference + competition):

• In WMT 2014, there were 0 neural machine translation systems (!)

• In WMT 2016, the summary report contains “RNN” 44 times (and these systems won)

• In WMT 2019: “RNN” 7 times, ”Transformer” 105 times

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf
Source: "Findings of the 2019 Conference on Machine Translation (WMT19)", Barrault et al. 2019, http://www.statmt.org/wmt18/pdf/WMT028.pdf

http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf

Long Short-Term Memory RNNs (LSTMs)

8
1

➢ At each time step t, the LSTM maintains a hidden state h(t) and a cell state c(t), both vectors of length n.

➢ The cell state stores long-term information, while the hidden state represents the immediate output.

➢ Three gates—the forget gate, input gate, and output gate—dynamically control the erasing, reading, and

writing of information in the cell state.

➢ Each gate is computed as a vector with values between 0 and 1, where values indicate the proportion of

information to keep or update.

➢ This gating mechanism allows the LSTM to selectively maintain important information over long

sequences, effectively addressing the vanishing gradient problem encountered in traditional RNNs.

This dynamic gating system is a key innovation that makes LSTMs powerful for tasks requiring long-term memory, such as

language modeling, speech recognition, and time-series prediction.

A sequence of inputs 𝑥(t). Compute a sequence of hidden states ℎ(t) and cell states 𝑐(t). On timestep t:

Long Short-Term Memory (LSTM)

A
ll

th
e

se
 a

re
 v

ec
to

rs
 o

f
sa

m
e

le
n

gt
h

 n

Forget gate: controls what is kept vs
forgotten, from previous cell state

Input gate: controls what parts of the
new cell content are written to cell

Output gate: controls what parts of
cell are output to hidden state

New cell content: this is the new
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

Hidden state: read (“output”) some
content from the cell

Sigmoid function: all gate
values are between 0 and 1

Gates are applied using element-wise
(or Hadamard) product: ⊙

⊙

⊙

⊙

StanfordCS224n

You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

StanfordCS224n

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ct-1

ht-1

ct

ht

ft

it ot

ct

t
c~

Long Short-Term Memory (LSTM)
You can think of the LSTM equations visually like this:

Compute the
forget gate

Forget some
cell content

Compute the
input gate

Compute the
new cell content

Write some new cell content

Output some cell content
to the hidden state

The + sign is the secret!

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ො𝑦𝑡

Compute the
output gate

StanfordCS224n

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Preserving Long-Term Dependencies

8
5

LSTMs vs. Vanilla RNNs

• LSTM Advantage:

The LSTM architecture makes it much easier for an RNN to preserve information over many

timesteps. Example: If the forget gate is set to 1 and the input gate to 0 for a cell dimension, the

corresponding cell state is preserved indefinitely.

• Vanilla RNN Limitation:

A vanilla RNN must learn a recurrent weight matrix that preserves information in the hidden state. In

practice, vanilla RNNs typically manage to preserve information over only about 7 timesteps.

• Extended Memory with LSTMs:

LSTMs can effectively preserve information for around 100 timesteps, greatly enhancing the model's

ability to capture long-term dependencies.

• Alternative Approaches:

There are other methods to create direct, linear pass-through connections that capture long-distance

dependencies.

Common Problems

For example:

• Residual connections aka “ResNet”

• Also known as skip-connections

• The identity connection preserves

information by default

• This makes deep networks much

easier to train

➢ Universality of the Problem:

Vanishing gradients are not unique to a single type of network—they affect all architectures, especially as depth

increases.

➢ Root Cause:

It explains how the chain rule and activation function choices cause gradients to decay, which is the mathematical

reason behind the problem.

➢ Impact on Learning:

With vanishing gradients, lower layers learn very slowly, affecting the overall performance and convergence of the

network.

➢ Architectural Remedies:

Modern networks counteract this problem by adding direct connections (skip/residual connections) that help maintain

gradient flow, with examples like ResNets and DenseNets.

"Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

Code: Classifying Names with a LSTM
import torch.nn as nn

import torch.nn.functional as F

class CharLSTM(nn.Module):

def __init__(self, input_size, hidden_size, output_size):

super(CharLSTM, self).__init__()

Replace RNN with LSTM

self.lstm = nn.LSTM(input_size, hidden_size)

self.h2o = nn.Linear(hidden_size, output_size)

self.softmax = nn.LogSoftmax(dim=1)

def forward(self, line_tensor):
LSTM produces two outputs: output and (hidden_state, cell_state)
lstm_out, (hidden_state, cell_state) = self.lstm(line_tensor)
Use the last hidden state to produce output
output = self.h2o(hidden_state[-1])
output = self.softmax(output)

return output

lstm = CharLSTM(n_letters, n_hidden=128, len(alldata.labels_uniq))

Bidirectional and Multi-layer RNNs

terribly exciting !the movie was

positive

Sentence
encoding

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

These contextual
representations only
contain information
about the left context
(e.g. “the movie was”).

What about right
context?

In this example,
“exciting” is in the right
context and this
modifies the meaning of
“terribly” (from negative
to positive)

8

Task: Sentiment Classification

StanfordCS224n

Bidirectional RNNs

was terribly exciting !the movie

Forward RNN

Backward RNN

Concatenated
hidden states

This contextual representation of “terribly”
has both left and right context!

StanfordCS224n

Bidirectional RNNs

Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean
“compute one forward step of the
RNN” – it could be a simple RNN or
LSTM computation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Generally, these
two RNNs have
separate weights

On timestep t:

StanfordCS224n

Pros and Cons of Bidirectional RNNs

Pros Section:
➢ Enhanced Context: Emphasizes that BiRNNs incorporate both past and future context, leading to

richer representations.

➢ Improved Accuracy: Highlights the improved performance in various tasks.

➢ Better Long-Term Dependency Modeling: Points out that the dual-direction approach can capture

dependencies over longer sequences.

Cons Section:
❖ Increased Computational Cost: Notes the extra resources required for running both forward and

backward RNNs.

❖ Not Suitable for Real-Time Applications: Explains that access to future context makes BiRNNs

less practical in scenarios where such information isn’t available.
❖ Complexity: Mentions that the increased complexity can make training and tuning more

challenging.

Bidirectional RNNs

9
2

Bidirectional RNNs require access to the entire input sequence to compute both forward and backward passes.

They are best suited for tasks where the complete sequence is available in advance (e.g., sequence encoding, text

classification, and machine translation).

In Language Modeling (LM), the model generates text one token at a time. At each generation step, only the left

context (previous tokens) is available. Bidirectional RNNs are not applicable to LM because future context is

unknown during generation.

When the entire input sequence is available (e.g., for encoding), bidirectionality is very powerful. It provides a

richer representation by capturing both past and future context for each token.

Each token’s embedding in BERT is contextualized with both left and right information. Typically, BERT models

produce embeddings of 768 or 1024 dimensions. BERT has set new standards for many NLP tasks by providing rich,

pretrained representations.

Code: Bidirectional RNNs
class CharBiRNN(nn.Module):

def __init__(self, input_size, hidden_size, output_size):

super(CharBiRNN, self).__init__()

Bidirectional RNN

self.rnn = nn.RNN(input_size, hidden_size, bidirectional=True)

Adjust output size to account for bidirectional hidden states (2 * hidden_size)

self.h2o = nn.Linear(hidden_size * 2, output_size)

self.softmax = nn.LogSoftmax(dim=1)

def forward(self, line_tensor):

rnn_out contains outputs for all timesteps, hidden contains the last hidden state

rnn_out, hidden = self.rnn(line_tensor)

Combine the last forward and backward hidden states

hidden_cat = torch.cat((hidden[-2], hidden[-1]), dim=1)

output = self.h2o(hidden_cat)

output = self.softmax(output)

return output

bidir_rnn = CharBiRNN(n_letters, n_hidden, len(alldata.labels_uniq))

Stacked RNNs
Stacked RNNs (also known as deep RNNs): multiple recurrent layers are placed on top of each other.

The output of each RNN layer serves as the input to the next, creating a hierarchical representation of the sequential

data. The lower RNNs should compute lower-level features and the higher RNNs should compute higher-level features.

This architecture is used to capture complex, abstract temporal patterns. Hierarchical layers can learn more abstract

features. Better capture complex temporal dependencies.

Improved Performance: Often achieve higher accuracy on tasks such as language modeling, speech recognition, and

time series prediction.

However, they also introduce challenges such as increased training complexity and computational cost.

With careful design and tuning, stacked RNNs are a powerful tool for sequence modeling.

9
4

Three-layer RNNs

was terribly exciting !the movie

RNN layer 1

RNN layer 2

9
5

RNN layer 3

StanfordCS224n

Multi-layer RNNs in practice

❖ Stacked RNNs allow for more complex, hierarchical representations: Lower layers capture basic, low-

level features, while higher layers integrate these into more abstract, high-level features.’

❖ Performance improvements are observed with moderate stacking: Empirical results (e.g., from Britz et

al., 2017) indicate that 2–4 layers can be optimal for tasks such as machine translation.

❖ Deep RNNs require architectural innovations: For very deep RNNs (e.g., 8 layers or more), skip-

connections or dense connections are necessary to maintain gradient flow and facilitate training.

❖ Transformers push depth further with built-in residual connections: Models like BERT, which can

have 12–24 layers, offer a different approach to capturing long-range dependencies via self-attention and deep

stacking.

Code: Muti-layer Bidirectional RNNs
class MultiLayerBiRNNClassifier(nn.Module):

def __init__(self, input_size, hidden_size, output_size, num_layers):

super(MultiLayerBiRNNClassifier, self).__init__()

Multi-layer bidirectional RNN

self.rnn = nn.RNN(

input_size,

hidden_size,

num_layers=num_layers,

bidirectional=True,

batch_first=True

)

Adjust the linear layer to account for bidirectional hidden states

self.h2o = nn.Linear(hidden_size * 2, output_size)

self.softmax = nn.LogSoftmax(dim=1)

def forward(self, input_tensor):

rnn_out: Outputs from all time steps, hidden: Hidden states for all layers

rnn_out, hidden = self.rnn(input_tensor)

Combine the last hidden states from both directions in the last layer

hidden_cat = torch.cat((hidden[-2], hidden[-1]), dim=1)

output = self.h2o(hidden_cat)

output = self.softmax(output)

return output

GRU (Gate Recurrent Unit)

9
8

• Gate Recurrent Unit is one of the ideas that has enabled RNN to

become much better at capturing very long-range dependencies and has

made RNN much more effective.

• The GRU is like a LSTM with a gating mechanism to input or forget

certain features, but lacks a context vector or output gate, resulting in

fewer parameters than LSTM. Proposed as a simpler alternative to

LSTM, the GRU merges the forget and input gates into a single update

gate.

• GRUs are known for having fewer parameters than LSTMs, which can

lead to faster training and similar performance in many tasks.

Each GRU cell has two main gates:

Reset Gate (r(t)): Controls how much of the previous hidden state to forget.

Update Gate (z(t)): Decides how much of the candidate activation to use.

The GRU combines these gates to update its hidden state without a separate cell state.

9
9

1. Update Gate (𝑧𝑡): Determines how much of the past hidden state ℎ𝑡−1 should be

retained and how much of the new candidate state ෠ℎ𝑡−1 should be added to form
the current hidden state.

2. Reset Gate (𝑟𝑡): Determines how much of the past hidden state ℎ𝑡−1 contributes to

the computation of the new candidate state ෠ℎ𝑡−1.

3. Candidate State (෠ℎ𝑡): New information computed at the current time step.

4. Hidden State Update: Combines contributions from the past hidden state ℎ𝑡−1 and
the new candidate state ෠ℎ𝑡−1 ​ using the update gate 𝑧𝑡.

StanfordCS224n

Classifying Names with a Character-Level GRU
import torch.nn as nn

import torch.nn.functional as F

class CharGRU(nn.Module):

def __init__(self, input_size, hidden_size, output_size):

super(CharGRU, self).__init__()

Replace RNN with GRU

self.gru = nn.GRU(input_size, hidden_size)

self.h2o = nn.Linear(hidden_size, output_size)

self.softmax = nn.LogSoftmax(dim=1)

def forward(self, line_tensor):

GRU produces outputs and hidden states

gru_out, hidden = self.gru(line_tensor)

Use the last hidden state for classification

output = self.h2o(hidden[-1])

output = self.softmax(output)

return output

Content

1 Introduction to Sequence Modeling

2 Introduction to Recurrent Neural Networks (RNNs)

3 Problems with RNNs

4 Extensions of RNNs

5 Genomic Sequence Analysis

Functional Effects of Noncoding Variants

➢ Most disease-associated variants identified by GWAS are located in noncoding regions of the genome.

➢ These variants can have significant regulatory effects. For example, they may modify transcription factor

binding sites, alter chromatin accessibility, or impact epigenetic marks such as DNA methylation and histone

modifications. These changes can, in turn, affect gene expression patterns and contribute to the development of

complex diseases such as cancer, diabetes, and autoimmune disorders.

➢ Predicting the functional effects of these noncoding variants is therefore crucial for understanding the genetic

basis of complex diseases and for identifying potential therapeutic targets. Traditional approaches relying on

hand-crafted features or statistical methods often struggle to capture the intricate, nonlinear relationships within

genomic data.

➢ Deep learning offers a powerful alternative by automatically learning hierarchical representations directly from

raw genomic sequences. With the ability to model both local and long-range dependencies, deep learning

models can identify subtle sequence patterns and interactions that are critical for gene regulation. This

capability has led to significant advances in predicting regulatory functions and understanding the mechanisms

by which noncoding variants contribute to disease pathology.

Deep Learning-based Sequence Analyzer
❖ DeepSEA Model Architecture
➢ Incorporates wide sequence context (1 kbp) and

use one-hot to encode the final sequence.

➢ Uses hierarchical convolutional neural networks
(CNNs) to learn sequence dependencies.
➢ Employs multitask learning for sharing predictive features

across chromatin factors.
➢ Optimized for accuracy in functional variant prediction.

❖ Training and Data Sources
➢ Training data from ENCODE and Roadmap Epigenomics projects.
➢ 690 TF binding profiles, 125 DNase I hypersensitivity profiles, 104

histone-mark profiles.
➢ Covers 17% of the human genome (521.6 Mbp).
➢ Trained using CNN.

Zhou, J., & Troyanskaya, O. G. (2015)

Performance and Sensitivity
• DeepSEA achieves high accuracy in predicting

chromatin features:

- TF binding: AUC = 0.958

- DNase I sensitivity: AUC = 0.923

- Histone marks: AUC = 0.856

• Outperforms gkm-SVM on nearly all TFs.

• Enables accurate sequence-based functional

predictions.

• Uses 'in silico saturated mutagenesis' to

assess sequence feature importance.

• Evaluated on 57,407 allelically imbalanced

SNPs from 35 cell types.

• Achieves >95% accuracy for high-

confidence predictions.

• Consistently predicts known SNP effects on

TF binding (e.g., FOXA1, GATA1, FOXA2).

DanQ
❖ Motivations
➢ Previous models like DeepSEA and gkm-SVM predict regulatory

function but lack recurrent components.

➢ Need for a model that integrates motif discovery and long-term

dependencies in DNA sequences.

❖ DanQ Model Framework
➢ Input Data: One-hot encoded 1000-bp DNA sequences from

GRCh37 genome.

➢ Training Data: 919 chromatin features from ENCODE & Roadmap

Epigenomics datasets.

➢ Architecture:

- CNN layer for motif scanning.

- Max pooling layer to reduce spatial size.

- BLSTM layer to capture motif relationships.

- Fully connected layer with sigmoid outputs.

Quang, D., & Xie, X. (2016).

Performance and Sensitivity
❖ Comparisons:
➢ ROC AUC: DanQ outperforms DeepSEA for 94.1% of targets.

➢ PR AUC: DanQ achieves over 50% relative improvement on

some markers.

➢ Enhanced motif discovery compared to previous CNN-based

models.

❖ Results
➢ ROC and PR curves demonstrate significant performance gain over

DeepSEA.

➢ • Motif analysis shows DanQ effectively learns biologically

relevant patterns.

➢ • Functional SNP prioritization shows improved detection of

regulatory variants

▪ Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving distributional similarity with lessons learned from word

embeddings. Transactions of the association for computational linguistics , 3, 211-225.

▪ Lipton, Z. C. (2015). A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv Preprint, CoRR,

abs/1506.00019.

▪ Mienye, I. D., Swart, T. G., & Obaido, G. (2024). Recurrent neural networks: A comprehensive review of architectures,

variants, and applications. Information, 15(9), 517.

▪ Novakovsky, G., Dexter, N., Libbrecht, M. W., Wasserman, W. W., & Mostafavi, S. (2023). Obtaining genetics insights

from deep learning via explainable artificial intelligence. Nature Reviews Genetics, 24(2), 125-137.

▪ Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation.

In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).

▪ Quang, D., & Xie, X. (2016). DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function

of DNA sequences. Nucleic acids research, 44(11), e107-e107.

▪ Sapoval, N., Aghazadeh, A., Nute, M. G., Antunes, D. A., Balaji, A., Baraniuk, R., ... & Treangen, T. J. (2022). Current

progress and open challenges for applying deep learning across the biosciences. Nature Communications, 13(1), 1728.

▪ Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM)

network. Physica D: Nonlinear Phenomena, 404, 132306.

▪ Staudemeyer, R. C., & Morris, E. R. (2019). Understanding LSTM--a tutorial into long short-term memory recurrent neural

networks. arXiv preprint arXiv:1909.09586.

▪ Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network

architectures. Neural computation, 31(7), 1235-1270.

▪ Zhou, J., & Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep learning–based sequence

model. Nature methods, 12(10), 931-934.

References

How to succeed in this course?

Practice

Explore

Visualize

Ask

Discuss

	Slide 1: Bios 740- Chapter 4.. Sequence Modeling: RNNs, LSTM, and GRU
	Slide 2: Content
	Slide 3: Content
	Slide 4: Recurrent Neural Networks (RNNs) are motivated by their ability to address challenges inherent in sequential data.
	Slide 5: Sequences
	Slide 6: Sequences
	Slide 7: Different Categories of Sequence Modeling
	Slide 8: Sentiment Analysis and Video Analytics
	Slide 9: Machine Translation
	Slide 10: The early history of MT: 1950s
	Slide 11: 1990s-2010s: Statistical Machine Translation
	Slide 12: Not trivial to model!
	Slide 13: 1990s–2010s: Statistical Machine Translation
	Slide 14: 2014
	Slide 15: NMT: the first big success story
	Slide 16: Deepseek v.s. OpenAI
	Slide 17
	Slide 18: Challenges
	Slide 19: Challenges
	Slide 20: Content
	Slide 21: Large Language Models
	Slide 22: Text Processing for RNN
	Slide 23: Word Embeddings
	Slide 24: Word Embeddings Dimensions
	Slide 25: Train an RNN Language Model
	Slide 26
	Slide 27
	Slide 28: Formulation: Language Modeling (LM)
	Slide 29: Language Modeling
	Slide 30: You use Language Models every day!
	Slide 31: n-gram Language Models
	Slide 32: n-gram Language Models
	Slide 33: n-gram Language Models: Example
	Slide 34: Major Challenges
	Slide 35: Generating text with a n-gram Language Model
	Slide 36: Generating text with a n-gram Language Model
	Slide 37: How to build a neural language model?
	Slide 38: A Fixed-window Neural Language Model
	Slide 39: A fixed-window neural Language Model
	Slide 40: Content
	Slide 41: History of Deep RNNs
	Slide 42: Recurrent Neural Networks (RNN) A family of neural architectures
	Slide 43: A Simple RNN Language Model
	Slide 44: RNN Language Models
	Slide 45: Training an RNN Language Model
	Slide 46: Training an RNN Language Model
	Slide 47: Training an RNN Language Model
	Slide 48: Training an RNN Language Model
	Slide 49: Training an RNN Language Model
	Slide 50: Training an RNN Language Model
	Slide 51: Dimensions and Parameters
	Slide 52: Training Challenges
	Slide 53: Backpropagation for RNNs
	Slide 54: Backpropagation for RNNs
	Slide 55: Generating roll outs
	Slide 56: Train an RNN Language Model
	Slide 57
	Slide 58
	Slide 59: Outputs
	Slide 60: Evaluating Language Models
	Slide 61: RNNs greatly improved perplexity
	Slide 62
	Slide 63
	Slide 64: Speech Recognition
	Slide 65: Example: Classifying Names
	Slide 66: Example: Classifying Names
	Slide 67: Content
	Slide 68
	Slide 69: Vanishing gradient intuition
	Slide 70: Vanishing gradient intuition
	Slide 71: Vanishing gradient intuition
	Slide 72: Why is vanishing gradient a problem?
	Slide 73: Effect of vanishing gradient on RNN-LM
	Slide 74: Why is exploding gradient a problem?
	Slide 75: Gradient clipping
	Slide 76: How to fix the vanishing gradient problem?
	Slide 77: Content
	Slide 78: LSTMs: Apple WWDC Keynote 2016
	Slide 79: Long Short-Term Memory RNNs (LSTMs)
	Slide 80: LSTMs: real-world success
	Slide 81: Long Short-Term Memory RNNs (LSTMs)
	Slide 82: Long Short-Term Memory (LSTM)
	Slide 83
	Slide 84: Long Short-Term Memory (LSTM)
	Slide 85: Preserving Long-Term Dependencies
	Slide 86: Common Problems
	Slide 87: Code: Classifying Names with a LSTM
	Slide 88: Bidirectional and Multi-layer RNNs
	Slide 89: Bidirectional RNNs
	Slide 90: Bidirectional RNNs
	Slide 91: Pros and Cons of Bidirectional RNNs
	Slide 92: Bidirectional RNNs
	Slide 93: Code: Bidirectional RNNs
	Slide 94: Stacked RNNs
	Slide 95: Three-layer RNNs
	Slide 96: Multi-layer RNNs in practice
	Slide 97: Code: Muti-layer Bidirectional RNNs
	Slide 98: GRU (Gate Recurrent Unit)
	Slide 99
	Slide 100: Classifying Names with a Character-Level GRU
	Slide 101: Content
	Slide 102: Functional Effects of Noncoding Variants
	Slide 103: Deep Learning-based Sequence Analyzer
	Slide 104: Performance and Sensitivity
	Slide 105: DanQ
	Slide 106: Performance and Sensitivity
	Slide 107
	Slide 108: How to succeed in this course?

