
Bios 740- Chapter 4.. Sequence Modeling: 

RNNs, LSTM, and GRU

Acknowledgement: Thanks to Mr. Shuai Huang for preparing some of

the slides! I copied some pictures from the lecture presentations of

StanfordCS224n. I also use some materials generated by chapgpt.



Content

1 Introduction to Language Modeling

2 Introduction to Recurrent Neural Networks (RNNs)

3 Problems with RNNs

4 LSTM and GRU

0 Motivation to Sequence Modeling

5 Genomic Sequence Analysis



Content

1 Introduction to Language Modeling

2 Introduction to Recurrent Neural Networks (RNNs)

3 Problems with RNNs

4 Extensions of RNNs 

0 Motivation to Sequence Modeling

5 Genomic Sequence Analysis



Recurrent Neural Networks (RNNs) are motivated by their ability to address challenges inherent in sequential data. 

Weather 
forecasting

Stock market 
trends

Autocomplete 
for texting

Genetic 
sequencing

Speech 
recognition

Video frame 
prediction

Music 
composition

…

Motivation

Many real-world datasets are inherently sequential, where the order of data points is crucial. 

❖ Time series: Stock prices, weather forecasts, and sensor data require capturing patterns over time.

❖ Text: The meaning of a sentence depends on word order (``The cat chased the dog'' vs. ``The dog chased the cat'').

❖ Speech: Phonemes and intonation must be processed sequentially to understand spoken language.

❖ Video: Frames in a video sequence have temporal relationships that determine the flow of events. 



Examples: 

• Letters (words)

• Words (sentences)

• Sentences (documents)

• Frames (video)

• Amino-acids (genetic code)

• fMRI/ECG signals

Sequences

Why Are Sequences Important?
Unlike independent data points, sequences contain temporal or contextual dependencies:

• Future values depend on past values (e.g., predicting tomorrow’s weather).

• Words in a sentence rely on context (e.g., in "bank deposit" vs. "river bank").

• Biological sequences determine genetic functions.

A sequence is an ordered list of elements, where the order of the elements

matters. They are fundamentally different from unordered data because each

element is dependent or influenced by the previous elements.

e.g., "ACGTAGCTAGT" represents a biological sequence.

e.g., A security camera capturing a person walking.

"Hello, how are you?" (chatbot input).



Challenges in modeling sequential data

▪ Infinite number of possible sequences:

❖ Sequences can vary in length (short vs. long sequences).

❖ Sequences can have variable patterns (e.g., DNA sequences, language models).

❖ Order matters, meaning different orders of the same elements can have different meanings.

▪ Need for Probability Distributions Over Sequences: 

➢ Since an infinite number of sequences exist, we cannot store all possible sequences explicitly.

➢ Instead, we model a probabilistic function that assigns a likelihood to each possible sequence.

➢ Example: Given a sequence S=(x1,x2,...,xT), we want to learn a probability distribution P(S). 

Sequences

RNNs are designed for modeling sequences

• Sequences of any length in the input, in the output, or in both

• They can remember past information

• Apply the same weights on each step



Different Categories of Sequence Modeling

Source: https://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sentiment Analysis and Video Analytics 

Sentiment Analysis is a NLP technique used to determine the 

emotional tone of a given text. It helps identify whether the 

sentiment of the text is positive, negative, or neutral. Video analytics enable machines to recognize 

actions, objects, and scenes in videos.
https://imerit.net/blog/using-neural-networks-for-video-classification-blog-all-pbm/

https://www.gosmar.eu/machinelearning/2020/08/23/recurrent-neural-networks-for-sentiment-analysis/



Machine Translation
Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a 

sentence y in another language (the target language).

Goal: Produce translations that are both fluent and faithful to the meaning of the source text.

Applications: Global communication, localization cross-lingual information retrieval, etc.

x: L'homme est né libre, et partout il est dans les fers

y:
English:

Man is born free, but everywhere he is in chains
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Chinese:

“人生而自由，但无处不在被枷锁束缚。”

Japanese:

「人間は自由に生まれるが、どこにいても鎖に縛られてい
る。」



The early history of MT: 1950s

Rule-Based MT: Early

systems used manually-

crafted rules and

bilingual dictionaries.

StanfordCS224n



1990s-2010s: Statistical Machine Translation
Core idea: Utilized probabilistic models (e.g., IBM Models) and phrase-based translation. Relied on large 

parallel corpora to learn translation probabilities

• Suppose we’re translating French → English.

• We want to find best English sentence y, given French sentence x

• Use Bayes Rule to break this down into two components to be learned separately:

Translation Model

Models how words and phrases 
should be translated (fidelity).

Learned from parallel data.

Language Model

Models how to write 
good English (fluency).

Learned from monolingual data.

.

StanfordCS224n



Not trivial to model!

1519年600名西班牙人在墨西哥登陆，去征服几百万人口

的阿兹特克帝国，初次交锋他们损兵三分之二。
In 1519, six hundred Spaniards landed in Mexico to conquer the Aztec Empire with a 
population of a few million. They lost two thirds of their soldiers in the first clash.

translate.google.com (2009): 1519 600 Spaniards landed in Mexico, millions of people to 
conquer the Aztec empire, the first two-thirds of soldiers against their loss. 
translate.google.com (2013): 1519 600 Spaniards landed in Mexico to conquer the Aztec
empire, hundreds of millions of people, the initial confrontation loss of soldiers two-thirds.

translate.google.com (2015): 1519 600 Spaniards landed in Mexico, millions of people to 
conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash. StanfordCS224n



1990s–2010s: Statistical Machine Translation
SMT was once a huge research field aimed at automatically translating text between languages. It relied on 

probabilistic models and large parallel corpora to learn translation patterns.

Despite its success in the past, SMT required extensive manual design and engineering.  The best SMT systems were 

extremely complex, involving hundreds of important details. Systems were built from many separately-designed 

subcomponents, each addressing a specific aspect of translation. Every component was carefully engineered to optimize 

the overall translation quality.

SMT required extensive feature engineering to capture specific language phenomena:  Designing features to model 

syntax, semantics, and context.  Crafting features to capture idiomatic expressions and local linguistic patterns.  Each 

feature was manually designed, tested, and fine-tuned. This process was both time-consuming and highly dependent on 

expert knowledge.

SMT systems often required compiling and maintaining extra resources: Tables of equivalent phrases, bilingual 

dictionaries, and syntactic rules.  Language-specific resources had to be built and maintained. A large amount of human 

effort was needed to manage these resources.  The process had to be repeated for each language pair, making it labor-

intensive and costly.



2014

1
4

(dramatic reenactment)
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NMT: the first big success story

• This was amazing!

• SMT systems, built by hundreds of engineers over many years, were outperformed by NMT systems trained by 

small groups of engineers in a few months

Neural Machine Translation (NMT): Uses deep learning and end-to-end training to model translation and 

offers improved fluency and the ability to capture complex dependencies. 

Neural Machine Translation went from a fringe research attempt in 2014 to the leading standard method in 2016

• 2014: First seq2seq paper published [Sutskever et al. 2014]

• 2016: Google Translate switches from SMT to NMT – and by 2018 everyone had

• https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

StanfordCS224n

http://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html


Deepseek v.s. OpenAI

Modern NLP Systems

https://huggingface.co/blog/large-language-models

https://ai.plainenglish.io/deepseek-r1-vs-chatgpt-01-my-experience-ddbe09e80aa9



Challenges
• Standard NN models (MLPs, CNNs) are not able to handle sequences of data

❖ They accept a fixed-sized vector as input and produce a fixed-sized vector as output.

❖ The weights are updated independently, meaning there is no memory of past computations.

❖ The models do not have recurrence, so they cannot learn patterns across time steps.

• Many real-world problems require capturing context over time:
❖ Speech Recognition – Words depend on previous words.

❖ Time-series Prediction – Future values depend on past observations.

❖ DNA Sequencing – Genetic patterns unfold over long sequences.

❖ Natural Language Processing (NLP) – Meaning depends on word order.

• Example: Simple Context-Dependent Problem: Output YES if the number of 1s in the sequence is 

even; otherwise, output NO.

• Input: 1000010101 → YES; Input: 100011 → NO



Challenges

High Dimensionality and Complexity - Sequential data often involves high-dimensional inputs with complex 

interdependencies: 

❖ Text: Words and phrases have semantic and syntactic relationships across sentences. 

❖ Time Series: Multivariate time series data (e.g., temperature, humidity, and pressure) exhibit interdependencies 

between variables over time. 

❖ Biological Data: DNA sequences and protein structures involve intricate, sequential patterns.  

Solution: RNNs address this by learning hierarchical representations through their recurrent structure, encoding both 

local and global patterns. 

Noise and Missing Data - Sequential data often contains noise or missing values:  

➢ Noise: Sensor readings and time series data may have irregularities or anomalies. 

➢ Missing values: Gaps in sequences arise from interruptions in data collection.  

Solution: RNNs aggregate information over time, making them robust to noise and capable of interpolating missing 

values using contextual information.



Challenges

Temporal Dependencies
❖ Short-term dependencies: In text, the current word depends on immediately preceding words (e.g., ``I want to eat 

a...’’). 
❖ Long-term dependencies: Distant elements in the sequence can influence the current state (e.g., in a paragraph, the 

topic sentence affects subsequent sentences). 
Solution: RNNs maintain memory through hidden states, enabling them to model temporal dependencies. Variants like 
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) address challenges such as vanishing gradients, 
allowing effective modeling of long-term dependencies. 

Variable-Length Inputs and Outputs - Many real-world tasks involve sequences of varying lengths, which 

traditional models struggle to handle. RNNs process inputs dynamically, making them ideal for tasks with variable-

length data. 

Examples: 

❖ Natural Language Processing (NLP): Sentences have varying word counts, and RNNs can process each word 

without requiring fixed input dimensions. 

❖ Speech Recognition: Audio recordings vary in duration depending on the speaker or content. 

❖ Time Series: Data collected over irregular time intervals often results in sequences of differing lengths. 
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Large Language Models 

https://dataforest.ai/blog/large-language-models-advanced-communication



Text Processing for RNN



Word Embeddings
Word embeddings are a fundamental technique in NLP. They

convert words into dense, continuous vector representations. Word

embeddings place similar words closer in vector space. Unlike

traditional one-hot encoding, embeddings preserve:

❖ Semantic relationships between words. 

❖ Contextual meaning of words in sentences. 

❖ Word similarity and analogies. 

Types of Word Embeddings
➢ Frequency-Based Methods 

▪ TF-IDF (Term Frequency-Inverse Document Frequency)

▪ LSA (Latent Semantic Analysis)

➢ Prediction-Based Methods (Neural Networks)

✓ Word2Vec (CBOW & Skip-gram)

✓ GloVe (Global Vectors for Word Representation)

✓ FastText (Subword Embeddings)

✓ Transformer-Based (BERT, GPT)



Word Embeddings Dimensions 
Word 

Embeddings
Dimensio

n Key Features

Word2Vec 50-300 
Trained on large corpora like Google 

News 

GloVe 50-300 Uses word co-occurrence statistics

FastText 50-300 Handles subword information 

ELMo 1024
Contextual embeddings from 
bidirectional LSTMs

BERT (base) 768 Transformer-based, context-aware

BERT (large) 1024 More parameters than BERT base

GPT-2 (small) 768 Transformer-based generative model 

GPT-2 (medium) 1024 More layers and parameters

GPT-3 12288 High-dimensional transformer model 

from transformers import BertTokenizer, BertModel

import torch

# Load BERT model

tokenizer = BertTokenizer.from_pretrained("bert-base-
uncased")

model = BertModel.from_pretrained("bert-base-uncased")

# Tokenize and get embedding

text = "Hello world"
tokens = tokenizer(text, return_tensors="pt")

with torch.no_grad():

output = model(**tokens)

print("BERT Embedding Dimension:", 
output.last_hidden_state.shape[-1])

For small models or mobile applications → 

Use 50-300 dimensions (Word2Vec, GloVe).

For NLP applications with context-

awareness → Use 512-1024 dimensions (BERT, 

ELMo).

For large-scale generative AI → 

Use 1024+ dimensions (GPT-3, Transformers).



Train an RNN Language Model

25

Obama “I stand here today humbled by the task before us,
grateful for the trust you have bestowed, mindful of the
sacrifices borne by our ancestors. I thank President Bush for his
service to our nation, as well as the generosity and cooperation
he has shown throughout this transition. Forty-four Americans
have now taken the presidential oath. The words have been
spoken during rising tides of prosperity and the still waters of
peace. Yet, every so often the oath is taken amidst gathering
clouds and raging storms. At these moments, America has
carried on not simply because of the skill or vision of those in
high office, but because We the People have remained faithful
to the ideals of our forbearers, and true to our founding
documents. “

Task 1: How to import this paragraph for training the language 

model?
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import re

import torch

import torch.nn as nn

import torch.optim as optim

import matplotlib.pyplot as plt

from gensim.models import Word2Vec

import numpy as np

import random

# For reproducibility

torch.manual_seed(42)

np.random.seed(42)

random.seed(42)

# ===============================

# 1. Define and Preprocess the Text

# ===============================

text = (

"I stand here today humbled by the task before us, grateful 

for the trust you have bestowed, "

"mindful of the sacrifices borne by our ancestors. I thank 

President Bush for his service to our nation, "

"as well as the generosity and cooperation he has shown 

throughout this transition.\n\n"

"Forty-four Americans have now taken the presidential oath. 

The words have been spoken during rising tides "

"of prosperity and the still waters of peace. Yet, every so 

often the oath is taken amidst gathering clouds "

"and raging storms. At these moments, America has carried on 

not simply because of the skill or vision of "

"those in high office, but because We the People have 

remained faithful to the ideals of our forbearers, and "

"true to our founding documents."

)

print("\n--- Original Text ---\n")

print(text)

# Split the text into sentences using a simple regex

sentences = re.split(r'(?<=[.!?])\s+', text.strip())

print("\n--- Split Sentences ---")

for i, s in enumerate(sentences):

print(f"Sentence {i+1}: {s}")

def tokenize(text):

# Convert to lowercase and split using regex for word 

boundaries

return re.findall(r'\b\w+\b', text.lower())

# Tokenize each sentence

tokenized_sentences = [tokenize(sentence) for sentence in

sentences]

print("\n--- Tokenized Sentences ---")

for i, tokens in enumerate(tokenized_sentences):

print(f"Sentence {i+1} Tokens: {tokens}")

# Build vocabulary (set of unique words)

vocab = sorted(set(word for sentence in tokenized_sentences

for word in sentence))

word_to_idx = {word: idx for idx, word in enumerate(vocab)}

idx_to_word = {idx: word for word, idx in word_to_idx.items()}

vocab_size = len(vocab)

print("\n--- Vocabulary ---")

print(word_to_idx)

print(f"Vocabulary Size: {vocab_size}")



# ===============================

# 2. Train Word2Vec and Build Embedding Matrix

# ===============================

embedding_dim = 100

w2v_model = Word2Vec(sentences=tokenized_sentences, 

vector_size=embedding_dim, window=5, min_count=1, workers=4)

# Build the embedding matrix (vocab_size x embedding_dim)

embedding_matrix = torch.zeros(vocab_size, embedding_dim)

for word, idx in word_to_idx.items():

embedding_vector = w2v_model.wv[word]

if embedding_vector is not None:

embedding_matrix[idx] = torch.tensor(embedding_vector)

# ===============================

# 3. Prepare Input and Target Sequences for Language Modeling

# ===============================

# For language modeling, we treat the text as one continuous 

sequence.

indices = [word_to_idx[word] for sentence in

tokenized_sentences for word in sentence]

# Create input sequence and target sequence.

# The target is the next word (shifted by one position). The 

last target is omitted.

input_indices = indices[:-1] # all except last

target_indices = indices[1:] # all except first

# Convert to PyTorch tensors. We use batch_size = 1 for 

simplicity.

input_seq = torch.tensor([input_indices], dtype=torch.long) # 

Shape: (1, seq_len)

target_seq = torch.tensor([target_indices], dtype=torch.long) 

# Shape: (1, seq_len)

27

Sentence 1: I stand here today humbled by the task before us, 

grateful for the trust you have bestowed, mindful of the 

sacrifices borne by our ancestors.  

--- Sentence 1 Tokens: ['i', 'stand', 'here', 'today', 

'humbled', 'by', 'the', 'task', 'before', 'us', 'grateful', 

'for', 'the', 'trust', 'you', 'have', 'bestowed', 'mindful', 

'of', 'the', 'sacrifices', 'borne', 'by', 'our', 'ancestors’]  

--- Vocabulary --- {'america': 0, 'americans': 1, 'amidst': 2, 

'ancestors': 3, 'and': 4, 'as': 5, 'at': 6, 'because': 7, 

'been': 8, 'before': 9, 'bestowed': 10, 'borne': 11, 'bush': 

12, 'but': 13, . . .  'we': 88, 'well': 89, 'words': 90, 

'yet': 91, 'you': 92}

Vocabulary Size: 93 

--- Training Word2Vec Model --- Word2Vec training completed. -

-- Embedding Matrix ---

Embedding Matrix Shape: torch.Size([93, 100]) Sample 

Embeddings: america: tensor([-0.0081, -0.0009, 0.0064, 0.0087, 

-0.0050])... americans: tensor([ 0.0010, 0.0086, -0.0040, 

0.0030, 0.0032])... amidst: tensor([-0.0065, 0.0073, 0.0061, -

0.0049, -0.0017

--- Token Indices --- [37, 68, 33, 81, 36, 14, 74, 72, 9, 85, 

29, 22, 74, 84, 92, 31, 10, 41, 47, 74, 61, 11, 14, 52, 3, 37, 

73, 55, 12, 22, 35, 62, 80, 52, 43, 5, 89, 5, 74, 28, 4, 17, 

32, 30, 63, 78, 76, 82, 24, 26, 1, 31, 45, 71, 74, 56, 46, 74, 

90, 31, 8, 67, 19, 60, 79, 47, 57, 4, 74, 69, 87, 47, 53, 91, 

20, 66, 49, 74, 46, 40, 71, 2, 27, 16, 4, 58, 70, 6, 75, 42, 

0, 30, 15, 50, 44, 64, 7, 47, 74, 65, 51, 86, 47, 77, 39, 34, 

48, 13, 7, 88, 74, 54, 31, 59, 21, 80, 74, 38, 47, 52, 23, 4, 

83, 80, 52, 25, 18] --- Input and Target Indices --- Input 

Indices (first 20): [37, 68, 33, 81, 36, 14, 74, 72, 9, 85, 

29, 22, 74, 84, 92, 31, 10, 41, 47, 74] Target Indices (first 

20): [68, 33, 81, 36, 14, 74, 72, 9, 85, 29, 22, 74, 84, 92, 

31, 10, 41, 47, 74, 61] Input Sequence Shape: torch.Size([1, 

126]) Target Sequence Shape: torch.Size([1, 126])



More formally: given a sequence of words

compute the probability distribution of the next word

,
:

where can be any word in the vocabulary

Formulation: Language Modeling (LM)

A language model (LM) is a statistical or machine learning model 

that predicts the next word in a sequence or assigns

probabilities to sequences of words. 
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the students opened their 

Books

Laptops

Lunch Boxes

Exams

Example:

➢ Input: "I am going to the"

➢ Model prediction: "store" (80%), "beach" (15%), "moon" (5%)

➢ The model assigns probabilities and selects the most likely next word.

Predicts the likelihood of a sequence of words

Generates human-like text (e.g., GPT models)

Understands context and meaning

Enables AI systems to process and generate natural language



Language Modeling

• You can also think of a Language Model as a system that assigns a probability 
to a piece of text

• For example, if we have some text , then the probability of this text 
(according to the Language Model) is:

This is what our LM provides

29
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You use Language Models every day!

30
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n-gram Language Models

31

the students opened their 

❑ Question: How to learn an n-gram Language Model during the pre-DL period?

❑ Answer: An n-gram is a sequence of n consecutive words from a text. The larger the n, the more context 

the model considers when making predictions.

❑ Definition: An n-gram is a chunk of n consecutive words.

• unigrams: “the”, “students”, “opened”, ”their”

• bigrams: “the students”, “students opened”, “opened their”

• trigrams: “the students opened”, “students opened their”

• four-grams: “the students opened their”

❖ Idea:
• Collect statistics on how frequently different n-grams appear in a corpus.

• The probability of the next word is estimated using the previous (n-1) words.

StanfordCS224n



n-gram Language Models

• Question: How do we get these n-gram and (n-1)-gram probabilities?

• Answer: By counting them in some large corpus of text!

(statistical approximation)

(definition of 
conditional prob)

• Under the Markov assumption: 𝑥(t+ 1) depends only on the preceding n-1 words

n-1 words

(assumption)

32

prob of a n-gram

prob of a (n-1)-gram

StanfordCS224n



n-gram Language Models: Example
Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their 
discard

condition on this

For example, suppose that in the corpus:

• “students opened their” occurred 1000 times

• “students opened their books” occurred 400 times

• ➔ P(books | students opened their) = 0.4

• “students opened their exams” occurred 100 times

• ➔ P(exams | students opened their) = 0.1

Should we have discarded 
the “proctor” context?

33
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Major Challenges

Increasing n makes 

sparsity problems worse.

Typically, we can’t have n 

bigger than 5.

Problem: What if “students opened 

their” never occurred in data? Then we 

can’t calculate probability for any 𝑤!

MC2

Problem: What if “students 

opened their 𝑤” never 

occurred in data? Then 𝑤 has 

probability 0!

MC1

(Partial) Solution: Add small 𝛿 to 

the count for every 𝑤 ∈ 𝑉. This is 

called smoothing.

(Partial) Solution: Just condition on 

“opened their” instead.

This is called backoff.

34

Storage: Need to store count 

for all n-grams you saw in the 

corpus. Increasing n or

increasing corpus increases

model size!

MC3

MC4

Data Sparsity – Rare n-grams may not appear frequently in training data.

Fixed Context Window – Cannot capture long-range dependencies beyond n words.

Poor Generalization – Cannot understand unseen word sequences.



Generating text with a n-gram Language Model
You can also use a Language Model to generate text

condition on 

this

company 0.153
bank 0.153
price 0.077

italian 0.039
emirate 0.039

…

get probability 
distribution

sample

35

today the today the price 

of 0.308
for 
it 
to 
is

0.050
0.046

0.046
0.031
…

condition on 

this

get probability 
distribution

sample

the 
18
oil

its 
gold

0.072
0.043
0.043
0.036
0.018
…

today the price 

condition on 

this

get probability 
distribution

sample

StanfordCS224n



Generating text with a n-gram Language Model

36

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe 
lasts and shoe industry , the bank intervened just after it 
considered and rejected an imf demand to rebuild depleted 
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than 
three words at a time if we want to model language well.

But increasing n worsens sparsity problem, 
and increases model size… StanfordCS224n



How to build a neural language model?
• Recall the Language Modeling task:

• Input: sequence of words

• Output: prob. dist. of the next word

• How about a window-based neural model?

• We saw this applied to Named Entity Recognition (NER):

in Paris are amazingmuseums

37

NER is a fundamental NLP task that involves identifying and classifying specific entities in a given text into 

predefined categories such as names of people, organizations, locations, dates, monetary values, and more.

Location

StanfordCS224n



A Fixed-window Neural Language Model

the students opened their

books
laptops

Concatenated Word Embeddings

Words /One-hot vectors

Hidden Layer

a zoo

Output Distribution

38
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A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:

• No sparsity problem

• Don’t need to store all observed n-grams

39

Remaining problems:

• Fixed window is too small

• Enlarging window enlarges 𝑊
• Window can never be large enough!

• 𝑥 (1 )  and 𝑥(2) are multiplied by completely 

different weights in 𝑊. No symmetry in how 

the inputs are processed.

We need a neural architecture 

that can process any length input

Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

StanfordCS224n
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History of Deep RNNs
The Rise of Deep RNNs (2010s - Present)

RNNs in NLP and AI
•2013 – Google used LSTM for speech recognition.

•2014 – Seq2Seq Models (Sutskever et al.) used LSTMs for machine translation.

•2015 – Google Translate adopted LSTMs for neural machine translation (NMT).

Attention and Transformers Change the Game
•2015 – Bahdanau et al. introduced Attention Mechanisms, improving Seq2Seq models.

•2017 – Vaswani et al. introduced Transformers, replacing RNNs with a more parallelizable model.

Key Concept:
Transformers like BERT (2018), GPT-3 (2020), and ChatGPT (2022) outperformed RNNs, leading to their decline in NLP.

StanfordCS224n



Recurrent Neural Networks (RNN)
A family of neural architectures

hidden 

states

input sequence 
(any length)

…

…

…

Core idea: Apply the same 
weights 𝑊 repeatedly

outputs 
(optional)

42

nn.RNN(input_size, hidden_size, num_layers, batch_first=True)

StanfordCS224n



A Simple RNN Language Model

the students opened their
words / one-hot vectors

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could be much 
longer now!

hidden states

is the initial hidden state

StanfordCS224n



RNN Language Models

the students opened their

books
laptops

a zoo

RNN Advantages:

• Can process any length input

• Computation for step t can (in

theory) use information from many 

steps back

• Model size doesn’t increase for longer 

input context

• Same weights applied on every

timestep, so there is symmetry in how 

inputs are processed.

RNN Disadvantages:

• Recurrent computation is slow

• In practice, difficult to access 

information from many steps back
More on 
these later

44
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Training an RNN Language Model

❖ Prepare the dataset (tokenize text into words) and convert words to numerical tensors (word embeddings).

for every step t.

❖ Loss function on step t is cross-entropy loss between predicted probability distribution

and the true next word (one-hot for ):

❖ Average this to get the overall loss for entire training set:

45

❖ Build an RNN-LM and compute output distribution
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= negative log prob 
of “students”

Loss

Predicted 
prob dists

…

Corpus the students opened their exams …

46

Training an RNN Language Model
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Loss

Predicted 
prob dists

…

= negative log prob 
of “opened”

Corpus the students opened their exams …

47

Training an RNN Language Model
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Loss

Predicted 
prob dists

…

= negative log prob 
of “their”

Corpus the students opened their exams …

48

Training an RNN Language Model
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Loss

Predicted 
prob dists

…

= negative log prob 
of “exams”

Corpus the students opened their exams …

49

Training an RNN Language Model
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+ + + + … =

…

Loss

Predicted 
prob dists

“Teacher forcing”

Corpus the students opened their exams …

50

Training an RNN Language Model

Embedding Layer

RNN Layer

FC Layer

StanfordCS224n



Dimensions and Parameters
Input dimension (D): Size of each input vector (e.g., 100 for Word2Vec embeddings).

Hidden dimension (H): Size of the hidden state vector (e.g., 64).

Batch size (B): Number of sequences processed in parallel.

Sequence length (S): Number of time steps (tokens) per sequence.

Output dimension (V): For example, vocabulary size in language modeling or the number of classes in classification.



• Memory Constraints: Storing all word embeddings, gradients, and activations requires enormous memory. 

• Computational Cost: Performing backpropagation over the entire dataset in a single step is impractical.

• Batching is Required: Instead of processing all data at once, models use mini-batches to update weights 

efficiently.

52

Training Challenges

Challenges Solution

Too much memory usage Mini-batch training

Long sequences overflow 
memory

Truncated BPTT (TBPTT)

Exploding gradients Gradient clipping

Slow training
Efficient batching and 

parallelization

Truncate the sequence into smaller sub-sequences 

(e.g., 20 time steps at a time).

Divide the entire dataset into mini-batches

(e.g., batch size = 32).

Clip gradients to a maximum norm (e.g., 5).



Backpropagation for RNNs

……

Question: What’s the derivative of w.r.t. the repeated weight matrix ?

Answer:
“The gradient w.r.t. a repeated weight 

is the sum of the gradient
w.r.t. each time it appears”

53

Why?
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Backpropagation for RNNs

43

……

Question: How do we calculate this?

Answer: Backpropagate over timesteps
i = t, … ,0, summing gradients as you go. 
This algorithm is called “backpropagation 
through time” [Werbos, P.G., 1988, Neural 
Networks 1, and others]

Apply the multivariable chain rule:
= 1

In practice, often 
“truncated” after ~20 
timesteps for training 
efficiency reasons

StanfordCS224n



Generating roll outs
Just like an n-gram Language Model, you can use a RNN Language Model to 

generate text by repeated sampling. Sampled output becomes next step’s input.

<s> my favorite season

my

sample

favorite

sample

season

sample

is

sample

is
44

spring

sample

spring

</s>

sample
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Train an RNN Language Model

56

Obama “I stand here today humbled by the task before us,
grateful for the trust you have bestowed, mindful of the
sacrifices borne by our ancestors. I thank President Bush for his
service to our nation, as well as the generosity and cooperation
he has shown throughout this transition. Forty-four Americans
have now taken the presidential oath. The words have been
spoken during rising tides of prosperity and the still waters of
peace. Yet, every so often the oath is taken amidst gathering
clouds and raging storms. At these moments, America has
carried on not simply because of the skill or vision of those in
high office, but because We the People have remained faithful
to the ideals of our forbearers, and true to our founding
documents. “

Tasks 2 & 3: How to train an RNN-LM on this paragraph and 

then generate text in that style?
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# ===============================

# 4. Define the RNN Language Model in PyTorch

# ===============================

class RNNLanguageModel(nn.Module):

def __init__(self, vocab_size, embedding_dim, hidden_size, 

num_layers, embedding_matrix):

super(RNNLanguageModel, self).__init__()

self.embedding = nn.Embedding(num_embeddings=vocab_size, 

embedding_dim=embedding_dim)

self.embedding.weight.data.copy_(embedding_matrix)

# Optionally freeze the embeddings if desired:

# self.embedding.weight.requires_grad = False

self.rnn = nn.RNN(input_size=embedding_dim, 

hidden_size=hidden_size, num_layers=num_layers,

nonlinearity='tanh', batch_first=True)

# Fully connected layer to map hidden state to vocabulary 

logits

self.fc = nn.Linear(hidden_size, vocab_size)

def forward(self, x, h0):

# x: (batch_size, seq_len)

x_embed = self.embedding(x) # (batch_size, seq_len, 

embedding_dim)

out, hn = self.rnn(x_embed, h0) # out: (batch_size, seq_len, 

hidden_size)

logits = self.fc(out) # (batch_size, seq_len, vocab_size)

return logits, hn

hidden_size = 64

num_layers = 1

model = RNNLanguageModel(vocab_size, embedding_dim, 

hidden_size, num_layers, embedding_matrix)

# ===============================

# 5. Define Loss Function, Optimizer, and a Learning Rate 

Scheduler

# ===============================

criterion = nn.CrossEntropyLoss() # for next-word prediction

optimizer = optim.Adam(model.parameters(), lr=0.01)

scheduler = optim.lr_scheduler.StepLR(optimizer, 

step_size=50, gamma=0.5)

# ===============================

# 6. Training (Fitting) Process

# ===============================

num_epochs = 200

model.train()

loss_history = []

batch_size, seq_len = input_seq.shape

for epoch in range(1, num_epochs + 1):

h0 = torch.zeros(num_layers, batch_size, hidden_size)

optimizer.zero_grad()

# Forward pass: get logits over vocabulary

logits, hn = model(input_seq, h0)

# logits shape: (1, seq_len, vocab_size)

# Reshape logits and target for loss computation

logits = logits.view(-1, vocab_size) # shape: 

(batch_size*seq_len, vocab_size)

targets = target_seq.view(-1) # shape: (batch_size*seq_len)

loss = criterion(logits, targets)

loss.backward()

optimizer.step()

scheduler.step() # update learning rate

loss_history.append(loss.item())

print("\n--- Training Completed ---")
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# ===============================

# 7. Text Generation Based on the Trained Model

# ===============================

def generate_text(model, seed_text, length, word_to_idx, 

idx_to_word, hidden_size, num_layers):

model.eval()

seed_tokens = tokenize(seed_text)

seed_indices = [word_to_idx.get(word, 0) for word in

seed_tokens] # default to 0 if not found

input_seq = torch.tensor([seed_indices], dtype=torch.long)

h = torch.zeros(num_layers, 1, hidden_size)

generated_indices = seed_indices.copy()

# Generate tokens one by one

for _ in range(length):

logits, h = model(input_seq, h)

last_logits = logits[:, -1, :]

next_token = last_logits.argmax(dim=1).item()

generated_indices.append(next_token)

# Prepare input for next iteration: the newly generated token 

becomes the next input.

input_seq = torch.tensor([[next_token]], dtype=torch.long)

generated_words = [idx_to_word[idx] for idx in

generated_indices]

return " ".join(generated_words)

# Generate text from a seed

seed_text = "Obama"

generated_text = generate_text(model, seed_text, length=50, 

word_to_idx=word_to_idx,

idx_to_word=idx_to_word, hidden_size=hidden_size, 

num_layers=num_layers)

print("\n--- Generated Text ---")

print(generated_text)

--- RNN Language Model Architecture ---

RNNLanguageModel( (embedding): Embedding(93, 100) (rnn):

RNN(100, 64, batch_first=True) (fc): Linear(in_features=64,

out_features=93, bias=True) )

--- Loss Function and Optimizer ---

Loss Function: CrossEntropyLoss()

Optimizer: Adam ( Parameter Group 0 amsgrad: False betas:

(0.9, 0.999) capturable: False differentiable: False eps: 1e-

08 foreach: None fused: None initial_lr: 0.01 lr: 0.01

maximize: False weight_decay: 0 ) Scheduler:

<torch.optim.lr_scheduler.StepLR object at 0x7fc1615ae210>

--- Training Started ---

Epoch 1/200 | Loss: 4.5318 Epoch 20/200 | Loss: 0.5003 Epoch

40/200 | Loss: 0.0104 Epoch 60/200 | Loss: 0.0037 Epoch

80/200 | Loss: 0.0029 Epoch 100/200 | Loss: 0.0026 Epoch

120/200 | Loss: 0.0024 Epoch 140/200 | Loss: 0.0023 Epoch

160/200 | Loss: 0.0022 Epoch 180/200 | Loss: 0.0021 Epoch

200/200 | Loss: 0.0020

--- Training Completed ---



Outputs

48

--- Generated Text ---

america has carried on not simply because of the skill or vision of those in high office 

but because we the people have remained faithful to the ideals of our forbearers and 

true to our founding documents for the trust you have bestowed mindful of the 

sacrifices borne by our ancestors

- --- Generated Text ---
bush for his service to our nation as well as the generosity and cooperation he has 

shown throughout this transition forty four americans have now taken the presidential 

oath the words have been spoken during rising tides of prosperity and the still waters 

of peace yet every so often the oath



Evaluating Language Models

Perplexity: Measures how well a model predicts a sample.

BLEU, ROUGE, METEOR: Compare generated text to reference texts.

Accuracy and F1 Score: Used in tasks with classification elements.

Human Evaluation: Judges quality, fluency, and relevance.

Task-Specific Metrics: Tailored metrics for particular applications.

Lower perplexity is better!

60

Inverse probability of corpus, according to Language Model

Normalized by. 
number of words

Fluency: Is the generated text grammatically correct and natural?

Coherence: Does the text flow logically from one sentence to the next?

Relevance: How well does the generated text answer a prompt or capture key details?

Engagement and Creativity: Particularly important in creative writing or dialogue systems.



RNNs greatly improved perplexity

n-gram model

Increasingly 
complex RNNs

Perplexity improves 
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

61
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the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute 
sentence encoding?

62

Usually better: 
Take element-wise 
max or mean of all 

hidden states

Sentiment Classification

StanfordCS224n



Question Answering

Context: Ludwig 
van Beethoven was 
a German 
composer and 
pianist. A crucial 
figure …

Beethoven ?Question:  what nationality was

Here the RNN acts as an 
encoder for the Question (the 
hidden states represent the 
Question). The encoder is part 
of a larger neural system.

Answer: German

63
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Speech Recognition

what’s the

the weatherwhat’s

This is an example of a conditional language model.

Input (audio)

<START>

conditioning

64
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Example: Classifying Names

File: char_rnn_classification_tutorial.ipynb
This is from the official PyTorch tutorial: https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

import torch.nn as nn

import torch.nn.functional as F

class CharRNN(nn.Module):

def __init__(self, input_size, hidden_size, output_size):

super(CharRNN, self).__init__()

self.rnn = nn.RNN(input_size, hidden_size)

self.h2o = nn.Linear(hidden_size, output_size)

self.softmax = nn.LogSoftmax(dim=1)

def forward(self, line_tensor):

rnn_out, hidden = self.rnn(line_tensor)

output = self.h2o(hidden[0])

output = self.softmax(output)

return output

n_hidden = 128
rnn = CharRNN(n_letters, n_hidden, len(alldata.labels_uniq))
print(rnn)

This tutorial serves as an introduction

to sequence modeling with RNNs and

shows how character-level information

can be used for text classification.

❖ Input: A name (e.g., "Schmidt") is 

provided as a sequence of characters.

❖ Processing: Each character is converted 

into a numerical tensor (one-hot 

encoding or embeddings). The RNN 

processes the character sequence, 

updating its hidden state at each step.

❖ Output: The model predicts 

the nationality/language of the name 

(e.g., "German").

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html


Example: Classifying Names

File: char_rnn_classification_tutorial.ipynb
This is from the official PyTorch tutorial: https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

import random 

import numpy as np 

def train(rnn, training_data, n_epoch = 10, n_batch_size = 64, 

report_every = 50, learning_rate = 0.2, criterion = nn.NLLLoss()):

"""

Learn on a batch of training_data for a specified number of 

iterations and reporting thresholds

"""

# Keep track of losses for plotting

current_loss = 0

all_losses = []

rnn.train() 

optimizer = torch.optim.SGD(rnn.parameters(), lr=learning_rate)

start = time.time()

print(f"training on data set with n = {len(training_data)}")

for iter in range(1, n_epoch + 1): 

rnn.zero_grad() # clear the gradients 

batches = list(range(len(training_data)))

random.shuffle(batches)

batches = np.array_split(batches, len(batches) //n_batch_size )

for idx, batch in enumerate(batches): 

batch_loss = 0

for i in batch: #for each example in this batch

(label_tensor, text_tensor, label, text) = training_data[i]

output = rnn.forward(text_tensor)

loss = criterion(output, label_tensor)

batch_loss += loss

# optimize parameters

batch_loss.backward()

nn.utils.clip_grad_norm_(rnn.parameters(), 3)

optimizer.step()

optimizer.zero_grad()

current_loss += batch_loss.item() / len(batch)

all_losses.append(current_loss / len(batches) )

if iter % report_every == 0:

print(f"{iter} ({iter / n_epoch:.0%}): = {all_losses[-1]}")

current_loss = 0

return all_losses

all_losses = train(rnn, train_set, n_epoch=27, learning_rate=0.15)

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
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Vanishing gradient intuition

?

68

This decay makes it difficult for RNNs to learn long-term dependencies.

Empirical evidence shows rapid gradient norm decay.
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Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem: 
When these are small, the gradient 
signal gets smaller and smaller as it 

backpropagates further

69
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• Recall:

• What if were the identity function, ?

57

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

If Wh is “small”, then this term gets 
exponentially problematic as becomes large

(chain rule)

• Consider the gradient of the loss on step  , with respect 
to the hidden state on some previous step . Let

(chain rule)

(value of )

Vanishing gradient intuition

StanfordCS224n
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• What’s wrong with ?

• Consider if the eigenvalues of are all less than 1:

• We can write as a basis:

• What about nonlinear activations (i.e., what we use?)

• Pretty much the same thing, except the proof requires

for some dependent on dimensionality and

58

(eigenvectors) 

using the eigenvectors of

Approaches 0 as grows, so gradient vanishes

sufficient but
not necessary

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Vanishing gradient intuition

StanfordCS224n
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Why is vanishing gradient a problem?

➢ Short-Range vs. Long-Range: Imagine a long chain of dominos where each domino represents a layer or time step. If 

the force transferred from one domino to the next diminishes (say by a constant factor each time), then after a long chain, 

the force reaching the first domino becomes nearly zero. This means the first few dominos (or layers) barely "feel" the 

impact of the initial force (or error), and thus they do not adjust effectively based on long-term dependencies.

➢ Resulting Behavior: The model ends up "paying attention" only to the parts of the sequence that are immediately 

relevant (the nearby gradient signals) while ignoring distant context. This leads to challenges such as:

❖ Inability to learn relationships or dependencies that span many time steps.

❖ Poor performance on tasks that require integrating information over long sequences.

72



Effect of vanishing gradient on RNN-LM

73

• LM task: When she tried to print her tickets, she found that the printer was out of toner. 
She went to the stationery store to buy more toner. It was very overpriced. After 
installing the toner into the printer, she finally printed her 

Problem:
The training example requires the model to understand that the first occurrence of "tickets" should influence the final 

output. However, due to the vanishing gradient, the error signal indicating that "tickets" was the correct prediction does 

not effectively travel back to where it is needed.

Outcome:
The model primarily updates its weights based on more immediate context (such as the recent words about installing 

toner), and as a result, it struggles to predict long-range dependencies like the repeated "tickets" at the end.

Key Takeaway:
When gradients vanish over long sequences, the model learns only the short-term (local) dependencies and fails to capture 

the long-term (global) context required to accurately model relationships spanning many time steps.



Why is exploding gradient a problem?
➢ Big Gradients = Big Updates:

If the gradient becomes too large, then multiplying it by the learning rate yields an 

update step that is far too big. This can drastically change the model’s parameters in a 

single update, causing the model to jump to a region in parameter space where the 

loss is extremely high.

➢ Overshooting and Divergence:

The model may overshoot any potential minima and end up in a poor configuration—

figuratively, you might think you're following a path upward (finding a local 

minimum), but instead, you are suddenly in an entirely different and suboptimal 

region (like ending up in Iowa, far from your intended destination).

➢ Numerical Problems:

If updates are too extreme, you might encounter numerical issues like Inf or NaN

values, which can halt training and require you to restart from a safe checkpoint.

74
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Gradient clipping

62

• Gradient clipping: if the norm of the gradient is greater than some threshold, scale it 
down before applying SGD update

Stability:

With gradient clipping, you are less likely to encounter the situation where your network's parameters become so large 

that they result in numerical overflow (Inf or NaN values), which would require you to restart training.

Convergence:

Although exploding gradients can disrupt convergence, clipping helps maintain a controlled learning process where the 

update steps are kept within a safe range, thereby supporting steady convergence.

Focus on Other Challenges:

Since exploding gradients can be managed relatively easily through clipping, you can often shift your focus to more 

challenging issues like vanishing gradients or designing architectures that capture long-term dependencies.

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf


How to fix the vanishing gradient problem?

➢ Gated Architectures:
LSTM and GRU models include gates that help regulate the flow of information and gradients over long time 

sequences, mitigating the vanishing gradient problem.

➢ Activation Functions:
ReLU and similar activations help reduce the saturation effect (common in sigmoid or tanh⁡tanh), which can 

cause gradients to vanish.

➢ Normalization Techniques:
Batch or layer normalization helps to standardize activations and gradients, ensuring that they remain within 

a reasonable range.

➢ Residual Connections:
Adding skip connections enables gradients to flow directly from later layers to earlier layers, bypassing some 

of the multiplicative effects that cause vanishing.

➢ Weight Initialization:
Using initialization strategies like Xavier or He initialization keeps the scale of the activations and gradients 

more controlled.
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LSTMs: Apple WWDC Keynote 2016

Apple WWDC 2016: Apple is tentatively dipping its toe into the AI waters with technologies that can analyze your 
photos for faces and context - all done locally - and by applying LSTM deep learning technologies to Messaging.

StanfordCS224n



Long Short-Term Memory RNNs (LSTMs)
➢ The original proposal by Hochreiter and Schmidhuber in 1997 as a solution to the vanishing 

gradient problem.

➢ Although that paper is widely cited, the modern LSTM architecture also owes much to 

innovations by Gers et al. (2000).

➢ The work of Alex Graves around 2006, who not only helped demonstrate the potential of LSTM 

models but also invented CTC for speech recognition.

➢ LSTM gained widespread attention when Hinton introduced it at Google in 2013, with Graves 

contributing significantly as his postdoc.

Hochreiter and Schmidhuber, 1997. Long short-term memory. https://www.bioinf.jku.at/publications/older/2604.pdf 

Gers, Schmidhuber, and Cummins, 2000. Learning to Forget: Continual Prediction with LSTM. https://dl.acm.org/doi/10.1162/089976600300015015
Graves, Fernandez, Gomez, and Schmidhuber, 2006. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets.

https://www.cs.toronto.edu/~graves/icml_2006.pdf

http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.cs.toronto.edu/~graves/icml_2006.pdf


LSTMs: real-world success

8
0

• In 2013–2015, LSTMs started achieving state-of-the-art results

• Successful tasks include handwriting recognition, speech recognition, machine 
translation, parsing, and image captioning, as well as language models

• LSTMs became the dominant approach for most NLP tasks

• Now (2019–2024), Transformers have become dominant for all tasks

• For example, in WMT (a Machine Translation conference + competition):

• In WMT 2014, there were 0 neural machine translation systems (!)

• In WMT 2016, the summary report contains “RNN” 44 times (and these systems won)

• In WMT 2019: “RNN” 7 times, ”Transformer” 105 times

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf 
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf 
Source: "Findings of the 2019 Conference on Machine Translation (WMT19)", Barrault et al. 2019, http://www.statmt.org/wmt18/pdf/WMT028.pdf

http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf


Long Short-Term Memory RNNs (LSTMs)

8
1

➢ At each time step t, the LSTM maintains a hidden state h(t) and a cell state c(t), both vectors of length n.

➢ The cell state stores long-term information, while the hidden state represents the immediate output.

➢ Three gates—the forget gate, input gate, and output gate—dynamically control the erasing, reading, and 

writing of information in the cell state.

➢ Each gate is computed as a vector with values between 0 and 1, where values indicate the proportion of 

information to keep or update.

➢ This gating mechanism allows the LSTM to selectively maintain important information over long 

sequences, effectively addressing the vanishing gradient problem encountered in traditional RNNs.

This dynamic gating system is a key innovation that makes LSTMs powerful for tasks requiring long-term memory, such as 

language modeling, speech recognition, and time-series prediction.



A sequence of inputs 𝑥(t). Compute a sequence of hidden states ℎ(t) and cell states 𝑐(t). On timestep t:

Long Short-Term Memory (LSTM)
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Forget gate: controls what is kept vs 
forgotten, from previous cell state

Input gate: controls what parts of the 
new cell content are written to cell

Output gate: controls what parts of 
cell are output to hidden state

New cell content: this is the new 
content to be written to the cell

Cell state: erase (“forget”) some 
content from last cell state, and write 
(“input”) some new cell content

Hidden state: read (“output”) some 
content from the cell

Sigmoid function: all gate 
values are between 0 and 1

Gates are applied using element-wise 
(or Hadamard) product: ⊙

⊙

⊙

⊙
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You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

StanfordCS224n

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory (LSTM)
You can think of the LSTM equations visually like this:

Compute the 
forget gate

Forget some 
cell content

Compute the 
input gate

Compute the 
new cell content

Write some new cell content

Output some cell content 
to the hidden state

The + sign is the secret!

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ො𝑦𝑡

Compute the 
output gate
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Preserving Long-Term Dependencies

8
5

LSTMs vs. Vanilla RNNs

• LSTM Advantage:

The LSTM architecture makes it much easier for an RNN to preserve information over many

timesteps. Example: If the forget gate is set to 1 and the input gate to 0 for a cell dimension, the

corresponding cell state is preserved indefinitely.

• Vanilla RNN Limitation: 

A vanilla RNN must learn a recurrent weight matrix that preserves information in the hidden state. In

practice, vanilla RNNs typically manage to preserve information over only about 7 timesteps.

• Extended Memory with LSTMs: 

LSTMs can effectively preserve information for around 100 timesteps, greatly enhancing the model's 

ability to capture long-term dependencies. 

• Alternative Approaches: 

There are other methods to create direct, linear pass-through connections that capture long-distance 

dependencies.



Common Problems

For example:

• Residual connections aka “ResNet”

• Also known as skip-connections

• The identity connection preserves 

information by default

• This makes deep networks much 

easier to train

➢ Universality of the Problem:

Vanishing gradients are not unique to a single type of network—they affect all architectures, especially as depth 

increases.

➢ Root Cause:

It explains how the chain rule and activation function choices cause gradients to decay, which is the mathematical 

reason behind the problem.

➢ Impact on Learning:

With vanishing gradients, lower layers learn very slowly, affecting the overall performance and convergence of the 

network.

➢ Architectural Remedies:

Modern networks counteract this problem by adding direct connections (skip/residual connections) that help maintain 

gradient flow, with examples like ResNets and DenseNets.

"Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf



Code: Classifying Names with a LSTM
import torch.nn as nn

import torch.nn.functional as F

class CharLSTM(nn.Module):

def __init__(self, input_size, hidden_size, output_size):

super(CharLSTM, self).__init__()

# Replace RNN with LSTM

self.lstm = nn.LSTM(input_size, hidden_size)

self.h2o = nn.Linear(hidden_size, output_size)

self.softmax = nn.LogSoftmax(dim=1)

def forward(self, line_tensor):
# LSTM produces two outputs: output and (hidden_state, cell_state)
lstm_out, (hidden_state, cell_state) = self.lstm(line_tensor)
# Use the last hidden state to produce output
output = self.h2o(hidden_state[-1])
output = self.softmax(output)

return output

lstm = CharLSTM(n_letters, n_hidden=128, len(alldata.labels_uniq))



Bidirectional and Multi-layer RNNs

terribly exciting !the movie was

positive

Sentence 
encoding

We can regard this hidden state as a 
representation of the word “terribly” in the 
context of this sentence. We call this a 
contextual representation.

These contextual 
representations only 
contain information 
about the left context 
(e.g. “the movie was”).

What about right
context?

In this example, 
“exciting” is in the right 
context and this 
modifies the meaning of 
“terribly” (from negative 
to positive)

8

Task: Sentiment Classification

StanfordCS224n



Bidirectional RNNs

was terribly exciting !the movie

Forward RNN

Backward RNN

Concatenated 
hidden states

This contextual representation of “terribly” 
has both left and right context!

StanfordCS224n



Bidirectional RNNs

Forward RNN

Backward RNN 

Concatenated hidden states

This is a general notation to mean 
“compute one forward step of the 
RNN” – it could be a simple RNN or 
LSTM computation.

We regard this as “the hidden 
state” of a bidirectional RNN. 
This is what we pass on to the 
next parts of the network.

Generally, these 
two RNNs have 
separate weights

On timestep t:

StanfordCS224n



Pros and Cons of Bidirectional RNNs

Pros Section:
➢ Enhanced Context: Emphasizes that BiRNNs incorporate both past and future context, leading to 

richer representations.

➢ Improved Accuracy: Highlights the improved performance in various tasks.

➢ Better Long-Term Dependency Modeling: Points out that the dual-direction approach can capture 

dependencies over longer sequences.

Cons Section:
❖ Increased Computational Cost: Notes the extra resources required for running both forward and 

backward RNNs.

❖ Not Suitable for Real-Time Applications: Explains that access to future context makes BiRNNs

less practical in scenarios where such information isn’t available.
❖ Complexity: Mentions that the increased complexity can make training and tuning more 

challenging.



Bidirectional RNNs

9
2

Bidirectional RNNs require access to the entire input sequence to compute both forward and backward passes.

They are best suited for tasks where the complete sequence is available in advance (e.g., sequence encoding, text

classification, and machine translation).

In Language Modeling (LM), the model generates text one token at a time.  At each generation step, only the left 

context (previous tokens) is available.  Bidirectional RNNs are not applicable to LM because future context is 

unknown during generation.

When the entire input sequence is available (e.g., for encoding), bidirectionality is very powerful. It provides a 

richer representation by capturing both past and future context for each token. 

Each token’s embedding in BERT is contextualized with both left and right information. Typically, BERT models 

produce embeddings of 768 or 1024 dimensions.  BERT has set new standards for many NLP tasks by providing rich, 

pretrained representations.



Code: Bidirectional RNNs
class CharBiRNN(nn.Module):

def __init__(self, input_size, hidden_size, output_size):

super(CharBiRNN, self).__init__()

# Bidirectional RNN

self.rnn = nn.RNN(input_size, hidden_size, bidirectional=True)

# Adjust output size to account for bidirectional hidden states (2 * hidden_size)

self.h2o = nn.Linear(hidden_size * 2, output_size)

self.softmax = nn.LogSoftmax(dim=1)

def forward(self, line_tensor):

# rnn_out contains outputs for all timesteps, hidden contains the last hidden state

rnn_out, hidden = self.rnn(line_tensor)

# Combine the last forward and backward hidden states

hidden_cat = torch.cat((hidden[-2], hidden[-1]), dim=1)

output = self.h2o(hidden_cat)

output = self.softmax(output)

return output

bidir_rnn = CharBiRNN(n_letters, n_hidden, len(alldata.labels_uniq))



Stacked RNNs
Stacked RNNs (also known as deep RNNs): multiple recurrent layers are placed on top of each other.

The output of each RNN layer serves as the input to the next, creating a hierarchical representation of the sequential 

data. The lower RNNs should compute lower-level features and the higher RNNs should compute higher-level features.

This architecture is used to capture complex, abstract temporal patterns.  Hierarchical layers can learn more abstract 

features. Better capture complex temporal dependencies.

Improved Performance: Often achieve higher accuracy on tasks such as language modeling, speech recognition, and 

time series prediction.

However, they also introduce challenges such as increased  training complexity and computational cost.

With careful design and tuning, stacked RNNs are a powerful tool for sequence modeling.

9
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Three-layer RNNs

was terribly exciting !the movie

RNN layer 1

RNN layer 2

9
5

RNN layer 3
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Multi-layer RNNs in practice

❖ Stacked RNNs allow for more complex, hierarchical representations: Lower layers capture basic, low-

level features, while higher layers integrate these into more abstract, high-level features.’

❖ Performance improvements are observed with moderate stacking: Empirical results (e.g., from Britz et 

al., 2017) indicate that 2–4 layers can be optimal for tasks such as machine translation.

❖ Deep RNNs require architectural innovations: For very deep RNNs (e.g., 8 layers or more), skip-

connections or dense connections are necessary to maintain gradient flow and facilitate training.

❖ Transformers push depth further with built-in residual connections: Models like BERT, which can 

have 12–24 layers, offer a different approach to capturing long-range dependencies via self-attention and deep 

stacking.



Code: Muti-layer Bidirectional RNNs
class MultiLayerBiRNNClassifier(nn.Module):

def __init__(self, input_size, hidden_size, output_size, num_layers):

super(MultiLayerBiRNNClassifier, self).__init__()

# Multi-layer bidirectional RNN

self.rnn = nn.RNN(

input_size, 

hidden_size, 

num_layers=num_layers, 

bidirectional=True, 

batch_first=True

)

# Adjust the linear layer to account for bidirectional hidden states

self.h2o = nn.Linear(hidden_size * 2, output_size)

self.softmax = nn.LogSoftmax(dim=1)

def forward(self, input_tensor):

# rnn_out: Outputs from all time steps, hidden: Hidden states for all layers

rnn_out, hidden = self.rnn(input_tensor)

# Combine the last hidden states from both directions in the last layer

hidden_cat = torch.cat((hidden[-2], hidden[-1]), dim=1)

output = self.h2o(hidden_cat)

output = self.softmax(output)

return output



GRU (Gate Recurrent Unit)

9
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• Gate Recurrent Unit is one of the ideas that has enabled RNN to 

become much better at capturing very long-range dependencies and has 

made RNN much more effective.

• The GRU is like a LSTM with a gating mechanism to input or forget 

certain features, but lacks a context vector or output gate, resulting in 

fewer parameters than LSTM. Proposed as a simpler alternative to 

LSTM, the GRU merges the forget and input gates into a single update 

gate.

• GRUs are known for having fewer parameters than LSTMs, which can 

lead to faster training and similar performance in  many tasks.

Each GRU cell has two main gates:

Reset Gate (r(t) ): Controls how much of the previous hidden state to forget.

Update Gate (z(t) ): Decides how much of the candidate activation to use.

The GRU combines these gates to update its hidden state without a separate cell state.



9
9

1. Update Gate (𝑧𝑡): Determines how much of the past hidden state ℎ𝑡−1 should be 

retained and how much of the new candidate state ෠ℎ𝑡−1 should be added to form 
the current hidden state.

2. Reset Gate (𝑟𝑡): Determines how much of the past hidden state ℎ𝑡−1 contributes to 

the computation of the new candidate state ෠ℎ𝑡−1.

3. Candidate State (෠ℎ𝑡): New information computed at the current time step.

4. Hidden State Update: Combines contributions from the past hidden state ℎ𝑡−1 and 
the new candidate state ෠ℎ𝑡−1 ​ using the update gate 𝑧𝑡.

StanfordCS224n



Classifying Names with a Character-Level GRU
import torch.nn as nn

import torch.nn.functional as F

class CharGRU(nn.Module):

def __init__(self, input_size, hidden_size, output_size):

super(CharGRU, self).__init__()

# Replace RNN with GRU

self.gru = nn.GRU(input_size, hidden_size)

self.h2o = nn.Linear(hidden_size, output_size)

self.softmax = nn.LogSoftmax(dim=1)

def forward(self, line_tensor):

# GRU produces outputs and hidden states

gru_out, hidden = self.gru(line_tensor)

# Use the last hidden state for classification

output = self.h2o(hidden[-1])

output = self.softmax(output)

return output



Content

1 Introduction to Sequence Modeling

2 Introduction to Recurrent Neural Networks (RNNs)

3 Problems with RNNs

4 Extensions of RNNs 

5 Genomic Sequence Analysis



Functional  Effects of Noncoding Variants 

➢ Most disease-associated variants identified by GWAS are located in noncoding regions of the genome. 

➢ These variants can have significant regulatory effects. For example, they may modify transcription factor 

binding sites, alter chromatin accessibility, or impact epigenetic marks such as DNA methylation and histone 

modifications. These changes can, in turn, affect gene expression patterns and contribute to the development of 

complex diseases such as cancer, diabetes, and autoimmune disorders.

➢ Predicting the functional effects of these noncoding variants is therefore crucial for understanding the genetic 

basis of complex diseases and for identifying potential therapeutic targets. Traditional approaches relying on 

hand-crafted features or statistical methods often struggle to capture the intricate, nonlinear relationships within 

genomic data.

➢ Deep learning offers a powerful alternative by automatically learning hierarchical representations directly from 

raw genomic sequences. With the ability to model both local and long-range dependencies, deep learning 

models can identify subtle sequence patterns and interactions that are critical for gene regulation. This 

capability has led to significant advances in predicting regulatory functions and understanding the mechanisms 

by which noncoding variants contribute to disease pathology.



Deep Learning-based Sequence Analyzer
❖ DeepSEA Model Architecture
➢ Incorporates wide sequence context (1 kbp) and

use one-hot to encode the final sequence. 

➢ Uses hierarchical convolutional neural networks
(CNNs) to learn sequence dependencies.
➢ Employs multitask learning for sharing predictive features 

across chromatin factors.
➢ Optimized for accuracy in functional variant prediction.

❖ Training and Data Sources
➢ Training data from ENCODE and Roadmap Epigenomics projects. 
➢ 690 TF binding profiles, 125 DNase I hypersensitivity profiles, 104 

histone-mark profiles.
➢ Covers 17% of the human genome (521.6 Mbp). 
➢ Trained using CNN.

Zhou, J., & Troyanskaya, O. G. (2015)



Performance and Sensitivity
• DeepSEA achieves high accuracy in predicting 

chromatin features:

- TF binding: AUC = 0.958

- DNase I sensitivity: AUC = 0.923

- Histone marks: AUC = 0.856

• Outperforms gkm-SVM on nearly all TFs.

• Enables accurate sequence-based functional 

predictions.

• Uses 'in silico saturated mutagenesis' to 

assess sequence feature importance.

• Evaluated on 57,407 allelically imbalanced 

SNPs from 35 cell types.

• Achieves >95% accuracy for high-

confidence predictions.

• Consistently predicts known SNP effects on 

TF binding (e.g., FOXA1, GATA1, FOXA2).



DanQ
❖ Motivations
➢ Previous models like DeepSEA and gkm-SVM predict regulatory 

function but lack recurrent components.

➢ Need for a model that integrates motif discovery and long-term 

dependencies in DNA sequences.

❖ DanQ Model Framework
➢ Input Data: One-hot encoded 1000-bp DNA sequences from 

GRCh37 genome.

➢ Training Data: 919 chromatin features from ENCODE & Roadmap 

Epigenomics datasets.

➢ Architecture:

- CNN layer for motif scanning.

- Max pooling layer to reduce spatial size.

- BLSTM layer to capture motif relationships.

- Fully connected layer with sigmoid outputs.

Quang, D., & Xie, X. (2016). 



Performance and Sensitivity
❖ Comparisons:
➢ ROC AUC: DanQ outperforms DeepSEA for 94.1% of targets.

➢ PR AUC: DanQ achieves over 50% relative improvement on 

some markers.

➢ Enhanced motif discovery compared to previous CNN-based 

models.

❖ Results
➢ ROC and PR curves demonstrate significant performance gain over 

DeepSEA.

➢ • Motif analysis shows DanQ effectively learns biologically 

relevant patterns.

➢ • Functional SNP prioritization shows improved detection of 

regulatory variants
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