
Bios 740- Chapter 3..Convolutional Neural Networks (CNN)

Acknowledgement: Thanks to Miss Xiaoqi Li for preparing some of the
slides! I copied some pictures from the Wikipedia and the lecture pdf files of
StanfordCS231n and Prof. Manolis Kellis.

Content

1 Introduction to Convolutional Neural Networks (CNN)

2 Popular CNN Architectures

4 Other Applications of CNNs

5 Statistical Generative Models for Unstructured Image Data

0 Unstructured Image Data and Challenges

3 CNN Optimization Techniques

Content

1 Introduction to Convolutional Neural Networks (CNN)

2 Popular CNN Architectures

4 Other Applications of CNNs

5 Statistical Generative Models for Unstructured Image Data

0 Unstructured Image Data and Challenges

3 CNN Optimization Techniques

Nature Image Data is Everywhere

Major CV Tasks

Self-driving Cars

Other CV Tasks

Medical Image Data is Everywhere

Scenario Challenges

High Dimensionality
• Key Feature:

• Images are inherently high-dimensional data. For example, a standard image in classification tasks with a
resolution of 224×224224×224 and 3 color channels (RGB)
has 224×224×3=150,528224×224×3=150,528 input dimensions.

• Each pixel represents a separate input feature, and the number of features grows quadratically with image
resolution.

• Challenge:
• Fully connected networks scale poorly with such high-dimensional data. For even a shallow network, the

number of weights can exceed 150,5282150,5282 (~22 billion). This massive number of weights:
• Increases the risk of overfitting, as more parameters require a proportional increase in training data.
• Results in impractical memory and computational requirements, especially for larger images.
• Slows down the training process significantly, making optimization difficult.

• Real-World Implication:
• As image resolution increases (e.g., 512×512512×512 or beyond for high-definition images), the

dimensionality becomes even more unmanageable for fully connected networks.

• Solution: CNNs reduce the number of parameters by using shared weights (convolutional filters) and
processing local regions of the image (kernels). This drastically decreases memory requirements and
computational complexity.

• Key Feature:
• Nearby pixels in an image are statistically correlated and form local patterns or textures (e.g., edges, corners,

and gradients). These local relationships are critical for understanding the content of an image.
• For example, in an image of a cat, nearby pixels may collectively form the texture of fur or the shape of an ear.

• Challenge:
• Fully connected networks ignore spatial relationships by treating all input pixels equally. They lack the notion

of "locality" and process the relationship between each pixel and every other pixel, regardless of their
proximity.

• This lack of spatial awareness means that a fully connected network cannot naturally exploit the structural
dependencies within an image.

• If the pixels of an image are randomly permuted in the same way for both training and testing, a fully
connected network can still learn, highlighting its disregard for spatial coherence.

• Real-World Implication:
• Without spatial awareness, models become inefficient and require a larger number of neurons to learn even

basic patterns.

• Solution:
• CNNs address this by using local receptive fields to capture spatial relationships. Filters (kernels) process

small, overlapping regions of an image, preserving spatial coherence and focusing on local patterns. This
makes CNNs particularly effective for tasks like object detection and image segmentation.

Spatial Relationships in Pixels

Stability Under Geometric Transformations
• Key Feature:

• Images maintain their interpretation under geometric transformations such as translation, rotation, scaling, or
flipping. For example:

• A tree remains recognizable as a tree even if shifted slightly to the left or rotated by a small angle.
• Similarly, a flipped or resized image of a cat does not change its underlying identity.

• This invariance is essential for real-world applications like autonomous driving or medical imaging, where
objects may appear in various positions or orientations.

• Challenge:
• Fully connected networks treat each pixel independently and do not account for geometric transformations. A

simple translation (e.g., shifting an image to the left by a few pixels) alters every pixel in the input vector,
forcing the network to relearn patterns for each possible position.

• This redundancy results in inefficient learning and requires significantly more data to cover all potential
transformations.

• Real-World Implication:
• Models that lack invariance to transformations are less robust in real-world scenarios where objects appear in

varying contexts.

• Solution:
• CNNs inherently address this issue by leveraging translation invariance through shared filters. These

filters recognize patterns (e.g., edges or textures) regardless of their position within the image.
• Data augmentation techniques, such as randomly rotating, flipping, or cropping images during training,

further improve the model's ability to handle transformations.

Additional Considerations
• Noise in Images:

• Real-world images often contain noise (e.g., sensor artifacts, motion blur, or lighting
variations). Fully connected networks struggle to differentiate between noise and meaningful
patterns, further emphasizing the need for specialized architectures.

• CNNs are more robust to noise due to their focus on local features rather than individual pixel
values.

• Scale and Hierarchy:
• Images often contain hierarchical features at multiple scales:

• Low-level features: edges, corners.
• Mid-level features: textures, patterns.
• High-level features: objects or entire scenes.

• Fully connected networks cannot naturally represent this hierarchy, while CNNs achieve this
using multiple convolutional layers with increasing receptive fields.

• Conclusion The unique properties of unstructured image data pose significant challenges for fully
connected networks. These challenges necessitate specialized architectures like CNNs, which
leverage shared weights, local receptive fields, and hierarchical feature extraction to process
images efficiently. Additionally, techniques like data augmentation and multi-scale analysis enhance
the robustness of these models for real-world applications.

Content

1 Introduction to Convolutional Neural Networks (CNN)

2 Popular CNN Architectures

4 Other Applications of CNNs

5 Statistical Generative Models for Unstructured Image Data

0 Unstructured Image Data and Challenges

3 CNN Optimization Techniques

Introduction to CNN
What Are CNNs?
CNNs are specialized deep learning architectures designed to process data with grid-like structures, such as

images and videos. By leveraging the spatial structure of data, CNNs efficiently extract and learn hierarchical

features, making them particularly well-suited for computer vision tasks like image classification, object

detection, and segmentation.

In image and video processing, they are widely used for tasks such as classification, object detection,

segmentation, and face recognition.

In medical imaging, CNNs assist in detecting tumors and anomalies in X-rays and CT scans.

In natural language processing (NLP), they process data as 1D inputs for tasks like sentence classification and text

summarization.

In autonomous driving, they enable real-time object detection for pedestrians, vehicles, and road signs.

CNNs’ applications

CNN History and Categories

Inspiration Behind CNN
CNNs were inspired by the layered architecture of the human visual
cortex.

• Hierarchical architecture: Both CNNs and the visual cortex have
a hierarchical structure, with simple features extracted in early
layers and more complex features built up in deeper layers. This
allows increasingly sophisticated representations of visual inputs.

• Local connectivity: Neurons in the visual cortex only connect to a
local region of the input, not the entire visual field. Similarly, the
neurons in a CNN layer are only connected to a local region of the
input volume through the convolution operation. This local
connectivity enables efficiency.

Illustration of the correspondence between the areas associated with the
primary visual cortex and the layers in a convolutional neural network (source)

https://www.researchgate.net/figure/2-Illustration-of-the-corrispondence-between-the-areas-associated-with-the-primary_fig7_317679065

Inspiration Behind CNN

• Translation invariance:
Similar to visual cortex neurons can detect features regardless of their location in the visual field, pooling

layers in a CNN provide a degree of translation invariance by summarizing local features.

• Multiple feature maps:
At each stage of visual processing, there are many different feature maps extracted. CNNs mimic this

through multiple filter maps in each convolution layer.

• Non-linearity:
Neurons in the visual cortex exhibit non-linear response properties. CNNs achieve non-linearity through

activation functions like ReLU applied after each convolution.

Understanding Invariance in CNNs

• What is Invariance?
• Invariance refers to properties or quantities that remain unchanged

under certain transformations or operations.
• In the context of deep learning, invariance refers to a model's ability

to recognize patterns regardless of certain transformations (e.g.
Translation (shifting), Rotation, Scaling), as the model's output
remains unchanged under certain transformations of the input.

• Why is Invariance Important?
• Aids in simplifying complex problems by focusing on constant

factors.
• Real-world objects may appear in different positions, orientations,

or scales.
• Models should recognize objects regardless of these variations.

• Limitations of Fully Connected Networks (MLPs)
• Do not inherently handle spatial hierarchies in data.
• Lack of invariance to translations and other transformations.

Shape Classes

http://sites.google.com/site/xiangbai/try-large.jpg

http://sites.google.com/site/xiangbai/animaldataset

How Invariance Inspires CNN

Invariance is a guiding principle in CNN architecture, enabling robust and efficient processing of complex

visual data. By leveraging translation invariance, spatial hierarchies, weight sharing, and robustness to

transformations, CNNs achieve exceptional performance in tasks. This combination of mathematical rigor and

biological inspiration has made CNNs a cornerstone of modern computer vision.

• Convolutional Layers and Weight Sharing
• Convolutional layers apply the same filter across

different spatial locations.
• Weight sharing reduces the number of

parameters and captures local patterns.

• Translation Invariance
• Convolutions allow the detection of features

regardless of their position.
• Pooling layers further enhance invariance by

summarizing nearby outputs.

• Benefits for Visual Tasks
• Efficiently recognize objects in varied contexts.
• Improve generalization by focusing on relevant

features.

Key Components of CNN

• Convolutional layers

• Rectified Linear Unit (ReLU)

• Pooling layers

• Fully connected layers

Illustration of architecture of CNNs applied to digit recognition (source)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Feature Extraction Using Convolution

• Input, kernel, and output

• Fully Connected Networks

• “fully connect” all the hidden units to
all the input units. Only
computationally feasible to learn
features on the entire image for
relatively small images.

• order of 106 parameters to learn for
96x96 images. The feedforward and
backpropagation computations
would also be about 100 times
slower, compared to 28x28 images.

• Locally Connected Networks

Feature Extraction Using Convolution

• Input, kernel, and output (right figure)

• Fully Connected Networks

• Locally Connected Networks

• A simple solution to this problem is to limit

connections between hidden and input units, allowing

each hidden unit to connect to only a small subset of

input units, such as a contiguous region of pixels. For

other data types different than images like audio,

hidden units can be connected to specific time spans.

This concept of local connections is inspired by the

visual cortex, where neurons respond to stimuli in

specific locations.

Illustration of Discrete 2D Convolution (source)

https://en.wikipedia.org/wiki/Convolution

Understanding the Convolution Operation

Whenever we have discrete objects, the integral turns into a sum. For instance, in CNN, we used
discrete convolution for vectors from the set of square-summable infinite-dimensional vectors
defined as:

For two-dimensional tensors, we have a corresponding sum with (a,b) for f (i-a,j-b) for g,
respectively:

What is convolution?
Mathematically, Convolution is defined as 𝑓, 𝑔: ℝ𝑛 → ℝ :

𝑓 ∗ 𝑔 𝒙 = න𝑓 𝒛 𝑔 𝒙 − 𝒛 𝑑𝑧

𝑓 ∗ 𝑔 𝑖 =

𝑎

𝑓 𝑖 𝑔 𝑖 − 𝑎

𝑓 ∗ 𝑔 𝑖, 𝑗 =

𝑎

𝑏

𝑓 a, b 𝑔 𝑖 − 𝑎, 𝑗 − 𝑏

Exercises

1. Audio data is often represented as a one-dimensional sequence.
1. When might you want to impose locality and translation invariance for audio?
2. Derive the convolution operations for audio.
3. Can you treat audio using the same tools as computer vision? Hint: use the spectrogram.

2. Why might translation invariance not be a good idea after all? Give an example.
3. Do you think that convolutional layers might also be applicable for text data? Which problems

might you encounter with language?
4. What happens with convolutions when an object is at the boundary of an image?
5. Prove that the convolution is symmetric, i.e., 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓

Understanding the Convolution Operation

Why convolution works for images?
Natural images have the property of being ”‘stationary”’,

meaning that the statistics of one part of the image are the

same as any other part.

Formally, given some large r×c images xlarge, we first train a

sparse autoencoder on small a×b patches xsmall sampled from

these images, learning k features 𝑓 = 𝜎(𝑊(1)𝑋𝑠𝑚𝑎𝑙𝑙 + 𝑏(1))

(where σ is the sigmoid function), given by the weights

W(1)and biases b(1) from the visible units to the hidden units.

For every a×b patch xs in the large image, we compute

fs = 𝜎(𝑊(1)𝑥𝑠 + 𝑏(1)) , giving us fconvolved,

a k × (r−a+1) × (c−b+1) array of convolved features.

Illustration of Discrete 2D Convolution (source)

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/

Cross-Correlation Operation
In practice, convolution operations in CNN can be more accurately described as cross-correlations.
In each convolution layer, an input tensor and a kernel tensor are combined to produce an output
tensor through a cross-correlation operation.

Consider example:

Cross-Correlation Operation

Consider example:

In the two-dimensional cross-correlation operation, we begin with the convolution window positioned at the

upper-left corner of the input tensor and slide it across the input tensor, both from left to right and top to bottom.

When the convolution window slides to a certain position, the input subtensor contained in that window and the

kernel tensor are multiplied elementwise and the resulting tensor is summed up yielding a single scalar value.

This result gives the value of the output tensor at the corresponding location.

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19
 1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25
 3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37
 4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

Cross-Correlation Operation

Note that along each axis, the output size is slightly

smaller than the input size. Because the kernel has

width and height greater than 1, we can only

properly compute the cross-correlation for locations

where the kernel fits wholly within the image.

Exercise:

Show that if convolution kernel size = 0, the

convolution kernel implements an MLP

independently for each set of channels. (Lin, M.,

Chen, Q., & Yan, S. (2013). Network in network.

ArXiv:1312.4400.)

Illustration of Discrete 2D Convolution (source)

import torch

def corr2d(X, K):

 """Compute 2D cross-correlation."""

 h, w = K.shape

 Y = torch.zeros((X.shape[0] - h + 1,

X.shape[1] - w + 1))

 for i in range(Y.shape[0]):

 for j in range(Y.shape[1]):

 Y[i, j] = (X[i:i + h, j:j + w] *

K).sum()

 return Y

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/

Convolutional Layers

A convolutional layer cross-correlates the input and
kernel and adds a scalar bias to produce an output.
The two parameters of a convolutional layer are the
kernel and the scalar bias. When training models
based on convolutional layers, we typically initialize
the kernels randomly.

We can implement a two-dimensional convolutional
layer based on the corr2d function defined above. In
the __init__ constructor method, we declare weight
and bias as the two model parameters. The forward
propagation method calls the corr2d function and
adds the bias.

Illustration of Discrete 2D Convolution (source)

import torch

class Conv2D(nn.Module):

 def __init__(self, kernel_size):

 super().__init__()

 self.weight =

nn.Parameter(torch.rand(kernel_size))

 self.bias =

nn.Parameter(torch.zeros(1))

 def forward(self, x):

 return corr2d(x, self.weight) +

self.bias

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/

Padding, Stride, and Pooling

• Padding

• Zero-padding and why it's necessary (The pixels at the corner in the previous images are less

counted than those in the middle)

• How padding affects the dimensions of the output

Illustration of padding effects (source)

https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-neural-network-3607be47480

Padding
One tricky issue when applying convolutional layers is that we tend to lose pixels on the perimeter of our image.

The following figure depicts the pixel utilization as a function of the convolution kernel size and the position

within the image.

We can see that the pixels in the corners are hardly used at all.

Pixel utilization for convolutions of 1x1, 2x2, and 3x3 respectively.

Padding
One straightforward solution to this problem is to add extra pixels of filler around the boundary of our

input image, thus increasing the effective size of the image. Typically, we set the values of the extra

pixels to zero.

Example on padding 3x3 input to 5x5 matrix:

Padding

In general, if we add a total of 𝑝ℎ rows of

padding (roughly half on top and half on

bottom) and a total of 𝑝𝑤 columns of padding

(roughly half on the left and half on the right),

the height and width of the output will increase

by 𝑝ℎ and 𝑝𝑤, respectively.

In many cases, we will want to set 𝑝ℎ = 𝑘ℎ − 1

and 𝑝𝑤 = 𝑘𝑤 − 1 to give the input and output

the same height and width.

Example code to create a two-dimensional

convolutional layer with a height and width of 3

and apply 1 pixel of padding on all sides.

Illustration of Discrete 2D Convolution (source)

from torch import nn

We define a helper function to calculate

convolutions. It initializes the

convolutional layer weights and performs

corresponding dimensionality

elevations and reductions on the input and

output

def comp_conv2d(conv2d, X):

 # (1, 1) indicates that batch size and

the number of channels are both 1

 X = X.reshape((1, 1) + X.shape)

 Y = conv2d(X)

 # Strip the first two dimensions:

examples and channels

 return Y.reshape(Y.shape[2:])

1 row and column is padded on either side,

so a total of 2 rows or columns are added

conv2d = nn.LazyConv2d(1, kernel_size=3,

padding=1)

X = torch.rand(size=(8, 8))

comp_conv2d(conv2d, X).shape

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/

Padding, Stride, and Pooling
Stride

• Example with stride of 1 vs. 2

Illustration Convolution Operation with Stride Length = 1 Vs 2 (source)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Stride

We refer to the number of rows and columns
traversed per slide as stride.
In general, when the stride for the height is 𝑠ℎ

 and the stride for the width is 𝑠𝑤, the output
shape is
𝑛ℎ − 𝑘ℎ + 𝑝ℎ + 𝑠ℎ

𝑠ℎ
× ⌊

𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤 + 𝑠𝑤

𝑠𝑤
⌋.

If we set 𝑝ℎ = 𝑘ℎ − 1 and 𝑝𝑤 = 𝑘𝑤 − 1, this
can be simplified as

𝑛ℎ + 𝑠ℎ − 1

𝑠ℎ
× ⌊

𝑛𝑤 + 𝑠𝑤 − 1

𝑠𝑤
⌋.

Illustration of Discrete 2D Convolution (source)

from torch import nn

Using same example 8x8 matrix X

If we set the strides on both the height

and width to 2, thus halving the input

height and width.

conv2d = nn.LazyConv2d(1, kernel_size=3,

padding=1, stride=2)

comp_conv2d(conv2d, X).shape

torch.Size([4, 4])

A slightly more complicated example.

conv2d = nn.LazyConv2d(1, kernel_size=(3,

5), padding=(0, 1), stride=(3, 4))

comp_conv2d(conv2d, X).shape

torch.Size([2, 2])

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/

Padding, Stride, and Pooling

• Pooling

• Types: Max pooling, average pooling

• Role in reducing dimensionality

• Example: Pooling on an image

Illustration of 3x3 pooling over 5x5 convolved feature (source)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Pooling

When detecting lower-level features, such as edges, we often want our representations to be somewhat invariant to

translation. For instance, if we take the image X with a sharp delineation between black and white and shift the whole

image by one pixel to the right, i.e., Z[i, j] = X[i, j + 1], then the output for the new image Z might be vastly different.

The edge will have shifted by one pixel.

Pooling layers are introduced to serve the dual purposes of mitigating the sensitivity of convolutional layers to

location and of spatially downsampling representations.

Unlike the cross-correlation computation of the inputs and kernels in the convolutional layer, the pooling layer

contains no parameters. Instead, pooling operators are deterministic, typically calculating either the maximum or the

average value of the elements in the pooling window. These operations are called maximum pooling (max-pooling)

and average pooling, respectively.

Average Pooling
Average pooling is essentially as old as CNNs. The idea is akin to downsampling an image. Rather than just

taking the value of every second (or third) pixel for the lower resolution image, we can average over adjacent

pixels to obtain an image with better signal-to-noise ratio since we are combining the information from multiple

adjacent pixels.

https://blog.paperspace.com/a-comprehensive-exploration-of-pooling-in-neural-networks/

https://www.digitalocean.com/community/tutorials/pooling-in-convolutional-neural-networks

Maximum Pooling

Max-pooling was introduced in Riesenhuber and Poggio (1999) in the context of cognitive neuroscience to

describe how information aggregation might be aggregated hierarchically for the purpose of object recognition;

there already was an earlier version in speech recognition (Yamaguchi et al., 1990).

In almost all cases, max-pooling is preferable to average pooling.

Consider example:

https://www.digitalocean.com/community/tutorials/pooling-in-convolutional-neural-networks

Average and Maximum Pooling

Example code implements the forward propagation

of the pooling layer in the pool2d function. Unlike

previous corr2d function, since no kernel is needed,

we compute the output as either the maximum or the

average of each region in the input.

def pool2d(X, pool_size, mode='max'):

 p_h, p_w = pool_size

 Y = torch.zeros((X.shape[0] - p_h + 1,

X.shape[1] - p_w + 1))

 for i in range(Y.shape[0]):

 for j in range(Y.shape[1]):

 if mode == 'max':

 Y[i, j] = X[i: i + p_h, j: j +

p_w].max()

 elif mode == 'avg':

 Y[i, j] = X[i: i + p_h, j: j +

p_w].mean()

 return Y

Exercises
1. Implement average pooling through a convolution.
2. Prove that max-pooling cannot be implemented through a convolution alone.
3. Max-pooling can be accomplished using ReLU operations, i.e., 𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥).

1. Express max(𝑎, 𝑏) by using only ReLU operations.
2. Use this to implement max-pooling by means of convolutions and ReLU layers.
3. How many channels and layers do you need for a 2 x 2 convolution? How many for a 3 x 3

convolution?
4. What is the computational cost of the pooling layer? Assume that the input to the pooling layer

is of size c x h x w, the pooling window has a shape of 𝑝ℎ × 𝑝𝑤 with a padding of (𝑝ℎ, 𝑝𝑤) and
a stride of (𝑠ℎ, 𝑠𝑤).

5. Why do you expect max-pooling and average pooling to work differently?
6. Do we need a separate minimum pooling layer? Can you replace it with another operation?
7. We could use the softmax operation for pooling. Why might it not be so popular?

Content

1 Introduction to Convolutional Neural Networks (CNN)

2 Popular CNN Architectures

4 Other Applications of CNNs

5 Statistical Generative Models for Unstructured Image Data

0 Unstructured Image Data and Challenges

3 CNN Optimization Techniques

ImageNet

ImageNet
What is ImageNet?

• Definition: ImageNet is a large-scale visual database designed to advance research in object detection,
classification, and other computer vision tasks.
• Dataset Size: It contains over 14 million labeled images
spanning 20,000+ categories, with the most commonly used
subset having 1,000 object categories.

Key Features of ImageNet

a) Diversity of Classes:
Includes both broad categories (e.g., "dog,"
"car") and fine-grained subcategories (e.g., "golden retriever," "sports car").

b) Real-World Images:
Images collected from the internet represent real-world complexity, including cluttered backgrounds,
occlusions, and multiple objects.

c) Hierarchical Organization:
Based on the WordNet hierarchy, where classes are semantically related, providing meaningful
relationships between categories.

CNN for Image Classification
• Fundamental Challenge

• Distinguishing object classes (e.g., flowers,
vehicles) in images/video

• Core steps: (1) Image preprocessing, (2)
Feature extraction, (3) Classification

• Traditional vs. CNN Approach
• Traditional:

• Manually engineered feature
extraction + classifier → Often
limited in complex tasks

• CNN:

• Learns hierarchical features directly
from raw inputs (via convolution
kernels)

• Scales well with large datasets →
stronger generalization

Zhao et al. Artificial Intelligence Review (2024)

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

Key Components of CNNs

AlexNet
• With high performance hardware (GPUs from

Nvidia) and sufficiently rich data-set, Krizhevsky
et al. proposed AlexNet (Alom et al. 2018), which
consists of five convolution layers and three
fully connected layers.

• Each convolution layer contains a convolution
kernel, a bias term, a ReLU activation function,
and a local response normalization (LRN)
module.

• In the 2012 ILSVRC, AlexNet won the
competition with a Top-5 classification error rate
of 16.4%, became the dividing line between
traditional and deep learning algorithms, and was
the first deep CNN model in modern times.

AlexNet Architecture

AlexNet

AlexNet
import torch

import torch.nn as nn

import torchvision.models as models

class AlexNet(nn.Module):
 def __init__(self, num_classes=1000):
 super(AlexNet, self).__init__()
 # Feature extraction layers
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), # Conv1
 nn.ReLU(inplace=True),
 nn.MaxPool2d(kernel_size=3, stride=2), # Pool1

 nn.Conv2d(64, 192, kernel_size=5, padding=2), # Conv2
 nn.ReLU(inplace=True),
 nn.MaxPool2d(kernel_size=3, stride=2), # Pool2

 nn.Conv2d(192, 384, kernel_size=3, padding=1), # Conv3
 nn.ReLU(inplace=True),
 nn.Conv2d(384, 256, kernel_size=3, padding=1), # Conv4
 nn.ReLU(inplace=True),

nn.Conv2d(256, 256, kernel_size=3, padding=1), # Conv5
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2) # Pool3
)

 # Classifier layers
 self.classifier = nn.Sequential(
 nn.Dropout(), # Dropout1
 nn.Linear(256 * 6 * 6, 4096), # FC1
 nn.ReLU(inplace=True),
 nn.Dropout(), # Dropout2
 nn.Linear(4096, 4096), # FC2
 nn.ReLU(inplace=True),

 nn.Linear(4096, num_classes) # FC3
)

 def forward(self, x):
 # Pass through feature extraction layers
 x = self.features(x)
 x = torch.flatten(x, 1) # Flatten the output
 # Pass through classifier layers
 x = self.classifier(x)
 return x

AlexNet

import torch

import torch.nn as nn

import torchvision.models as models

----- Load a pre-trained AlexNet -----

model_alexnet = models.alexnet(pretrained=True)

----- Forward Pass with Synthetic Data -----

Create a single synthetic image tensor: batch size = 1, 3 color channels, 224x224

resolution

x = torch.randn(1, 3, 224, 224)

Run the forward pass

output_alex = model_alexnet(x)

print("\nOutput shape from AlexNet:", output_alex.shape)

Visual Geometry Group (VGG) models

• To examine the impact of a CNN’s depth on its

accuracy, Karen Sengupta et al. (2019) conducted a

comprehensive evaluation of the performance of

network models with increasing depth, while using

smaller convolution filters (3 × 3) instead of the

previous 5 × 5 kernels and proposed a series of Visual

Geometry Group (VGG) models in 2014.

• The smaller kernel size lowers the computational

complexity and the number of training parameters.

• Simultaneously, VGG supports the hypothesis that

performance can be enhanced by continually

deepening the network topology.

• In the 2014 ILSVRC, VGG won the competition in

the Localization Task with a Top-5 classification

error rate of 7.3%, Sengupta et al. Front Neurosci (2019)

VGG Models
a) Increased Depth:

Depth allows VGG to learn hierarchical features, improving

accuracy.

b) Simple Design:
Stacks of identical convolutional layers make it easy to

scale the architecture.

c) Transfer Learning:

VGG models pretrained on ImageNet are widely used for

transfer learning in other tasks.

d) Small Filters:
Using 3×3 filters results in fewer parameters compared to

larger filters, while maintaining the receptive field size.

e) VGG-16:
16 layers: 13 convolutional layers and 3 fully connected layers.

Parameters: ~138 million.

f) VGG-19:
19 layers: 16 convolutional layers and 3 fully connected layers.

Parameters: ~143 million.

Block 4

nn.Conv2d(256, 512, kernel_size=3, padding=1), # Conv4_1

nn.ReLU(inplace=True),

nn.Conv2d(512, 512, kernel_size=3, padding=1), # Conv4_2

nn.ReLU(inplace=True),

nn.Conv2d(512, 512, kernel_size=3, padding=1), # Conv4_3

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=2, stride=2), # Pool4

Block 5

nn.Conv2d(512, 512, kernel_size=3, padding=1), # Conv5_1

nn.ReLU(inplace=True),

nn.Conv2d(512, 512, kernel_size=3, padding=1), # Conv5_2

nn.ReLU(inplace=True),

nn.Conv2d(512, 512, kernel_size=3, padding=1), # Conv5_3

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=2, stride=2) # Pool5

)

Classification layers

 self.classifier = nn.Sequential(

 nn.Linear(512 * 7 * 7, 4096), # FC1

 nn.ReLU(inplace=True),

 nn.Dropout(),

 nn.Linear(4096, 4096), # FC2

 nn.ReLU(inplace=True),

 nn.Dropout(),

 nn.Linear(4096, num_classes) # FC3

)

import torch

import torch.nn as nn

import torchvision.models as models

class VGG16(nn.Module):

 def __init__(self, num_classes=1000):

 super(VGG16, self).__init__()

 # Feature extraction layers

 self.features = nn.Sequential(

 # Block 1

 nn.Conv2d(3, 64, kernel_size=3, padding=1), # Conv1_1

 nn.ReLU(inplace=True),

 nn.Conv2d(64, 64, kernel_size=3, padding=1), # Conv1_2

 nn.ReLU(inplace=True),

 nn.MaxPool2d(kernel_size=2, stride=2), # Pool1

 # Block 2

 nn.Conv2d(64, 128, kernel_size=3, padding=1), # Conv2_1

 nn.ReLU(inplace=True),

 nn.Conv2d(128, 128, kernel_size=3, padding=1), # Conv2_2

 nn.ReLU(inplace=True),

 nn.MaxPool2d(kernel_size=2, stride=2), # Pool2

 # Block 3

 nn.Conv2d(128, 256, kernel_size=3, padding=1), # Conv3_1

 nn.ReLU(inplace=True),

 nn.Conv2d(256, 256, kernel_size=3, padding=1), # Conv3_2

 nn.ReLU(inplace=True),

 nn.Conv2d(256, 256, kernel_size=3, padding=1), # Conv3_3

 nn.ReLU(inplace=True),

 nn.MaxPool2d(kernel_size=2, stride=2), # Pool3

VGG models

def forward(self, x):

 # Pass through feature extraction layers

 x = self.features(x)

 x = torch.flatten(x, 1) # Flatten the output

 # Pass through classifier layers

 x = self.classifier(x)

 return x

Example usage

if __name__ == "__main__":

 # Initialize the model

 model = VGG16(num_classes=1000)

 print(model)

 # Test with a random input

 input_tensor = torch.randn(1, 3, 224, 224) # Batch size = 1, 3 channels, 224x224 image

 output = model(input_tensor)

 print("Output shape:", output.shape) # Should be [1, 1000] for 1000 classes

VGG models

GoogLeNet
• GoogleNet, also known as Inception-v1, is a deep CNN

introduced by Szegedy et al. in 2014.

• It won the ILSVRC 2014 the Classification Task with a
top-5 error rate of 6.67%, outperforming other models.

• Main Innovations:

a) Inception Module enables the network to capture
features at multiple scales while reducing
computational cost.

b) Dimension Reduction. Uses 1×1 convolutions for
reducing dimensionality before applying larger
filters, significantly reducing parameters.

c) Auxiliary Classifiers: Two intermediate softmax
classifiers are added to help with gradient flow and
prevent vanishing gradients.

• Motivation: Despite having 22 layers, GoogleNet has
only ~5M parameters, significantly fewer than
AlexNet (~60M) and VGG-16 (~138M).This is
achieved using 1×11×1 convolutions for
dimensionality reduction.

Szegedy et al. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2015)

GoogleNet Architecture

•Input Layer: 224×224×224×3 RGB image.
•Convolutional Layers: Apply 7×7, 1×1, or 3×3 filters
to extract features.
•Inception Modules: Multi-scale processing
with 1×1, 3×3, 5×5, and pooling operations.
•Auxiliary Classifiers: Intermediate softmax layers
for training regularization.
•Global Average Pooling: Replaces fully connected
layers with spatial pooling across feature maps.
Output Sizes:
•The output size at each stage is shown,
demonstrating how spatial dimensions decrease
progressively.

Inception Module

• Multi-Scale Feature Extraction: Processes feature maps at multiple scales for rich. representations.

• Dimensionality Reduction: 1 × 1 convolutions reduce computational costs while preserving important
information.

• Efficiency: Deep networks can process large input data with fewer parameters compared to traditional
architectures.

• Improved Generalization: Captures features across different abstraction levels.

Inception Cell

Example architecture of inception
Zhao et al. Artificial Intelligence Review (2024)

import torch

import torch.nn as nn

import torch.nn.functional as F

class Inception(nn.Module):
 def __init__(self, in_channels, ch1x1, ch3x3_reduce, ch3x3, ch5x5_reduce, ch5x5, pool_proj):
 """
 Inception Module
 Args:
 in_channels: Input channels
 ch1x1: Number of filters for 1x1 convolution
 ch3x3_reduce: Number of filters for 1x1 convolution before 3x3 convolution
 ch3x3: Number of filters for 3x3 convolution
 ch5x5_reduce: Number of filters for 1x1 convolution before 5x5 convolution
 ch5x5: Number of filters for 5x5 convolution
 pool_proj: Number of filters for the projection from pooling
 """
 super(Inception, self).__init__()
 # 1x1 Convolution
 self.branch1 = nn.Sequential(
 nn.Conv2d(in_channels, ch1x1, kernel_size=1, bias=False),
 nn.BatchNorm2d(ch1x1),
 nn.ReLU(inplace=True))

GoogLeNet

….

1x1 Convolution -> 3x3 Convolution

 self.branch2 = nn.Sequential(
 nn.Conv2d(in_channels, ch3x3_reduce, kernel_size=1, bias=False),
 nn.BatchNorm2d(ch3x3_reduce),
 nn.ReLU(inplace=True),
 nn.Conv2d(ch3x3_reduce, ch3x3, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(ch3x3),
 nn.ReLU(inplace=True)
)
 # 1x1 Convolution -> 5x5 Convolution
 self.branch3 = nn.Sequential(
 nn.Conv2d(in_channels, ch5x5_reduce, kernel_size=1, bias=False),
 nn.BatchNorm2d(ch5x5_reduce),
 nn.ReLU(inplace=True),
 nn.Conv2d(ch5x5_reduce, ch5x5, kernel_size=5, padding=2, bias=False),
 nn.BatchNorm2d(ch5x5),
 nn.ReLU(inplace=True)
)
 # 3x3 Pooling -> 1x1 Convolution
 self.branch4 = nn.Sequential(
 nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
 nn.Conv2d(in_channels, pool_proj, kernel_size=1, bias=False),
 nn.BatchNorm2d(pool_proj),
 nn.ReLU(inplace=True)
)

 def forward(self, x):
 branch1 = self.branch1(x)
 branch2 = self.branch2(x)
 branch3 = self.branch3(x)
 branch4 = self.branch4(x)
 return torch.cat([branch1, branch2, branch3, branch4], 1)

class GoogleNet(nn.Module):
 def __init__(self, num_classes=1000):
 super(GoogleNet, self).__init__()
 # Initial layers
 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
 self.bn1 = nn.BatchNorm2d(64)
 self.relu = nn.ReLU(inplace=True)
 self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
 # Convolutions and pooling layers
 self.conv2 = nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1, bias=False)
 self.bn2 = nn.BatchNorm2d(192)
 self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
 # Inception modules
 self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
 self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
 self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

 self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
 self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
 self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
 self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
 self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
 self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

 self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
 self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

GoogLeNet

….

Global Average Pooling and Fully Connected Layer
 self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
 self.fc = nn.Linear(1024, num_classes)

 def forward(self, x):
 x = self.relu(self.bn1(self.conv1(x)))
 x = self.maxpool1(x)

 x = self.bn2(self.conv2(x))
 x = self.maxpool2(x)

 x = self.inception3a(x)
 x = self.inception3b(x)
 x = self.maxpool3(x)

 x = self.inception4a(x)
 x = self.inception4b(x)
 x = self.inception4c(x)
 x = self.inception4d(x)
 x = self.inception4e(x)
 x = self.maxpool4(x)

 x = self.inception5a(x)
 x = self.inception5b(x)

 x = self.avgpool(x)
 x = torch.flatten(x, 1)
 x = self.fc(x)
 return x

import torch

import torch.nn as nn

import torchvision.models as models

Example usage
if __name__ == "__main__":
 # Initialize the model
 model = GoogleNet(num_classes=1000)
 print(model)

 # Test with a random input
 input_tensor = torch.randn(1, 3, 224, 224) # Batch size = 1, 3 channels, 224x224 image
 output = model(input_tensor)
 print("Output shape:", output.shape) # Should be [1, 1000] for 1000 classes

GoogLeNet

Residual network (ResNet)

• Degradation Problem: Deeper networks (e.g., >20 layers) suffered from degradation of accuracy, not just

overfitting, but actual performance decline.

• Key Idea: Instead of learning the direct mapping (H(x)), ResNet learns the residual mapping (F(x)=H(x)−x).

This simplifies optimization and allows gradients to flow through skip connections, improving convergence .

• Impact:

• Ease of Optimization: Learning residuals is simpler than learning direct mappings.

• Deeper Architectures: ResNet-152 outperforms shallower networks while maintaining high accuracy.

• State-of-the-art Results: Top-5 error dropped to ~3.6% on ImageNet (ILSVRC).

• Connection to Highway Networks (Srivastava et al., 2015): ResNet can be seen as a special, simplified

case of highway layers where gates are mostly open.

• Residual connections enable building much deeper and more powerful networks by addressing gradient vanishing

and “degradation” issues.

Residual Block

Illustration of a residual block
Zhao et al. Artificial Intelligence Review (2024)

Building Block:

a) Input: x (feature map from the previous layer).
b) Path 1 (Residual Function):

i. 3×3 convolution -> Batch Normalization -> ReLU.
ii. 3×3 convolution -> Batch Normalization.

c) Path 2 (Skip Connection):
i. Identity mapping: Directly passes the input x.

d) Addition:
i. Output: F(x)+x (summation of the two paths).

e) Activation:
i. Apply ReLU to the combined output.

f) Output:
 Final feature map retains the same dimensions as the input.

import torch

import torch.nn as nn

import torchvision.models as models

Define a Residual Block
class ResidualBlock(nn.Module):
 def __init__(self, in_channels, out_channels, stride=1):
 super(ResidualBlock, self).__init__()
 self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
 self.bn1 = nn.BatchNorm2d(out_channels)
 self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
 self.bn2 = nn.BatchNorm2d(out_channels)
Skip connection
 self.shortcut = nn.Sequential()
 if stride != 1 or in_channels != out_channels:
 self.shortcut = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(out_channels)
)

Residual Block

def forward(self, x):
 out = self.conv1(x)
 out = self.bn1(out)
 out = nn.ReLU()(out)
 out = self.conv2(out)
 out = self.bn2(out)
 out += self.shortcut(x)
 out = nn.ReLU()(out)
 return out

ResNet-50 Architecture

ResNet-50

Define ResNet-50
class ResNet50(nn.Module):
 def __init__(self, num_classes=1000):
 super(ResNet50, self).__init__()
 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
 self.bn1 = nn.BatchNorm2d(64)
 self.relu = nn.ReLU()
 self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

 # Define ResNet Blocks
 self.layer1 = self._make_layer(64, 256, 3)
 self.layer2 = self._make_layer(256, 512, 4, stride=2)
 self.layer3 = self._make_layer(512, 1024, 6, stride=2)
 self.layer4 = self._make_layer(1024, 2048, 3, stride=2)

 self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
 self.fc = nn.Linear(2048, num_classes)

 def _make_layer(self, in_channels, out_channels, blocks, stride=1):
 layers = [ResidualBlock(in_channels, out_channels, stride)]
 for _ in range(1, blocks):
 layers.append(ResidualBlock(out_channels, out_channels))
 return nn.Sequential(*layers)

ResNet-50

def forward(self, x):
 x = self.conv1(x)
 x = self.bn1(x)
 x = self.relu(x)
 x = self.maxpool(x)
 x = self.layer1(x)
 x = self.layer2(x)
 x = self.layer3(x)
 x = self.layer4(x)
 x = self.avgpool(x)
 x = torch.flatten(x, 1)
 x = self.fc(x)
 return x
Instantiate and print the model
 model = ResNet50()
 print(model)

Squeeze‐and‐Excitation (SE) Networks

• Definition: Squeeze-and-Excitation (SE)
Networks are CNN architectural units introduced
by Hu et al. in the paper "Squeeze-and-Excitation
Networks" (CVPR 2018).

• Objective: To improve channel-wise feature
recalibration by explicitly modeling
interdependencies between feature channels.

• Motivation: Standard convolutional operations
treat all channels equally, potentially ignoring the
inter-channel dependencies.

• SE blocks enhance channel sensitivity, allowing
the network to emphasize important features and
suppress irrelevant ones.

Squeeze‐and‐Excitation (SE) Networks

SENet Architecture
-- An Example Deep SE Network Structure for discriminating super- and

typical enhancers by sequence information
Luo et al. Computational Biology and Chemistry, 2023

a block of squeeze-and-excitation networks
Zhao et al. Artificial Intelligence Review (2024)

import torch

import torch.nn as nn

import torchvision.models as models

class SEBlock(nn.Module):

 def __init__(self, in_channels, reduction=16):

 super(SEBlock, self).__init__()

 self.global_avg_pool = nn.AdaptiveAvgPool2d(1) # Global average pooling

 self.fc1 = nn.Linear(in_channels, in_channels // reduction, bias=False) # Compression

 self.relu = nn.ReLU(inplace=True)

 self.fc2 = nn.Linear(in_channels // reduction, in_channels, bias=False) # Expansion

 self.sigmoid = nn.Sigmoid() # Scale factor

 def forward(self, x):

 batch_size, channels, _, _ = x.size()

 # Squeeze: Global average pooling

 y = self.global_avg_pool(x).view(batch_size, channels)

 # Excitation: Fully connected layers with ReLU and Sigmoid

 y = self.fc1(y)

 y = self.relu(y)

 y = self.fc2(y)

 y = self.sigmoid(y).view(batch_size, channels, 1, 1)

 # Scale: Multiply the input by the channel weights

 return x * y

SENet

MobileNet
• Motivation: Traditional CNNs have large

memory/computational demands, limiting

deployment on mobile/embedded devices.

• MobileNetV1 (Howard et al., 2017) achieves

near‐VGG16 accuracy (~0.9% lower) with only

1/32 of its parameters.

• Key Technique: Depthwise‐separable convolutions

(factorizing standard convolution into “depthwise” +

“pointwise”) → drastically fewer parameters and

reduced FLOPs.

• Hyperparameters: Width multiplier and resolution

multiplier to balance accuracy and efficiency.

• Drawback: Some kernels become zero during

training → limited parameter utilization.

Architecture of MobileNetV1.
Howard et al. arXiv (2017)

Trends, Challenges, & Future Directions

• Performance Comparisons of deep CNN networks show progressive accuracy improvements at varying
parameter costs.

• Challenges:

1. Complexity & Resource Usage: Advanced CNNs can be large and memory‐intensive.

2. Data Dependence: Labeled large‐scale datasets are expensive and time‐consuming to obtain.

3. Loss of Fine‐grained Details: Typical CNNs may struggle with small‐sized inputs.

Comparing Complexity

Evaluation Metrics for Classification

TP, TN, FP, and FN represent
true positives, true
negatives, false positives,
and false negatives,
respectively.

Content

1 Introduction to Convolutional Neural Networks (CNN)

2 Popular CNN Architectures

4 Other Applications of CNNs

5 Statistical Generative Models for Unstructured Image Data

0 Unstructured Image Data and Challenges

3 CNN Optimization Techniques

CNN Optimization Techniques

CNN optimization involves techniques to improve the performance, efficiency, and generalization of
Convolutional Neural Networks during training and inference.

• Goals:

a) Reduce overfitting.

b) Improve convergence speed.

c) Optimize computational resources.

• Common Strategies:

a) Data Augmentation

b) Regularization (L1, L2, Elastic Net)

c) Dropout & Early Stopping

d) Hyperparameter Optimization

e) Transfer Learning

Data Augmentation
• Data augmentation is a strategy used to artificially increase the size and

diversity of a training dataset by applying transformations to the existing
data.

• Purpose: Improve model generalization. Prevent overfitting.
Compensate for limited training data.

• Why? Increases effective training set size without extra data collection.

• Common Methods:

• Color jittering, cropping, flipping, rotations, scaling.

• PCA‐based color augmentation (as in AlexNet) (Krizhevsky et

al., Commun. ACM, 2017).

• Transfer learning approach using well-known CNN models
(GoogleNet, AlexNet, VGG16, VGG19, DenseNet, etc.) along with
data augmentation techniques can be used to accelerate the training
and testing process while yielding good results and performance.

• He et al. implemented data augmentation along with regularization

techniques such as dropouts and weight decay (CVPR, 2016).
Teerath et al. IEEE Access (2024)

Data Augmentation

Example of using preprocessing techniques along with the

well-known CNN models for COVID-19 and Lungs

Pneumonia detection using transfer learning.

Latif et al. AIMS Mathematics (2024)

• Geometric Transformations:

 Flipping: Horizontal and vertical flips.

 Rotation: Rotates images by a specified angle.

 Scaling: Resizes images while preserving aspect ratio.

 Cropping: Extracts subregions from the image.

• Color Transformations:

 Brightness Adjustment: Alters image brightness.

 Contrast Adjustment: Modifies contrast levels.

 Saturation Adjustment: Changes color saturation.

 Hue Adjustment: Shifts color hues.

• Noise Injection: Adds random noise to images to improve

robustness.

• Affine Transformations: Applies scaling, shearing, or

translation to the images.

Regularization methods

• Definition: Regularization refers to techniques that
improve a model's generalization by reducing overfitting
to the training data.

• Why Regularization? Deep learning models are prone
to overfitting due to high capacity and complex
structures. Regularization helps balance the trade-off
between model complexity and performance.

• L2 Regularization (Weight Decay)

• Penalizes the square of weights → discourages
large weight values, helps smooth solutions.

• L1 Regularization (Lasso)

• Penalizes the absolute value of weights →
encourages sparsity (some weights become zero).

• Elastic Net

• Combines L1 and L2 → can both shrink weights
and promote sparsity.

Dropout & Early Stopping
• Dropout

• Randomly “drops” neurons during training.

• Reduces co-adaptations among neurons →
mitigates overfitting.

• Early Stopping
Monitors validation performance and

halts training before overfitting sets in.

Balances bias/variance by stopping at the

optimal point.

https://www.pinecone.io/learn/regularization-in-neural-networks/ https://www.comet.com/site/blog/4-techniques-to-tackle-overfitting-in-deep-neural-networks/

Content

1 Introduction to Convolutional Neural Networks (CNN)

2 Popular CNN Architectures

4 Other Applications of CNNs

5 Statistical Generative Models for Unstructured Image Data

0 Unstructured Image Data and Challenges

3 CNN Optimization Techniques

Object Detection

What is Object Detection?

To determine: What objects are where?
-- Object bounding box: location and size
-- Object category.

By NIPS15-Faster RCNN

2001

VJ Det.
(P. Viola et al-01)

2006 2008

DPM
(P. Felzenszwalb et al-08, 10)HOG Det.

(N. Dalal et al-05）

Traditional Detection
Methods

Deep Learning based
Detection Methods

2004
…

201720162015

RCNN
(R. Girshick et al-14)

2014 2018

SPPNet
(K. He et al-14)

Fast RCNN
(R. Girshick-15)

Faster RCNN
(S. Ren et al-15)

Pyramid Networks
(T. Y. Lin et al-17)

YOLO (J. Redmon
et al-16,17)

SSD (W. Liu
et al-16)

Retina-Net
(T. Y. Lin et al-17)

Two-stage
detector

One-stage
detector

+ AlexNet

Wisdom of the cold weapon

Technical aesthetics of GPU

2012

Object Detection Milestones

2017201620152014 2018

2019

2019

84

Time: 14s/image on a GPU

• Object Proposal+CNN features
• Bounding Box Regression
• Fine tuning
• VOC07 mAP: 33.7→58.5

R-CNN: Regions with CNN features

Ross B. Girshick et al., (CVPR2014)

Drawbacks

• The redundant feature computations on a large number
of overlapped proposals (>2000 boxes/img) leads to an
extremely slow detection speed (14s per image with
GPU).

85

Definition: R-CNN is a deep learning framework for object detection introduced by Ross Girshick in 2014.

It integrates region proposals with CNNs to detect objects in an image effectively.

Key Contributions:

❖ Combines region proposals with CNN-based feature extraction.

❖ Demonstrates the use of transfer learning for detection tasks.

❖ Achieves significant performance improvements over traditional methods.

R-CNN: Regions with CNN features

Workflow of R-CNN:

➢ Input image is processed using Selective Search to generate region proposals.

➢ Each region is resized to 224x224 and passed through a CNN to extract features.

➢ SVM classifiers predict object categories for the proposals.

➢ Bounding box regression refines the coordinates of the proposals.

➢ Outputs are the predicted class labels and refined bounding boxes.

86

SPPNet: Spatial Pyramid Pooling

Kaiming He et al., (ECCV2014)

SPPnet is a deep learning framework designed to handle images of arbitrary sizes without requiring
cropping or resizing. It introduces the Spatial Pyramid Pooling (SPP) layer, which allows for flexible
input dimensions and improved computational efficiency.

87

Fast RCNN

Ross B. Girshick (ICCV15)

Time:
0.32s/image on a GPU

• ROI Pooling
• Multi-task loss (Clc. + BB Reg.)
• BP through RoI pooling layers
• VOC07 mAP: 58.5→70.0

Fast R-CNN is an object
detection framework
introduced by Ross Girshick in
2015. It improves upon the
inefficiencies of R-CNN by
introducing Region of Interest
(ROI) Pooling and enabling
shared computation, leading
to faster and more accurate
object detection.

88

Anchors (reference boxes)

Faster RCNN

Shaoqing Ren et al., (NIPS2015)

Time: 17 fps on a GPU

• Region Proposal Network
• Detection Network
• Sharing Features
• VOC07 mAP: 70.0→78.8

Faster R-CNN is a successor to Fast R-CNN and introduces the Region Proposal Network (RPN) for
generating region proposals, making the detection pipeline fully end-to-end.

• Runs at 45fps with VOC07 mAP=63.4% and VOC12 mAP=57.9%.

• A fast version runs at 155fps with VOC07 mAP=52.7%.

You Only Look Once (YOLO)

J. Redmon et al., (CVPR2016)

YOLO treats object detection as a single regression problem,

predicting both class probabilities and bounding box coordinates in

one forward pass.

Key Contributions:

❖ Introduces a unified framework for object detection, enabling

real-time performance.

❖ Processes the entire image in a single forward pass, improving

efficiency.

❖ Balances speed and accuracy, making it suitable for real-world

applications.

Workflow of YOLO

▪ Input Image: The input image is divided into an

 SXS grid (e.g., 7X7).

▪ Feature Extraction: A CNN processes the

image to extract features.

▪ Bounding Box Prediction: Each grid cell

predicts:

 Bounding boxes (coordinates and dimensions).

 Confidence scores for each bounding box.

▪ Classification: Each grid cell predicts class

probabilities for the objects it contains.

▪ Post-Processing: Non-Maximum Suppression

(NMS) removes duplicate detections and retains

the most confident predictions.

predict
predict
predict

SSD: Single Shot MultiBox Detector

Wei Liu et al., (ECCV2016)

(a) YOLO (b) SSD

predict

• Multi-resolution detec.
• Multi-reference detec. (anchor boxes)
• Hard negative mining
• VOC07 mAP=76.8%, VOC12 mAP=74.9%.
• The fast version runs at 59fps.

SSD performs object detection in a single forward pass, making it fast and
efficient compared to region-based methods like Faster R-CNN.
Key Contributions:
• Uses multi-scale feature maps for detecting objects of different sizes.
• Introduces default (prior) boxes for efficient bounding box predictions.
• Eliminates the need for separate region proposal steps, improving speed.

PASCAL VOC

Detection Datasets

ILSVRC MS-COCO Open Images

Detection Datasets

Detection accuracy improvement

VOC07 Train+val

- 5,011 imgs
- 12,608 objs
- 20 classes

MSCOCO Train+val

- 123,287 imgs
- 896,782 objs
- 80 classes

3D CNN

• Focus on volumetric or temporal information

3D Convolutional Neural Networks (3D CNNs) extend
the functionality of 2D CNNs by operating on three-
dimensional input data.

While 2D CNNs process spatial information in two
dimensions (height and width), 3D CNNs add a third
dimension, allowing them to capture volumetric or
temporal information.

• Overview of standard applications (e.g., video
sequences or 3D medical imaging) A 3D CNN architecture. (source: Handwritten Digit

Recognition Using CNN with Keras)

Difference Between 2D and 3D CNNs
• 2D CNNs: Apply convolution on 2D data (e.g., images) using 2D filters of size n×n. The input is a

matrix of shape m×m×r, where m is the spatial dimension and r is the number of channels. The
output is a set of 2D feature maps. The convolution operation in 2D CNN is defined as:

𝑓 ∗ 𝑥 𝑖, 𝑗 =

𝑚

𝑛

𝑥 𝑖 + 𝑚, 𝑗 + 𝑛 𝑓(𝑚, 𝑛)

 where f is the filter, x is the input, and ∗ represents the convolution.

• 3D CNNs: Perform convolution across three dimensions (height, width, and depth/temporal axis)
with 3D filters of size n×n×n. The input is a 3D tensor, m×m×m×r, capturing spatial and
depth/temporal dimensions. The output consists of 3D feature maps, providing deeper feature
representations. The convolution operation in 3D CNN is defined as:

𝑓 ∗ 𝑥 𝑖, 𝑗, 𝑘 =

𝑚

𝑛

𝑜

𝑥 𝑖 + 𝑚, 𝑗 + 𝑛, 𝑘 + 𝑜 𝑓(𝑚, 𝑛, 𝑜)

 where f is the 3D filter, x is the 3D input, and ∗ represents the 3D convolution.

Biomedical Applications for 3D CNNs

• Medical Imaging: 3D CNNs are highly effective for analyzing volumetric data from medical imaging
modalities, such as MRI, CT scans, or PET scans, where the input data are three-dimensional. For
example, in brain MRI, a 3D CNN can capture the spatial relationships between different brain
regions and predict clinical outcomes.

• Alzheimer’s Disease Prediction: By using 3D CNNs, researchers can analyze 3D brain scans to
detect subtle structural changes associated with Alzheimer’s disease (AD).

• Tumor Detection: In 3D CT or MRI scans, 3D CNNs can identify tumors by learning volumetric
patterns within the body, aiding in early diagnosis and treatment planning.

• Functional Connectivity Analysis: In neuroscience, 3D CNNs are employed to analyze 4D functional
MRI data (3D + time), helping to map brain connectivity and investigate conditions such as autism
or schizophrenia.

Biomedical Applications for 3D CNNs

A schematic
illustration of a tumor
classification system

with CNN
Yamashita et al.

Insights into Imaging
(2018)

A schematic illustration of a tumor segmentation system with CNN
Yamashita et al. Insights into Imaging (2018)

Medical Image Foundation Model (MIFM)

Spectrum of foundation models in medical image analysis

Shaoting Zhang and Dimitris Metaxas. On the challenges and perspectives of foundation models for medical image analysis. Medical Image Analysis, 2023.

1) Medical foundation models have immense potential in solving a wide range of

downstream tasks

2) Help to accelerate the development of accurate and robust models, reduce the

dependence on large amounts of labeled data

MIFM for Segmentation

Jun Ma, …, Bo Wang. Segment Anything in Medical Images. Nature Communications, 2024.

MedSAM: Segment Anything in Medical Images

1) Developed on a large-scale medical image

dataset with 1,570,263 image-mask pairs,

covering 10 imaging modalities and over 30

cancer types.

2) Evaluation on 86 internal validation tasks and 60

external validation tasks, demonstrating better

accuracy and robustness than modality-wise

specialist models.

3) Delivering accurate and efficient segmentation

across a wide spectrum of tasks.

Content

1 Introduction to Convolutional Neural Networks (CNN)

2 Popular CNN Architectures

3 Other Applications of CNNs

4 Statistical Generative Models for Unstructured Image Data

0 Unstructured Image Data and Challenges

Statistical Generative Models

❖ Object Size

❖ The Number of Objects

❖ Spatial Distribution of Objects

❖ The Signal of Noise Ratio

Latif, G., Alghazo, J., Khan, M. A., Brahim, G. B., Fawagreh, K., & Mohammad, N. (2024). Deep

convolutional neural network (CNN) model optimization techniques—Review for medical imaging. AIMS

Mathematics, 9(8), 20539-20571.

Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural networks: analysis,

applications, and prospects. IEEE transactions on neural networks and learning systems, 33(12), 6999-

7019.

Kumar, Teerath, Rob Brennan, Alessandra Mileo, and Malika Bendechache. "Image data augmentation

approaches: A comprehensive survey and future directions." IEEE Access (2024).

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an

overview and application in radiology. Insights into imaging, 9, 611-629.

Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., & Parmar, M. (2024). A review of convolutional

neural networks in computer vision. Artificial Intelligence Review, 57(4), 99.

Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object detection in 20 years: A survey. Proceedings of

the IEEE, 111(3), 257-276.

References

How to succeed in this course?

Practice

Explore

Visualize

Ask

Discuss

	Slide 1: Bios 740- Chapter 3.. Convolutional Neural Networks (CNN)
	Slide 2: Content
	Slide 3: Content
	Slide 4: Nature Image Data is Everywhere
	Slide 5: Major CV Tasks
	Slide 6: Other CV Tasks
	Slide 7: Medical Image Data is Everywhere
	Slide 8: Scenario Challenges
	Slide 9: High Dimensionality
	Slide 10: Spatial Relationships in Pixels
	Slide 11: Stability Under Geometric Transformations
	Slide 12: Additional Considerations
	Slide 13: Content
	Slide 14: Introduction to CNN
	Slide 15: CNN History and Categories
	Slide 16: Inspiration Behind CNN
	Slide 17: Inspiration Behind CNN
	Slide 18: Understanding Invariance in CNNs
	Slide 19: How Invariance Inspires CNN
	Slide 20: Key Components of CNN
	Slide 21: Feature Extraction Using Convolution
	Slide 22: Feature Extraction Using Convolution
	Slide 23: Understanding the Convolution Operation
	Slide 24: Exercises
	Slide 25: Understanding the Convolution Operation
	Slide 26: Cross-Correlation Operation
	Slide 27: Cross-Correlation Operation
	Slide 28: Cross-Correlation Operation
	Slide 29: Convolutional Layers
	Slide 30: Padding, Stride, and Pooling
	Slide 31: Padding
	Slide 32: Padding
	Slide 33: Padding
	Slide 34: Padding, Stride, and Pooling
	Slide 35: Stride
	Slide 36: Padding, Stride, and Pooling
	Slide 37: Pooling
	Slide 38: Average Pooling
	Slide 39: Maximum Pooling
	Slide 40: Average and Maximum Pooling
	Slide 41: Exercises
	Slide 42: Content
	Slide 43: ImageNet
	Slide 44: ImageNet
	Slide 45: CNN for Image Classification
	Slide 46: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	Slide 47: Key Components of CNNs
	Slide 48: AlexNet
	Slide 49: AlexNet
	Slide 50: AlexNet
	Slide 51: Visual Geometry Group (VGG) models
	Slide 52: VGG Models
	Slide 53: VGG models
	Slide 54: VGG models
	Slide 55: GoogLeNet
	Slide 56: GoogleNet Architecture
	Slide 57: Inception Module
	Slide 58: Inception Cell
	Slide 59: GoogLeNet
	Slide 60: GoogLeNet
	Slide 61: GoogLeNet
	Slide 62: Residual network (ResNet)
	Slide 63: Residual Block
	Slide 64: Residual Block
	Slide 65
	Slide 66: ResNet-50
	Slide 67: Squeeze‐and‐Excitation (SE) Networks
	Slide 68: Squeeze‐and‐Excitation (SE) Networks
	Slide 69: SENet
	Slide 70: MobileNet
	Slide 71: Trends, Challenges, & Future Directions
	Slide 72: Comparing Complexity
	Slide 73: Evaluation Metrics for Classification
	Slide 74: Content
	Slide 75: CNN Optimization Techniques
	Slide 76: Data Augmentation
	Slide 77: Data Augmentation
	Slide 78: Regularization methods
	Slide 79: Dropout & Early Stopping
	Slide 80: Content
	Slide 81: Object Detection
	Slide 82: What is Object Detection?
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Detection Datasets
	Slide 92: Detection Datasets
	Slide 93: Detection accuracy improvement
	Slide 94: 3D CNN
	Slide 95: Difference Between 2D and 3D CNNs
	Slide 96: Biomedical Applications for 3D CNNs
	Slide 97: Biomedical Applications for 3D CNNs
	Slide 98
	Slide 99
	Slide 100: Content
	Slide 101: Statistical Generative Models
	Slide 102
	Slide 103: How to succeed in this course?

