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Nature Image Data is Everywhere



Major CV Tasks



Self-driving Cars

Other CV Tasks



Medical Image Data is Everywhere



Scenario Challenges



High Dimensionality
• Key Feature:

• Images are inherently high-dimensional data. For example, a standard image in classification tasks with a 
resolution of 224×224224×224 and 3 color channels (RGB) 
has 224×224×3=150,528224×224×3=150,528 input dimensions.

• Each pixel represents a separate input feature, and the number of features grows quadratically with image 
resolution.

• Challenge:
• Fully connected networks scale poorly with such high-dimensional data. For even a shallow network, the 

number of weights can exceed 150,5282150,5282 (~22 billion). This massive number of weights:
• Increases the risk of overfitting, as more parameters require a proportional increase in training data.
• Results in impractical memory and computational requirements, especially for larger images.
• Slows down the training process significantly, making optimization difficult.

• Real-World Implication:
• As image resolution increases (e.g., 512×512512×512 or beyond for high-definition images), the 

dimensionality becomes even more unmanageable for fully connected networks.

• Solution: CNNs reduce the number of parameters by using shared weights (convolutional filters) and 
processing local regions of the image (kernels). This drastically decreases memory requirements and 
computational complexity.



• Key Feature:
• Nearby pixels in an image are statistically correlated and form local patterns or textures (e.g., edges, corners, 

and gradients). These local relationships are critical for understanding the content of an image.
• For example, in an image of a cat, nearby pixels may collectively form the texture of fur or the shape of an ear.

• Challenge:
• Fully connected networks ignore spatial relationships by treating all input pixels equally. They lack the notion 

of "locality" and process the relationship between each pixel and every other pixel, regardless of their 
proximity.

• This lack of spatial awareness means that a fully connected network cannot naturally exploit the structural 
dependencies within an image.

• If the pixels of an image are randomly permuted in the same way for both training and testing, a fully 
connected network can still learn, highlighting its disregard for spatial coherence.

• Real-World Implication:
• Without spatial awareness, models become inefficient and require a larger number of neurons to learn even 

basic patterns.

• Solution:
• CNNs address this by using local receptive fields to capture spatial relationships. Filters (kernels) process 

small, overlapping regions of an image, preserving spatial coherence and focusing on local patterns. This 
makes CNNs particularly effective for tasks like object detection and image segmentation.

Spatial Relationships in Pixels



Stability Under Geometric Transformations
• Key Feature:

• Images maintain their interpretation under geometric transformations such as translation, rotation, scaling, or 
flipping. For example:

• A tree remains recognizable as a tree even if shifted slightly to the left or rotated by a small angle.
• Similarly, a flipped or resized image of a cat does not change its underlying identity.

• This invariance is essential for real-world applications like autonomous driving or medical imaging, where 
objects may appear in various positions or orientations.

• Challenge:
• Fully connected networks treat each pixel independently and do not account for geometric transformations. A 

simple translation (e.g., shifting an image to the left by a few pixels) alters every pixel in the input vector, 
forcing the network to relearn patterns for each possible position.

• This redundancy results in inefficient learning and requires significantly more data to cover all potential 
transformations.

• Real-World Implication:
• Models that lack invariance to transformations are less robust in real-world scenarios where objects appear in 

varying contexts.

• Solution:
• CNNs inherently address this issue by leveraging translation invariance through shared filters. These 

filters recognize patterns (e.g., edges or textures) regardless of their position within the image.
• Data augmentation techniques, such as randomly rotating, flipping, or cropping images during training, 

further improve the model's ability to handle transformations.



Additional Considerations
• Noise in Images:

• Real-world images often contain noise (e.g., sensor artifacts, motion blur, or lighting 
variations). Fully connected networks struggle to differentiate between noise and meaningful 
patterns, further emphasizing the need for specialized architectures.

• CNNs are more robust to noise due to their focus on local features rather than individual pixel 
values.

• Scale and Hierarchy:
• Images often contain hierarchical features at multiple scales:

• Low-level features: edges, corners.
• Mid-level features: textures, patterns.
• High-level features: objects or entire scenes.

• Fully connected networks cannot naturally represent this hierarchy, while CNNs achieve this 
using multiple convolutional layers with increasing receptive fields.

• Conclusion The unique properties of unstructured image data pose significant challenges for fully 
connected networks. These challenges necessitate specialized architectures like CNNs, which 
leverage shared weights, local receptive fields, and hierarchical feature extraction to process 
images efficiently. Additionally, techniques like data augmentation and multi-scale analysis enhance 
the robustness of these models for real-world applications.
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Introduction to CNN
What Are CNNs?
CNNs are specialized deep learning architectures designed to process data with grid-like structures, such as 

images and videos. By leveraging the spatial structure of data, CNNs efficiently extract and learn hierarchical 

features, making them particularly well-suited for computer vision tasks like image classification, object 

detection, and segmentation.

In image and video processing, they are widely used for tasks such as classification, object detection, 

segmentation, and face recognition. 

In medical imaging, CNNs assist in detecting tumors and anomalies in X-rays and CT scans. 

In natural language processing (NLP), they process data as 1D inputs for tasks like sentence classification and text 

summarization. 

In autonomous driving, they enable real-time object detection for pedestrians, vehicles, and road signs.

CNNs’ applications



CNN History and Categories



Inspiration Behind CNN
CNNs were inspired by the layered architecture of the human visual 
cortex.

• Hierarchical architecture: Both CNNs and the visual cortex have 
a hierarchical structure, with simple features extracted in early 
layers and more complex features built up in deeper layers. This 
allows increasingly sophisticated representations of visual inputs.

• Local connectivity: Neurons in the visual cortex only connect to a 
local region of the input, not the entire visual field. Similarly, the 
neurons in a CNN layer are only connected to a local region of the 
input volume through the convolution operation. This local 
connectivity enables efficiency. 

Illustration of the correspondence between the areas associated with the 
primary visual cortex and the layers in a convolutional neural network (source)

https://www.researchgate.net/figure/2-Illustration-of-the-corrispondence-between-the-areas-associated-with-the-primary_fig7_317679065


Inspiration Behind CNN

• Translation invariance: 
Similar to visual cortex neurons can detect features regardless of their location in the visual field, pooling 

layers in a CNN provide a degree of translation invariance by summarizing local features.

• Multiple feature maps: 
At each stage of visual processing, there are many different feature maps extracted. CNNs mimic this 

through multiple filter maps in each convolution layer.

• Non-linearity: 
Neurons in the visual cortex exhibit non-linear response properties. CNNs achieve non-linearity through 

activation functions like ReLU applied after each convolution.



Understanding Invariance in CNNs

• What is Invariance?
• Invariance refers to properties or quantities that remain unchanged 

under certain transformations or operations.
• In the context of deep learning, invariance refers to a model's ability 

to recognize patterns regardless of certain transformations (e.g. 
Translation (shifting), Rotation, Scaling), as the model's output 
remains unchanged under certain transformations of the input.

• Why is Invariance Important?
• Aids in simplifying complex problems by focusing on constant 

factors.
• Real-world objects may appear in different positions, orientations, 

or scales.
• Models should recognize objects regardless of these variations.

• Limitations of Fully Connected Networks (MLPs)
• Do not inherently handle spatial hierarchies in data.
• Lack of invariance to translations and other transformations.

Shape Classes

http://sites.google.com/site/xiangbai/try-large.jpg

http://sites.google.com/site/xiangbai/animaldataset



How Invariance Inspires CNN

Invariance is a guiding principle in CNN architecture, enabling robust and efficient processing of complex 

visual data. By leveraging translation invariance, spatial hierarchies, weight sharing, and robustness to 

transformations, CNNs achieve exceptional performance in tasks. This combination of mathematical rigor and 

biological inspiration has made CNNs a cornerstone of modern computer vision.

• Convolutional Layers and Weight Sharing
• Convolutional layers apply the same filter across 

different spatial locations.
• Weight sharing reduces the number of 

parameters and captures local patterns.

• Translation Invariance
• Convolutions allow the detection of features 

regardless of their position.
• Pooling layers further enhance invariance by 

summarizing nearby outputs.

• Benefits for Visual Tasks
• Efficiently recognize objects in varied contexts.
• Improve generalization by focusing on relevant 

features.



Key Components of  CNN

• Convolutional layers

• Rectified Linear Unit (ReLU)

• Pooling layers

• Fully connected layers

Illustration of architecture of CNNs applied to digit recognition (source)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Feature Extraction Using Convolution

• Input, kernel, and output 

• Fully Connected Networks

• “fully connect” all the hidden units to 
all the input units. Only 
computationally feasible to learn 
features on the entire image for 
relatively small images.

• order of 106 parameters to learn for 
96x96 images. The feedforward and 
backpropagation computations 
would also be about 100 times 
slower, compared to 28x28 images.

• Locally Connected Networks



Feature Extraction Using Convolution

• Input, kernel, and output (right figure)

• Fully Connected Networks

• Locally Connected Networks

• A simple solution to this problem is to limit 

connections between hidden and input units, allowing 

each hidden unit to connect to only a small subset of 

input units, such as a contiguous region of pixels. For 

other data types different than images like audio, 

hidden units can be connected to specific time spans. 

This concept of local connections is inspired by the 

visual cortex, where neurons respond to stimuli in 

specific locations.

Illustration of Discrete 2D Convolution (source)

https://en.wikipedia.org/wiki/Convolution


Understanding the Convolution Operation

Whenever we have discrete objects, the integral turns into a sum. For instance, in CNN, we used 
discrete convolution  for vectors from the set of square-summable infinite-dimensional vectors 
defined as:

For two-dimensional tensors, we have a corresponding sum with (a,b) for f (i-a,j-b) for g, 
respectively:

What is convolution?
Mathematically, Convolution is defined as 𝑓, 𝑔: ℝ𝑛 → ℝ :

𝑓 ∗ 𝑔 𝒙 = න𝑓 𝒛 𝑔 𝒙 − 𝒛 𝑑𝑧 

𝑓 ∗ 𝑔 𝑖 = 

𝑎

𝑓 𝑖 𝑔 𝑖 − 𝑎

𝑓 ∗ 𝑔 𝑖, 𝑗 = 

𝑎



𝑏

𝑓 a, b 𝑔 𝑖 − 𝑎, 𝑗 − 𝑏



Exercises

1. Audio data is often represented as a one-dimensional sequence.
1. When might you want to impose locality and translation invariance for audio?
2. Derive the convolution operations for audio.
3. Can you treat audio using the same tools as computer vision? Hint: use the spectrogram.

2. Why might translation invariance not be a good idea after all? Give an example.
3. Do you think that convolutional layers might also be applicable for text data? Which problems 

might you encounter with language?
4. What happens with convolutions when an object is at the boundary of an image?
5. Prove that the convolution is symmetric, i.e., 𝑓 ∗  𝑔 =  𝑔 ∗ 𝑓



Understanding the Convolution Operation

Why convolution works for images?
Natural images have the property of being ”‘stationary”’, 

meaning that the statistics of one part of the image are the 

same as any other part. 

Formally, given some large r×c images xlarge, we first train a 

sparse autoencoder on small a×b patches xsmall sampled from 

these images, learning k features 𝑓 = 𝜎(𝑊(1)𝑋𝑠𝑚𝑎𝑙𝑙 + 𝑏(1)) 

(where σ is the sigmoid function), given by the weights 

W(1)and biases b(1) from the visible units to the hidden units. 

For every a×b patch xs in the large image, we compute 

fs = 𝜎(𝑊(1)𝑥𝑠 + 𝑏(1)) , giving us fconvolved, 

a k × (r−a+1) × (c−b+1) array of convolved features.

Illustration of Discrete 2D Convolution (source)

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/


Cross-Correlation Operation
In practice, convolution operations in CNN can be more accurately described as cross-correlations. 
In each convolution layer, an input tensor and a kernel tensor are combined to produce an output 
tensor through a cross-correlation operation.

Consider example:



Cross-Correlation Operation

Consider example:

In the two-dimensional cross-correlation operation, we begin with the convolution window positioned at the 

upper-left corner of the input tensor and slide it across the input tensor, both from left to right and top to bottom. 

When the convolution window slides to a certain position, the input subtensor contained in that window and the 

kernel tensor are multiplied elementwise and the resulting tensor is summed up yielding a single scalar value. 

This result gives the value of the output tensor at the corresponding location.

0 ×  0 + 1 ×  1 + 3 × 2 + 4 ×  3 = 19
 1 ×  0 + 2 × 1 + 4 ×  2 + 5 ×  3 = 25
 3 ×  0 + 4 ×  1 + 6 ×  2 + 7 ×  3 = 37
 4 ×  0 + 5 ×  1 + 7 ×  2 + 8 ×  3 = 43.



Cross-Correlation Operation

Note that along each axis, the output size is slightly 

smaller than the input size. Because the kernel has 

width and height greater than 1, we can only 

properly compute the cross-correlation for locations 

where the kernel fits wholly within the image.

Exercise:

Show that if convolution kernel size = 0, the 

convolution kernel implements an MLP 

independently for each set of channels. (Lin, M., 

Chen, Q., & Yan, S. (2013). Network in network. 

ArXiv:1312.4400. )

Illustration of Discrete 2D Convolution (source)

import torch

def corr2d(X, K):

    """Compute 2D cross-correlation."""

    h, w = K.shape

    Y = torch.zeros((X.shape[0] - h + 1, 

X.shape[1] - w + 1))

    for i in range(Y.shape[0]):

        for j in range(Y.shape[1]):

            Y[i, j] = (X[i:i + h, j:j + w] * 

K).sum()

    return Y

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/


Convolutional Layers

A convolutional layer cross-correlates the input and 
kernel and adds a scalar bias to produce an output. 
The two parameters of a convolutional layer are the 
kernel and the scalar bias. When training models 
based on convolutional layers, we typically initialize 
the kernels randomly.

We can implement a two-dimensional convolutional 
layer based on the corr2d function defined above. In 
the __init__ constructor method, we declare weight 
and bias as the two model parameters. The forward 
propagation method calls the corr2d function and 
adds the bias. 

Illustration of Discrete 2D Convolution (source)

import torch

class Conv2D(nn.Module):

    def __init__(self, kernel_size):

       super().__init__()

 self.weight = 

nn.Parameter(torch.rand(kernel_size))

 self.bias = 

nn.Parameter(torch.zeros(1))

    def forward(self, x):

        return corr2d(x, self.weight) + 

self.bias

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/


Padding, Stride, and Pooling

• Padding

• Zero-padding and why it's necessary (The pixels at the corner in the previous images are less 

counted than those in the middle)

• How padding affects the dimensions of the output

Illustration of padding effects (source)

https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-neural-network-3607be47480


Padding
One tricky issue when applying convolutional layers is that we tend to lose pixels on the perimeter of our image. 

The following figure depicts the pixel utilization as a function of the convolution kernel size and the position 

within the image. 

We can see that the pixels in the corners are hardly used at all.

Pixel utilization for convolutions of 1x1, 2x2, and 3x3 respectively.



Padding
One straightforward solution to this problem is to add extra pixels of filler around the boundary of our 

input image, thus increasing the effective size of the image. Typically, we set the values of the extra 

pixels to zero. 

Example on padding 3x3 input to 5x5 matrix:



Padding

In general, if we add a total of 𝑝ℎ rows of 

padding (roughly half on top and half on 

bottom) and a total of 𝑝𝑤 columns of padding 

(roughly half on the left and half on the right), 

the height and width of the output will increase 

by 𝑝ℎ and 𝑝𝑤, respectively.

In many cases, we will want to set 𝑝ℎ = 𝑘ℎ − 1 

and 𝑝𝑤 = 𝑘𝑤 − 1 to give the input and output 

the same height and width.

Example code to create a two-dimensional 

convolutional layer with a height and width of 3 

and apply 1 pixel of padding on all sides.

Illustration of Discrete 2D Convolution (source)

from torch import nn

# We define a helper function to calculate 

convolutions. It initializes the

# convolutional layer weights and performs 

corresponding dimensionality

# elevations and reductions on the input and 

output

def comp_conv2d(conv2d, X):

    # (1, 1) indicates that batch size and 

the number of channels are both 1

    X = X.reshape((1, 1) + X.shape)

    Y = conv2d(X)

    # Strip the first two dimensions: 

examples and channels

    return Y.reshape(Y.shape[2:])

# 1 row and column is padded on either side, 

so a total of 2 rows or columns are added

conv2d = nn.LazyConv2d(1, kernel_size=3, 

padding=1)

X = torch.rand(size=(8, 8))

comp_conv2d(conv2d, X).shape

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/


Padding, Stride, and Pooling
Stride

• Example with stride of 1 vs. 2

Illustration Convolution Operation with Stride Length = 1 Vs 2 (source)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Stride

We refer to the number of rows and columns 
traversed per slide as stride.
In general, when the stride for the height is 𝑠ℎ

 and the stride for the width is 𝑠𝑤, the output 
shape is
𝑛ℎ − 𝑘ℎ + 𝑝ℎ + 𝑠ℎ

𝑠ℎ
× ⌊

𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤 + 𝑠𝑤

𝑠𝑤
⌋.

If we set 𝑝ℎ = 𝑘ℎ − 1 and 𝑝𝑤 = 𝑘𝑤 − 1, this 
can be simplified as 

𝑛ℎ + 𝑠ℎ − 1

𝑠ℎ
× ⌊

𝑛𝑤 + 𝑠𝑤 − 1

𝑠𝑤
⌋.

Illustration of Discrete 2D Convolution (source)

from torch import nn

# Using same example 8x8 matrix X 

# If we set the strides on both the height 

and width to 2, thus halving the input 

height and width.

conv2d = nn.LazyConv2d(1, kernel_size=3, 

padding=1, stride=2)

comp_conv2d(conv2d, X).shape

# torch.Size([4, 4]) 

# A slightly more complicated example.

conv2d = nn.LazyConv2d(1, kernel_size=(3, 

5), padding=(0, 1), stride=(3, 4))

comp_conv2d(conv2d, X).shape

# torch.Size([2, 2]) 

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/


Padding, Stride, and Pooling

• Pooling

• Types: Max pooling, average pooling

• Role in reducing dimensionality

• Example: Pooling on an image

Illustration of 3x3 pooling over 5x5 convolved feature (source)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Pooling

When detecting lower-level features, such as edges, we often want our representations to be somewhat invariant to 

translation. For instance, if we take the image X with a sharp delineation between black and white and shift the whole 

image by one pixel to the right, i.e., Z[i, j] = X[i, j + 1], then the output for the new image Z might be vastly different. 

The edge will have shifted by one pixel. 

Pooling layers are introduced to serve the dual purposes of mitigating the sensitivity of convolutional layers to 

location and of spatially downsampling representations.

Unlike the cross-correlation computation of the inputs and kernels in the convolutional layer, the pooling layer 

contains no parameters. Instead, pooling operators are deterministic, typically calculating either the maximum or the 

average value of the elements in the pooling window. These operations are called maximum pooling (max-pooling) 

and average pooling, respectively.



Average Pooling
Average pooling is essentially as old as CNNs. The idea is akin to downsampling an image. Rather than just 

taking the value of every second (or third) pixel for the lower resolution image, we can average over adjacent 

pixels to obtain an image with better signal-to-noise ratio since we are combining the information from multiple 

adjacent pixels. 

https://blog.paperspace.com/a-comprehensive-exploration-of-pooling-in-neural-networks/

https://www.digitalocean.com/community/tutorials/pooling-in-convolutional-neural-networks



Maximum Pooling

Max-pooling was introduced in Riesenhuber and Poggio (1999) in the context of cognitive neuroscience to 

describe how information aggregation might be aggregated hierarchically for the purpose of object recognition; 

there already was an earlier version in speech recognition (Yamaguchi et al., 1990). 

In almost all cases, max-pooling is preferable to average pooling.

Consider example:

https://www.digitalocean.com/community/tutorials/pooling-in-convolutional-neural-networks



Average and Maximum Pooling

Example code implements the forward propagation 

of the pooling layer in the pool2d function. Unlike 

previous corr2d function, since no kernel is needed, 

we compute the output as either the maximum or the 

average of each region in the input.

def pool2d(X, pool_size, mode='max'):

    p_h, p_w = pool_size

    Y = torch.zeros((X.shape[0] - p_h + 1, 

X.shape[1] - p_w + 1))

    for i in range(Y.shape[0]):

        for j in range(Y.shape[1]):

            if mode == 'max':

                Y[i, j] = X[i: i + p_h, j: j + 

p_w].max()

            elif mode == 'avg':

                Y[i, j] = X[i: i + p_h, j: j + 

p_w].mean()

    return Y



Exercises
1. Implement average pooling through a convolution.
2. Prove that max-pooling cannot be implemented through a convolution alone.
3. Max-pooling can be accomplished using ReLU operations, i.e., 𝑅𝑒𝐿𝑈(𝑥)  =  max(0, 𝑥).

1. Express max(𝑎, 𝑏) by using only ReLU operations.
2. Use this to implement max-pooling by means of convolutions and ReLU layers.
3. How many channels and layers do you need for a 2 x 2 convolution? How many for a 3 x 3 

convolution?
4. What is the computational cost of the pooling layer? Assume that the input to the pooling layer 

is of size c x h x w, the pooling window has a shape of 𝑝ℎ  × 𝑝𝑤 with a padding of (𝑝ℎ, 𝑝𝑤) and 
a stride of (𝑠ℎ, 𝑠𝑤).

5. Why do you expect max-pooling and average pooling to work differently?
6. Do we need a separate minimum pooling layer? Can you replace it with another operation?
7. We could use the softmax operation for pooling. Why might it not be so popular?



Content

1 Introduction to Convolutional Neural Networks (CNN)

2 Popular CNN Architectures

4 Other Applications of CNNs

5 Statistical Generative Models for Unstructured Image Data

0 Unstructured Image Data and Challenges

3 CNN Optimization Techniques



ImageNet



ImageNet
What is ImageNet?

• Definition: ImageNet is a large-scale visual database designed to advance research in object detection, 
classification, and other computer vision tasks.
• Dataset Size: It contains over 14 million labeled images
spanning 20,000+ categories, with the most commonly used 
subset having 1,000 object categories.

Key Features of ImageNet

a)  Diversity of Classes:
Includes both broad categories (e.g., "dog," 
"car") and fine-grained subcategories (e.g., "golden retriever," "sports car").

b)  Real-World Images:
Images collected from the internet represent real-world complexity, including cluttered backgrounds, 
occlusions, and multiple objects.

c)  Hierarchical Organization:
Based on the WordNet hierarchy, where classes are semantically related, providing meaningful 
relationships between categories.



CNN for Image Classification
• Fundamental Challenge

• Distinguishing object classes (e.g., flowers, 
vehicles) in images/video

• Core steps: (1) Image preprocessing, (2) 
Feature extraction, (3) Classification

• Traditional vs. CNN Approach
• Traditional: 

• Manually engineered feature 
extraction + classifier → Often 
limited in complex tasks

• CNN:

• Learns hierarchical features directly 
from raw inputs (via convolution 
kernels)

• Scales well with large datasets → 
stronger generalization

Zhao et al. Artificial Intelligence Review (2024) 



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners



Key Components of  CNNs



AlexNet
• With high performance hardware (GPUs from 

Nvidia) and sufficiently rich data-set, Krizhevsky 
et al. proposed AlexNet (Alom et al. 2018), which 
consists of five convolution layers and three 
fully connected layers.

• Each convolution layer contains a convolution 
kernel, a bias term, a ReLU activation function, 
and a local response normalization (LRN) 
module.  

• In the 2012 ILSVRC, AlexNet won the 
competition with a Top-5 classification error rate 
of 16.4%, became the dividing line between 
traditional and deep learning algorithms, and was 
the first deep CNN model in modern times.

AlexNet Architecture

AlexNet



AlexNet
import torch

import torch.nn as nn

import torchvision.models as models

class AlexNet(nn.Module):
    def __init__(self, num_classes=1000):
    super(AlexNet, self).__init__()
  # Feature extraction layers
       self.features = nn.Sequential(
       nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),  # Conv1
       nn.ReLU(inplace=True),
       nn.MaxPool2d(kernel_size=3, stride=2),  # Pool1
            
      nn.Conv2d(64, 192, kernel_size=5, padding=2),  # Conv2
     nn.ReLU(inplace=True),
     nn.MaxPool2d(kernel_size=3, stride=2),  # Pool2
          
    nn.Conv2d(192, 384, kernel_size=3, padding=1),  # Conv3
    nn.ReLU(inplace=True),
    nn.Conv2d(384, 256, kernel_size=3, padding=1),  # Conv4
    nn.ReLU(inplace=True),
            

nn.Conv2d(256, 256, kernel_size=3, padding=1),  # Conv5
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2)  # Pool3
        )

 # Classifier layers
        self.classifier = nn.Sequential(
            nn.Dropout(),  # Dropout1
            nn.Linear(256 * 6 * 6, 4096),  # FC1
            nn.ReLU(inplace=True),
            nn.Dropout(),  # Dropout2
            nn.Linear(4096, 4096),  # FC2
            nn.ReLU(inplace=True),
            
            nn.Linear(4096, num_classes)  # FC3
        )

    def forward(self, x):
        # Pass through feature extraction layers
        x = self.features(x)
        x = torch.flatten(x, 1)  # Flatten the output
        # Pass through classifier layers
        x = self.classifier(x)
        return x



AlexNet

import torch

import torch.nn as nn

import torchvision.models as models

# ----- Load a pre-trained AlexNet -----

model_alexnet = models.alexnet(pretrained=True)

# ----- Forward Pass with Synthetic Data -----

# Create a single synthetic image tensor: batch size = 1, 3 color channels, 224x224 

resolution

x = torch.randn(1, 3, 224, 224)

# Run the forward pass

output_alex = model_alexnet(x)

print("\nOutput shape from AlexNet:", output_alex.shape)



Visual Geometry Group (VGG) models

• To examine the impact of a CNN’s depth on its 

accuracy, Karen Sengupta et al. (2019) conducted a 

comprehensive evaluation of the performance of 

network models with increasing  depth, while using 

smaller convolution filters (3 × 3) instead of the 

previous 5 × 5 kernels and proposed a series of Visual 

Geometry Group (VGG) models in 2014.

• The smaller kernel size lowers the computational 

complexity and the number of training parameters.

• Simultaneously, VGG supports the hypothesis that 

performance can be enhanced by continually 

deepening the network topology.

• In the 2014 ILSVRC, VGG won the competition in 

the Localization Task with a Top-5 classification 

error rate of 7.3%, Sengupta et al. Front Neurosci (2019) 



VGG Models
a) Increased Depth:

Depth allows VGG to learn hierarchical features, improving 

accuracy.

b) Simple Design:
Stacks of identical convolutional layers make it easy to 

scale the architecture.

c) Transfer Learning:

VGG models pretrained on ImageNet are widely used for 

transfer learning in other tasks.

d) Small Filters:
Using 3×3 filters results in fewer parameters compared to 

larger filters, while maintaining the receptive field size.

e) VGG-16:
16 layers: 13 convolutional layers and 3 fully connected layers.  

Parameters: ~138 million.

f)   VGG-19:
19 layers: 16 convolutional layers and 3 fully connected layers.

Parameters: ~143 million.



# Block 4

nn.Conv2d(256, 512, kernel_size=3, padding=1),  # Conv4_1

nn.ReLU(inplace=True),

nn.Conv2d(512, 512, kernel_size=3, padding=1),  # Conv4_2

nn.ReLU(inplace=True),

nn.Conv2d(512, 512, kernel_size=3, padding=1),  # Conv4_3

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=2, stride=2),  # Pool4

# Block 5

nn.Conv2d(512, 512, kernel_size=3, padding=1),  # Conv5_1

nn.ReLU(inplace=True),

nn.Conv2d(512, 512, kernel_size=3, padding=1),  # Conv5_2

nn.ReLU(inplace=True),

nn.Conv2d(512, 512, kernel_size=3, padding=1),  # Conv5_3

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=2, stride=2)  # Pool5

)

# Classification layers

        self.classifier = nn.Sequential(

            nn.Linear(512 * 7 * 7, 4096),  # FC1

            nn.ReLU(inplace=True),

            nn.Dropout(),

            nn.Linear(4096, 4096),  # FC2

            nn.ReLU(inplace=True),

            nn.Dropout(),

            nn.Linear(4096, num_classes)  # FC3

        )

    

import torch

import torch.nn as nn

import torchvision.models as models

class VGG16(nn.Module):

   def __init__(self, num_classes=1000):

   super(VGG16, self).__init__()    

   # Feature extraction layers

   self.features = nn.Sequential(

   # Block 1

   nn.Conv2d(3, 64, kernel_size=3, padding=1),  # Conv1_1

   nn.ReLU(inplace=True),

   nn.Conv2d(64, 64, kernel_size=3, padding=1),  # Conv1_2

   nn.ReLU(inplace=True),

   nn.MaxPool2d(kernel_size=2, stride=2),  # Pool1

   # Block 2

   nn.Conv2d(64, 128, kernel_size=3, padding=1), # Conv2_1

   nn.ReLU(inplace=True),

   nn.Conv2d(128, 128, kernel_size=3, padding=1), # Conv2_2

   nn.ReLU(inplace=True),

   nn.MaxPool2d(kernel_size=2, stride=2),  # Pool2

   # Block 3

   nn.Conv2d(128, 256, kernel_size=3, padding=1),  # Conv3_1

   nn.ReLU(inplace=True),

   nn.Conv2d(256, 256, kernel_size=3, padding=1),  # Conv3_2

   nn.ReLU(inplace=True),

   nn.Conv2d(256, 256, kernel_size=3, padding=1),  # Conv3_3

   nn.ReLU(inplace=True),

   nn.MaxPool2d(kernel_size=2, stride=2),  # Pool3

VGG models



def forward(self, x):

        # Pass through feature extraction layers

        x = self.features(x)

        x = torch.flatten(x, 1)  # Flatten the output

        # Pass through classifier layers

        x = self.classifier(x)

        return x

# Example usage

if __name__ == "__main__":

    # Initialize the model

    model = VGG16(num_classes=1000)

    print(model)

    # Test with a random input

    input_tensor = torch.randn(1, 3, 224, 224)  # Batch size = 1, 3 channels, 224x224 image

    output = model(input_tensor)

    print("Output shape:", output.shape)  # Should be [1, 1000] for 1000 classes

VGG models



GoogLeNet
• GoogleNet, also known as Inception-v1, is a deep CNN 

introduced by Szegedy et al. in 2014.

• It won the ILSVRC 2014 the Classification Task with a 
top-5 error rate of 6.67%, outperforming other models.

• Main Innovations: 

a) Inception Module enables the network to capture 
features at multiple scales while reducing 
computational cost. 

b) Dimension Reduction. Uses 1×1 convolutions for 
reducing dimensionality before applying larger 
filters, significantly reducing parameters.

c) Auxiliary Classifiers: Two intermediate softmax 
classifiers are added to help with gradient flow and 
prevent vanishing gradients.

• Motivation: Despite having 22 layers, GoogleNet has 
only ~5M parameters, significantly fewer than 
AlexNet (~60M) and VGG-16 (~138M).This is 
achieved using 1×11×1 convolutions for 
dimensionality reduction.

Szegedy et al. Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition (2015) 



GoogleNet Architecture

•Input Layer: 224×224×224×3 RGB image.
•Convolutional Layers: Apply 7×7, 1×1, or 3×3 filters 
to extract features.
•Inception Modules: Multi-scale processing 
with 1×1, 3×3, 5×5, and pooling operations.
•Auxiliary Classifiers: Intermediate softmax layers 
for training regularization.
•Global Average Pooling: Replaces fully connected 
layers with spatial pooling across feature maps.
Output Sizes:
•The output size at each stage is shown, 
demonstrating how spatial dimensions decrease 
progressively.



Inception Module

• Multi-Scale Feature Extraction: Processes feature maps at multiple scales for rich. representations.

• Dimensionality Reduction: 1 × 1 convolutions reduce computational costs while preserving important 
information.

• Efficiency: Deep networks can process large input data with fewer parameters compared to traditional 
architectures.

• Improved Generalization: Captures features across different abstraction levels.



Inception Cell 

Example architecture of inception
Zhao et al. Artificial Intelligence Review (2024) 



import torch

import torch.nn as nn

import torch.nn.functional as F

class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3_reduce, ch3x3, ch5x5_reduce, ch5x5, pool_proj):
        """
        Inception Module
        Args:
            in_channels: Input channels
            ch1x1: Number of filters for 1x1 convolution
            ch3x3_reduce: Number of filters for 1x1 convolution before 3x3 convolution
            ch3x3: Number of filters for 3x3 convolution
            ch5x5_reduce: Number of filters for 1x1 convolution before 5x5 convolution
            ch5x5: Number of filters for 5x5 convolution
            pool_proj: Number of filters for the projection from pooling
        """
        super(Inception, self).__init__()
        # 1x1 Convolution
        self.branch1 = nn.Sequential(
            nn.Conv2d(in_channels, ch1x1, kernel_size=1, bias=False),
            nn.BatchNorm2d(ch1x1),
            nn.ReLU(inplace=True) )
       

GoogLeNet

….

# 1x1 Convolution -> 3x3 Convolution

        self.branch2 = nn.Sequential(
            nn.Conv2d(in_channels, ch3x3_reduce, kernel_size=1, bias=False),
            nn.BatchNorm2d(ch3x3_reduce),
            nn.ReLU(inplace=True),
            nn.Conv2d(ch3x3_reduce, ch3x3, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(ch3x3),
            nn.ReLU(inplace=True)
        )
        # 1x1 Convolution -> 5x5 Convolution
        self.branch3 = nn.Sequential(
            nn.Conv2d(in_channels, ch5x5_reduce, kernel_size=1, bias=False),
            nn.BatchNorm2d(ch5x5_reduce),
            nn.ReLU(inplace=True),
            nn.Conv2d(ch5x5_reduce, ch5x5, kernel_size=5, padding=2, bias=False),
            nn.BatchNorm2d(ch5x5),
            nn.ReLU(inplace=True)
        )
        # 3x3 Pooling -> 1x1 Convolution
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            nn.Conv2d(in_channels, pool_proj, kernel_size=1, bias=False),
            nn.BatchNorm2d(pool_proj),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)
        return torch.cat([branch1, branch2, branch3, branch4], 1)



class GoogleNet(nn.Module):
    def __init__(self, num_classes=1000):
   super(GoogleNet, self).__init__()
        # Initial layers
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) 
        # Convolutions and pooling layers
        self.conv2 = nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(192)
        self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # Inception modules
        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

GoogLeNet

….

# Global Average Pooling and Fully Connected Layer
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(1024, num_classes)

    def forward(self, x):
        x = self.relu(self.bn1(self.conv1(x)))
        x = self.maxpool1(x)

        x = self.bn2(self.conv2(x))
        x = self.maxpool2(x)

        x = self.inception3a(x)
        x = self.inception3b(x)
        x = self.maxpool3(x)

        x = self.inception4a(x)
        x = self.inception4b(x)
        x = self.inception4c(x)
        x = self.inception4d(x)
        x = self.inception4e(x)
        x = self.maxpool4(x)

        x = self.inception5a(x)
        x = self.inception5b(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)
        return x



import torch

import torch.nn as nn

import torchvision.models as models

# Example usage
if __name__ == "__main__":
    # Initialize the model
    model = GoogleNet(num_classes=1000)
    print(model)

    # Test with a random input
    input_tensor = torch.randn(1, 3, 224, 224)  # Batch size = 1, 3 channels, 224x224 image
    output = model(input_tensor)
    print("Output shape:", output.shape)  # Should be [1, 1000] for 1000 classes

GoogLeNet



Residual network (ResNet)

• Degradation Problem: Deeper networks (e.g., >20 layers) suffered from degradation of accuracy, not just 

overfitting, but actual performance decline.

• Key Idea: Instead of learning the direct mapping (H(x)), ResNet learns the residual mapping  (F(x)=H(x)−x). 

This simplifies optimization and allows gradients to flow through skip connections, improving convergence . 

• Impact:

• Ease of Optimization: Learning residuals is simpler than learning direct mappings.

• Deeper Architectures: ResNet-152 outperforms shallower networks while maintaining high accuracy.

• State-of-the-art Results: Top-5 error dropped to ~3.6% on ImageNet (ILSVRC).

• Connection to Highway Networks (Srivastava et al., 2015): ResNet can be seen as a special, simplified 

case of highway layers where gates are mostly open.

• Residual connections enable building much deeper and more powerful networks by addressing gradient vanishing 

and “degradation” issues.



Residual Block

Illustration of a residual block
Zhao et al. Artificial Intelligence Review (2024) 

Building Block:

a) Input: x (feature map from the previous layer).
b) Path 1 (Residual Function):

i. 3×3 convolution -> Batch Normalization -> ReLU.
ii. 3×3 convolution -> Batch Normalization.

c) Path 2 (Skip Connection):
i. Identity mapping: Directly passes the input x.

d) Addition:
i. Output: F(x)+x (summation of the two paths).

e) Activation:
i. Apply ReLU to the combined output.

f) Output:
  Final feature map retains the same dimensions as the input.



import torch

import torch.nn as nn

import torchvision.models as models

# Define a Residual Block
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
# Skip connection
        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels)
            )

Residual Block

def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = nn.ReLU()(out)
        out = self.conv2(out)
       out = self.bn2(out)
       out += self.shortcut(x)
        out = nn.ReLU()(out)
        return out



ResNet-50 Architecture 

ResNet-50



# Define ResNet-50
class ResNet50(nn.Module):
    def __init__(self, num_classes=1000):
        super(ResNet50, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU()
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        
        # Define ResNet Blocks
        self.layer1 = self._make_layer(64, 256, 3)
        self.layer2 = self._make_layer(256, 512, 4, stride=2)
        self.layer3 = self._make_layer(512, 1024, 6, stride=2)
        self.layer4 = self._make_layer(1024, 2048, 3, stride=2)
        
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(2048, num_classes)
    
    def _make_layer(self, in_channels, out_channels, blocks, stride=1):
        layers = [ResidualBlock(in_channels, out_channels, stride)]
        for _ in range(1, blocks):
            layers.append(ResidualBlock(out_channels, out_channels))
        return nn.Sequential(*layers)

ResNet-50

def forward(self, x):
       x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)
        return x
# Instantiate and print the model
   model = ResNet50()
  print(model)



Squeeze‐and‐Excitation (SE) Networks

• Definition: Squeeze-and-Excitation (SE) 
Networks are CNN architectural units introduced 
by Hu et al. in the paper "Squeeze-and-Excitation 
Networks" (CVPR 2018).

• Objective: To improve channel-wise feature 
recalibration by explicitly modeling 
interdependencies between feature channels.

• Motivation: Standard convolutional operations 
treat all channels equally, potentially ignoring the 
inter-channel dependencies.

• SE blocks enhance channel sensitivity, allowing 
the network to emphasize important features and 
suppress irrelevant ones.



Squeeze‐and‐Excitation (SE) Networks

SENet Architecture
-- An Example Deep SE Network Structure for discriminating super- and 

typical enhancers by sequence information 
Luo et al. Computational Biology and Chemistry, 2023

a block of squeeze-and-excitation networks
Zhao et al. Artificial Intelligence Review (2024) 



import torch

import torch.nn as nn

import torchvision.models as models

 

class SEBlock(nn.Module):

    def __init__(self, in_channels, reduction=16):

        super(SEBlock, self).__init__()

        self.global_avg_pool = nn.AdaptiveAvgPool2d(1)  # Global average pooling

        self.fc1 = nn.Linear(in_channels, in_channels // reduction, bias=False)  # Compression

        self.relu = nn.ReLU(inplace=True)

        self.fc2 = nn.Linear(in_channels // reduction, in_channels, bias=False)  # Expansion

        self.sigmoid = nn.Sigmoid()  # Scale factor

    def forward(self, x):

        batch_size, channels, _, _ = x.size()

        # Squeeze: Global average pooling

        y = self.global_avg_pool(x).view(batch_size, channels)

        # Excitation: Fully connected layers with ReLU and Sigmoid

        y = self.fc1(y)

        y = self.relu(y)

        y = self.fc2(y)

        y = self.sigmoid(y).view(batch_size, channels, 1, 1)

        # Scale: Multiply the input by the channel weights

        return x * y

SENet



MobileNet
• Motivation: Traditional CNNs have large 

memory/computational demands, limiting 

deployment on mobile/embedded devices. 

• MobileNetV1 (Howard et al., 2017) achieves 

near‐VGG16 accuracy (~0.9% lower) with only 

1/32 of its parameters.

• Key Technique: Depthwise‐separable convolutions 

(factorizing standard convolution into “depthwise” + 

“pointwise”) → drastically fewer parameters and 

reduced FLOPs.

• Hyperparameters: Width multiplier and resolution 

multiplier to balance accuracy and efficiency.

• Drawback: Some kernels become zero during 

training → limited parameter utilization.

Architecture of MobileNetV1.
Howard et al. arXiv (2017) 



Trends, Challenges, & Future Directions

• Performance Comparisons of deep CNN networks show progressive accuracy improvements at varying 
parameter costs.

• Challenges:

1. Complexity & Resource Usage: Advanced CNNs can be large and memory‐intensive.

2. Data Dependence: Labeled large‐scale datasets are expensive and time‐consuming to obtain.

3. Loss of Fine‐grained Details: Typical CNNs may struggle with small‐sized inputs.



Comparing Complexity



Evaluation Metrics for Classification

TP, TN, FP, and FN represent 
true positives, true 
negatives, false positives, 
and false negatives, 
respectively.
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CNN Optimization Techniques

CNN optimization involves techniques to improve the performance, efficiency, and generalization of 
Convolutional Neural Networks during training and inference.

• Goals:  

a) Reduce overfitting.

b) Improve convergence speed.

c) Optimize computational resources.

• Common Strategies:

a) Data Augmentation

b) Regularization (L1, L2, Elastic Net)

c) Dropout & Early Stopping

d) Hyperparameter Optimization

e) Transfer Learning



Data Augmentation
• Data augmentation is a strategy used to artificially increase the size and 

diversity of a training dataset by applying transformations to the existing 
data.

• Purpose: Improve model generalization.  Prevent overfitting.  
Compensate for limited training data.

• Why? Increases effective training set size without extra data collection.

• Common Methods:

• Color jittering, cropping, flipping, rotations, scaling.

• PCA‐based color augmentation (as in AlexNet) (Krizhevsky et 

al., Commun. ACM, 2017). 

• Transfer learning approach using well-known CNN models 
(GoogleNet, AlexNet, VGG16, VGG19, DenseNet, etc.) along with 
data augmentation techniques can be used to accelerate the training 
and testing process while yielding good results and performance.

• He et al. implemented data augmentation along with regularization 

techniques such as dropouts and weight decay (CVPR, 2016).
Teerath et al. IEEE Access (2024) 



Data Augmentation

Example of using preprocessing techniques along with the 

well-known CNN models for COVID-19 and Lungs 

Pneumonia detection using transfer learning.

Latif et al. AIMS Mathematics (2024) 

• Geometric Transformations:

   Flipping: Horizontal and vertical flips.

   Rotation: Rotates images by a specified angle.

   Scaling: Resizes images while preserving aspect ratio.

   Cropping: Extracts subregions from the image.

• Color Transformations:

   Brightness Adjustment: Alters image brightness.

   Contrast Adjustment: Modifies contrast levels.

   Saturation Adjustment: Changes color saturation.

   Hue Adjustment: Shifts color hues.

• Noise Injection: Adds random noise to images to improve 

robustness.

• Affine Transformations: Applies scaling, shearing, or 

translation to the images.



Regularization methods

• Definition: Regularization refers to techniques that 
improve a model's generalization by reducing overfitting 
to the training data.

• Why Regularization? Deep learning models are prone 
to overfitting due to high capacity and complex 
structures. Regularization helps balance the trade-off 
between model complexity and performance.

• L2 Regularization (Weight Decay)

• Penalizes the square of weights → discourages 
large weight values, helps smooth solutions.

• L1 Regularization (Lasso)

• Penalizes the absolute value of weights → 
encourages sparsity (some weights become zero).

• Elastic Net

• Combines L1 and L2 → can both shrink weights 
and promote sparsity.



Dropout & Early Stopping
• Dropout

• Randomly “drops” neurons during training.

• Reduces co-adaptations among neurons → 
mitigates overfitting.

• Early Stopping
Monitors validation performance and 

halts training before overfitting sets in.

Balances bias/variance by stopping at the 

optimal point.

https://www.pinecone.io/learn/regularization-in-neural-networks/ https://www.comet.com/site/blog/4-techniques-to-tackle-overfitting-in-deep-neural-networks/



Content

1 Introduction to Convolutional Neural Networks (CNN)

2 Popular CNN Architectures

4 Other Applications of CNNs

5 Statistical Generative Models for Unstructured Image Data

0 Unstructured Image Data and Challenges

3 CNN Optimization Techniques



Object Detection



What is Object Detection?

To determine: What objects are where?
-- Object bounding box: location and size
-- Object category.

By NIPS15-Faster RCNN
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Time: 14s/image on a GPU

• Object Proposal+CNN features
• Bounding Box Regression
• Fine tuning 
• VOC07 mAP: 33.7→58.5

R-CNN: Regions with CNN features

Ross B. Girshick et al., (CVPR2014)

Drawbacks

• The redundant feature computations on a large number 
of overlapped proposals (>2000 boxes/img) leads to an 
extremely slow detection speed (14s per image with 
GPU).



85

Definition: R-CNN is a deep learning framework for object detection introduced by Ross Girshick in 2014. 

It integrates region proposals with CNNs to detect objects in an image effectively.

Key Contributions:

❖ Combines region proposals with CNN-based feature extraction.

❖ Demonstrates the use of transfer learning for detection tasks.

❖ Achieves significant performance improvements over traditional methods.

 

R-CNN: Regions with CNN features

Workflow of R-CNN:

➢  Input image is processed using Selective Search to generate region proposals.

➢  Each region is resized to 224x224 and passed through a CNN to extract features.

➢  SVM classifiers predict object categories for the proposals.

➢  Bounding box regression refines the coordinates of the proposals.

➢  Outputs are the predicted class labels and refined bounding boxes.
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SPPNet: Spatial Pyramid Pooling

Kaiming He et al., (ECCV2014)

SPPnet is a deep learning framework designed to handle images of arbitrary sizes without requiring 
cropping or resizing. It introduces the Spatial Pyramid Pooling (SPP) layer, which allows for flexible 
input dimensions and improved computational efficiency.
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Fast RCNN

Ross B. Girshick (ICCV15)

Time:
0.32s/image on a GPU

• ROI Pooling
• Multi-task loss (Clc. + BB Reg.)
• BP through RoI pooling layers
• VOC07 mAP: 58.5→70.0

Fast R-CNN is an object 
detection framework 
introduced by Ross Girshick in 
2015. It improves upon the 
inefficiencies of R-CNN by 
introducing Region of Interest 
(ROI) Pooling and enabling 
shared computation, leading 
to faster and more accurate
object detection.
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Anchors (reference boxes) 

Faster RCNN

Shaoqing Ren et al., (NIPS2015)

Time: 17 fps on a GPU

• Region Proposal Network
• Detection Network
• Sharing Features
• VOC07 mAP: 70.0→78.8

Faster R-CNN is a successor to Fast R-CNN and introduces the Region Proposal Network (RPN) for 
generating region proposals, making the detection pipeline fully end-to-end.



• Runs at 45fps with VOC07 mAP=63.4% and VOC12 mAP=57.9%. 

• A fast version runs at 155fps with VOC07 mAP=52.7%.

You Only Look Once (YOLO)

J. Redmon et al., (CVPR2016)

YOLO treats object detection as a single regression problem, 

predicting both class probabilities and bounding box coordinates in 

one forward pass.

Key Contributions:

❖  Introduces a unified framework for object detection, enabling 

real-time performance.

❖ Processes the entire image in a single forward pass, improving 

efficiency.

❖ Balances speed and accuracy, making it suitable for real-world 

applications.

Workflow of YOLO

▪ Input Image: The input image is divided into an 

     SXS grid (e.g., 7X7).

▪ Feature Extraction: A CNN processes the 

image to extract features.

▪ Bounding Box Prediction: Each grid cell 

predicts:

        Bounding boxes (coordinates and dimensions).         

        Confidence scores for each bounding box.

▪ Classification: Each grid cell predicts class 

probabilities for the objects it contains.

▪ Post-Processing: Non-Maximum Suppression 

(NMS) removes duplicate detections and retains 

the most confident predictions.



predict
predict
predict

SSD: Single Shot MultiBox Detector

Wei Liu et al., (ECCV2016)

(a) YOLO (b) SSD

predict

• Multi-resolution detec.
• Multi-reference detec. (anchor boxes)
• Hard negative mining
• VOC07 mAP=76.8%, VOC12 mAP=74.9%. 
• The fast version runs at 59fps.

SSD performs object detection in a single forward  pass, making it fast and 
efficient compared to region-based methods like Faster R-CNN.
Key Contributions:
• Uses multi-scale feature maps for detecting objects of different sizes.
• Introduces default (prior) boxes for efficient bounding box predictions.
• Eliminates the need for separate region proposal steps, improving speed.



PASCAL VOC

Detection Datasets

ILSVRC MS-COCO Open Images



Detection Datasets



Detection accuracy improvement

VOC07 Train+val

- 5,011 imgs
- 12,608 objs
- 20 classes

MSCOCO Train+val

- 123,287  imgs
- 896,782 objs
- 80 classes



3D CNN

• Focus on volumetric or temporal information

3D Convolutional Neural Networks (3D CNNs) extend 
the functionality of 2D CNNs by operating on three-
dimensional input data.

While 2D CNNs process spatial information in two 
dimensions (height and width), 3D CNNs add a third 
dimension, allowing them to capture volumetric or 
temporal information.

• Overview of standard applications (e.g., video 
sequences or 3D medical imaging) A 3D CNN architecture. (source: Handwritten Digit 

Recognition Using CNN with Keras)



Difference Between 2D and 3D CNNs
• 2D CNNs: Apply convolution on 2D data (e.g., images) using 2D filters of size n×n. The input is a 

matrix of shape m×m×r, where m is the spatial dimension and r is the number of channels. The 
output is a set of 2D feature maps. The convolution operation in 2D CNN is defined as:

𝑓 ∗ 𝑥 𝑖, 𝑗 = 

𝑚



𝑛

𝑥 𝑖 + 𝑚, 𝑗 + 𝑛 𝑓(𝑚, 𝑛)

 where f is the filter, x is the input, and ∗ represents the convolution.

• 3D CNNs: Perform convolution across three dimensions (height, width, and depth/temporal axis) 
with 3D filters of size n×n×n. The input is a 3D tensor, m×m×m×r, capturing spatial and 
depth/temporal dimensions. The output consists of 3D feature maps, providing deeper feature 
representations. The convolution operation in 3D CNN is defined as:

𝑓 ∗ 𝑥 𝑖, 𝑗, 𝑘 = 

𝑚



𝑛



𝑜

𝑥 𝑖 + 𝑚, 𝑗 + 𝑛, 𝑘 + 𝑜 𝑓(𝑚, 𝑛, 𝑜)

 where f is the 3D filter, x is the 3D input, and ∗ represents the 3D convolution.



Biomedical Applications for 3D CNNs

• Medical Imaging: 3D CNNs are highly effective for analyzing volumetric data from medical imaging 
modalities, such as MRI, CT scans, or PET scans, where the input data are three-dimensional. For 
example, in brain MRI, a 3D CNN can capture the spatial relationships between different brain 
regions and predict clinical outcomes.

• Alzheimer’s Disease Prediction: By using 3D CNNs, researchers can analyze 3D brain scans to 
detect subtle structural changes associated with Alzheimer’s disease (AD).

• Tumor Detection: In 3D CT or MRI scans, 3D CNNs can identify tumors by learning volumetric 
patterns within the body, aiding in early diagnosis and treatment planning.

• Functional Connectivity Analysis: In neuroscience, 3D CNNs are employed to analyze 4D functional 
MRI data (3D + time), helping to map brain connectivity and investigate conditions such as autism 
or schizophrenia.



Biomedical Applications for 3D CNNs

A schematic 
illustration of a tumor 
classification system 

with CNN 
Yamashita et al. 

Insights into Imaging 
(2018) 

A schematic illustration of a tumor segmentation system with CNN 
Yamashita et al. Insights into Imaging (2018) 



Medical Image Foundation Model (MIFM)

Spectrum of foundation models in medical image analysis

Shaoting Zhang and Dimitris Metaxas. On the challenges and perspectives of foundation models for medical image analysis. Medical Image Analysis, 2023.

1) Medical foundation models have immense potential in solving a wide range of 

downstream tasks

2) Help to accelerate the development of accurate and robust models, reduce the 

dependence on large amounts of labeled data



MIFM for Segmentation

Jun Ma, …, Bo Wang. Segment Anything in Medical Images. Nature Communications, 2024.

MedSAM: Segment Anything in Medical Images

1) Developed on a large-scale medical image 

dataset with 1,570,263 image-mask pairs, 

covering 10 imaging modalities and over 30 

cancer types.

2) Evaluation on 86 internal validation tasks and 60 

external validation tasks, demonstrating better 

accuracy and robustness than modality-wise 

specialist models. 

3) Delivering accurate and efficient segmentation 

across a wide spectrum of tasks.



Content

1 Introduction to Convolutional Neural Networks (CNN)

2 Popular CNN Architectures

3 Other Applications of CNNs

4 Statistical Generative Models for Unstructured Image Data

0 Unstructured Image Data and Challenges 



Statistical Generative Models

❖ Object Size

❖ The Number of Objects

❖ Spatial Distribution of Objects

❖ The Signal of Noise Ratio
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