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Neural Network Basics

Recap:

What is the relationship between neural network and deep learning?

What are the three types of layers in neural network?

Neurons (Nodes)

• Fundamental units of a neural network.

• Receive input signals and perform 

computations and produce an output.

• Neurons in hidden and output layers may

use activation functions.

• Activation functions introduce non-

linearities for learning complex patterns.



Neural Network Basics
Channels (connections)

• The information is transferred from one layer

(or neurons) to another layer (or neurons) over

connecting channels.

• Each connection is associated with a weight 

value that determines the strength of the 

connection. These weights can be adjusted 

during training to influence the network's 

behavior.

• The output of one neuron is multiplied by the 

weight of the connection and passed as input to 

the connected neuron in the subsequent layer.

0.8

0.1

0.6

0.3

Weight



Neural Network Basics

Bias

• Biases are also adjustable parameters associated 

with the connections between neurons in neural 

networks, which is added to the weighted sum 

of inputs at each neuron and then applied to

activation function.

• It allows the network to account for potential 

systematic errors or deviations from the ideal 

relationship between inputs and outputs.

• Bias is conceptually similar to the intercept in 

linear regression, providing flexibility for the 

network to fit data more accurately.
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Neural Network Basics

Activation function

• Activation functions are threshold values that 

introduce non-linearities into the neural 

network, enabling it to comprehend complex 

relationships between inputs and outputs.

• Common activation functions: sigmoid, tanh, 

ReLU (Rectified Linear Unit), and softmax.

• The results of the activation function determine

if the particular neuron will get activated or not.

• An activated neuron transmits data (or

information) to the neurons of the next layer

through channels.
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Training of  a Neural Network

2 Steps:

1. Forward Propagation

2. Backpropagation

• Forward propagation is how neural networks make predictions.

• Involves passing input data through the network layer by layer to the 

output.

• Backpropagation is the process of adjusting the weights of the 

network by propagating through the neural network backward.

• Involves calculating the gradient of the loss function with respect 

to each weight by the chain rule.

• The weights are adjusted in the direction that reduces the loss.

Forward Propagation

Backpropagation

Both steps are iteratively repeated for several epochs to minimize the 

loss and improve the model's accuracy.



Modern DL Model Architectures

1
• Key Features: Utilizes convolutional layers to 

process data in a grid pattern (like images).

• Key Components:

• Convolutional Layers: Extract features from 

input images using filters.

• Pooling Layers: Reduce dimensions and 

computational load, retaining key information.

• Fully Connected Layers: Classify images based 

on extracted features.

• Example Models: LeNet-5, AlexNet, VGGNet.

Convolutional Neural Networks (CNNs)

• Applications in Biomedicine:

• Image classification in diagnostics 

(e.g., cancer detection from scans).

• Image segmentation for identifying 

regions of interest in medical images.

Figure. Basic CNN structure.
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Modern DL Model Architectures

• Key Features: Processes sequences of data (time-

series data), with memory of previous inputs,

capturing temporal dynamics.

• Unique Feature: Loop-like architecture allowing 

previous outputs to be used as inputs while having 

hidden states, enabling information persistence.

• Challenges & Solutions: Problem of vanishing 

gradients; solved by advanced RNNs, e.g. LSTM and 

GRU.

• Example Models: LSTM (Long Short-Term 

Memory), GRU (Gated Recurrent Unit).

Recurrent Neural Networks (RNNs)

• Applications in Biomedicine:

• Analysis of sequential patient data in 

EHRs.

• Time-series analysis in physiological 

signal processing.
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Modern DL Model Architectures

• Key Features: U-shaped architecture with symmetric encoder 
and decoder paths.  Skip connections that concatenate feature 
maps from encoder to decoder

• Structure: Encoder: Series of convolutional and max-pooling 
layers that capture context. Bottleneck: Intermediate layer 
connecting encoder and decoder.   Decoder: Series of up-
convolution and concatenation layers that restore resolution. 
Final Layer: Convolutional layer that maps features to the desired 
output.

• Types: 2D/3D U-Net, Attention U-Net. 

U-Net

• Applications in Biomedicine: Medical image segmentation. 
Satellite image segmentation. Biomedical image analysis.  
Autonomous driving. General image segmentation tasks.

U-Net for segmenting HeLa cells. The U-Net has an 
encoder-decoder structure, in which the representation is 
downsampled (orange blocks) and then re-upsampled (blue 
blocks). The encoder uses regular convolutions, and the 
decoder uses transposed convolutions. Residual 
connections append the last representation at each scale in 
the encoder to the first representation at the same scale
in the decoder (orange arrows).
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Modern DL Model Architectures

• Key Features: Unsupervised learning models for 

dimensionality reduction and feature learning.

• Structure: Composed of an encoder (compressing input) 

and a decoder (reconstructing input).

• Types: Standard Autoencoders, Variational Autoencoders 

(VAEs).

Autoencoders

• Applications in Biomedicine:

• Data denoising (e.g., removing noise from images).

• Anomaly detection in medical imaging (e.g., identifying 

unusual patterns).

Figure 1. Visualization of an autoencoder

Figure 2. Autoencoders are a specific type of feedforward 

neural networks where the input is the same as the output.



5

Modern DL Model Architectures

• Key Features: Ability to process graph-structured data. Utilizes 

node features and graph topology for learning. Effective in 

capturing dependencies between nodes.   Supports inductive and 

transductive learning.

• Structure: Nodes, Edges,  Node Features, Graph Convolution, 

and Readout Layer.

• Types: Graph Convolutional Networks (GCNs),  Graph Attention 

Networks (GATs), Graph Recurrent Networks (GRNs), Graph 

Autoencoders, Graph U-Net

Graph Neural Network

• Applications in Biomedicine:

Social Network Analysis, Knowledge Graphs, Drug Discovery, 

Recommender Systems, Network Security

Graph U-Net

GNN GAT
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Modern DL Model Architectures

• Key Features: Comprises two neural networks, a 

generator and a discriminator, competing against each 

other.

• Mechanism: 

• Generator creates images, trying to fool the 

discriminator by generating data similar to those in 

the training set.

• Discriminator evaluates them, trying to distinguish

between fake data and real data

• Example Models: DCGAN, Pix2Pix, CycleGAN.

Generative Adversarial Networks (GANs)

• Applications in Biomedicine:

• Generate high-resolution images from 

low-resolution inputs, enabling 

improved image quality.

• Data augmentation in medical 

imaging for robust model training.

Figure. Visualization of the flow of GAN



Figure. Transformer architecture
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Modern DL Model Architectures

• Key Features: Utilizes self-attention mechanisms,

excellent for handling sequences of data.

• Key Innovation: Following an encoder-decoder structure,

eliminating recurrence and convolutions.

• Example Models: BERT (adapted for biomedical 

applications), AlphaFold.

Transformer Models

• Applications in Biomedicine:

• Genomic sequence analysis for personalized medicine.

• Protein structure prediction (e.g., AlphaFold's 

breakthroughs).
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Modern DL Model Architectures

• Key Features: DRL leverages neural networks to approximate 

value functions and policies, enabling agents to learn complex 

tasks from high-dimensional sensory inputs. 

• Key Components: Agent, Environment, Reward, Policy, and 

Value Function.

• Example Models: DQN (Deep Q-Network), A3C 

(Asynchronous Advantage Actor-Critic), PPO (Proximal Policy 

Optimization) ,SAC (Soft Actor-Critic)

Deep Reinforcement Learning

• Applications:

• Game Playing;  Robotics

• Autonomous Vehicles; Healthcare



Types of  Deep Learning

Deep 

Learning

Unsupervised 

Learning

Supervised 

Learning
Reinforcement 

Learning
Neural network learns to make 

predictions or classify data 

based on the labeled datasets.

CNN

RNN

An agent learns to make decisions in 

an environment to maximize a 

reward signal. The agent interacts 

with the environment by taking action 

and observing the resulting rewards.

The neural network learns to 

discover the patterns or to cluster the 

dataset based on unlabeled datasets. 

There are no target variables.

Autoencoders

Generative 

Model

Deep Q 

Network

DDPG

…
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Perceptron Model

• Definition: The perceptron is a fundamental building block of artificial neural networks, 

inspired by the biological neuron.

• You can think of a perceptron as a single neuron in previous diagram, which is called Perceptron

in neural network.

• Functionality: It takes multiple input signals, applies weights and bias, and produces a binary 

output.

• Purpose: Originally designed for binary classification tasks.

• Activation Function: Initially utilizes a step function for activation.



Anatomy of  a Perceptron

…
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Non-linear

activation function

ො𝑦 =Output

Enough?

One more term -

Bias

Step function



Anatomy of  a Perceptron

…

𝑥1

𝑥2

𝑥3

𝑥𝑝

Inputs

𝚺

𝑤1

𝑤2

𝑤3

𝑤𝑝

ෝ𝒚

Weights Sum Non-linearity Output

𝑏 + ෍
𝑖=1

𝑝

𝑥𝑖𝑤𝑖

Linear combinations

of inputs

𝑔

Non-linear

activation function

ො𝑦 =Output

1

𝑏

bias

Write in matrix:

ො𝑦 = 𝑔 (𝑏 + 𝑿𝑇𝑾)

where 𝑿 =

𝑥1
𝑥2

…
𝑥𝑝

and

𝑾 =

𝑤1
𝑤2

…
𝑤𝑝

.



Perceptron Model in PyTorch from Scratch

# Define the Perceptron model

class Perceptron(torch.nn.Module):

def __init__(self, input_size):

super(Perceptron, self).__init__()

self.weights = torch.nn.Parameter(torch.rand(input_size, 1),requires_grad=True)

self.bias = torch.nn.Parameter(torch.rand(1), requires_grad=True)

def forward(self, x):

z = torch.matmul(x, self.weights) + self.bias

return torch.sigmoid(z)

# Create the Perceptron model

input_size = 2 # Number of input features

model = Perceptron(input_size)

# Forward pass

outputs = model(X)

Code available in Chapter2 Perceptron Model.ipynb

Inputs

𝑝

𝑊

𝑏

Sum

Activation function
Step function is discontinuous and non-

differentiable. Driven by the need for 

differentiability, better gradient 

information, versatility, and improved 

training stability, researchers preferred the 

sigmoid function and other smooth 

activation functions.



Perceptron: Simplified

…

𝑥1

𝑥2

𝑥𝑝

𝑧

𝑤1

𝑤2

𝑤𝑝

𝑦 = 𝑔 (𝑧),

where

𝑿 =

𝑥1
𝑥2

…
𝑥𝑝

and 𝑾 =

𝑤1
𝑤2

…
𝑤𝑝

.

𝑧 = 𝑏 + 𝑿𝑇𝑾𝑦 = 𝑔(𝒛)

Q: What if I want to have multiple outputs, e.g. 𝑦1 and 𝑦2?



Multi Output Perceptron

…

𝑥1

𝑥2

𝑥𝑝

𝑧1
𝑦1 = 𝑔(𝑧1)

𝑧2
𝑦2 = 𝑔(𝑧2)

𝑧1 = 𝑏1 + 𝑿𝑇𝑾𝟏

𝑧2 = 𝑏2 + 𝑿𝑇𝑾𝟐

More?



Multi Output Perceptron

…

𝑥1

𝑥2

𝑥𝑝

𝑧1

𝑧2

𝑧1 = 𝑏1 + 𝑿𝑇𝑾𝟏

𝑧2 = 𝑏2 + 𝑿𝑇𝑾𝟐

𝑧3

𝑧4

𝑦1 = 𝑔(𝑧1)

𝑦3 = 𝑔(𝑧3)

𝑦2 = 𝑔(𝑧2)

𝑦4 = 𝑔(𝑧4)

𝑧3 = 𝑏3 + 𝑿𝑇𝑾𝟑

𝑧4 = 𝑏4 + 𝑿𝑇𝑾𝟒



Multi Output Perceptron

…

𝑥1

𝑥2

𝑥𝑝

𝑧1

𝑧2

𝑧3

𝑧4

𝑦1 = 𝑔(𝑧1)

𝑦3 = 𝑔(𝑧3)

𝑦2 = 𝑔(𝑧2)

𝑦4 = 𝑔(𝑧4)

𝑧𝑚

…
𝑦𝑚 = 𝑔(𝑧𝑚)

Corresponding code in PyTorch:

nn.Linear(input_size, output_size)

The number of input features: 𝑝

The number of output features: 𝑚

Unlike a single perceptron that makes one prediction, 

this network is capable of making multiple predictions 

simultaneously due to its multiple output nodes.



Single-Layer Neural Network

…

𝑥1

𝑥2

𝑥𝑝

𝑧1

𝑧2

𝑧3

𝑧4

𝑔(𝑧1)

𝑔(𝑧3)

𝑔(𝑧2)

𝑔(𝑧4)

𝑧𝑚

…
𝑔(𝑧𝑚)

ෞ𝑦1

ෞ𝑦2

𝑾(𝟏) 𝑾(𝟐)

Inputs Output

Hidden Layer

𝒛 = 𝒃𝒛 + 𝑿𝑇𝑾(𝟏)

Hidden layer:

ෝ𝒚 = 𝒃𝒚 + 𝑿𝑇𝑾(𝟐)

Output:

“Single layer” refers to a 

network that has one layer of 

hidden nodes between the input 

and the output layers.

self.hidden = nn.Linear(3, m)

self.output = nn.Linear(m, 2)

Corresponding code:



Shallow Neural Networks

Prince (2023)



Multilayer Perceptrons (MLP)
• Definition: A Multilayer Perceptron (MLP) is a class of feedforward artificial neural network that 

consists of at least three layers of nodes: an input layer, 2+ hidden layers, and an output layer.

• Hyperparameters:  The width of a network refers to the number of hidden units in each layer, while 

its depth indicates the number of hidden layers. The total number of hidden units serves as a 

measure of the network's overall capacity.

• Key Characteristics: 

• Multiple Layers: Unlike single-layer perceptrons, MLPs have multiple layers of neurons in a 

directed graph, meaning that each layer feeds into the next.

• Dense Connections: Each neuron in one layer connects with a certain weight to every neuron in 

the following layer, facilitating complex data representations.

• Why Multilayer? 

• Single-layer networks are only capable of learning linearly separable functions. MLPs can 

overcome this by learning non-linear decision boundaries. 



Deep Neural Network

The maximum number of linear regions for neural networks increases

rapidly with the network depth.



Multilayer Perceptrons (MLP) in PyTorch

# Define the MLP model

class MLP(nn.Module):

def __init__(self, input_size, hidden_size1, hidden_size2, output_size):

super(MLP, self).__init__()

# First hidden layer

self.hidden1 = nn.Linear(input_size, hidden_size1)

# Second hidden layer

self.hidden2 = nn.Linear(hidden_size1, hidden_size2)

# Output layer

self.output = nn.Linear(hidden_size2, output_size)

def forward(self, x):

# Pass the input through the first hidden layer and apply activation function

x = F.relu(self.hidden1(x))

# Pass the output through the second hidden layer and apply activation function

x = F.relu(self.hidden2(x))

# Pass the output through the final layer

x = self.output(x)

return x

Code available in Chapter2 Perceptron Model.ipynb

Define the first hidden layer

Define the second hidden layer

Define the output layer

Inputs

𝒁 𝑔 – activation function
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Activation Function - The Gateway to Non-Linearity

• Introducing Non-Linearity: Activation functions introduce non-linear properties to the 

network, enabling it to learn complex data patterns beyond the capability of linear models.

• Transforming Inputs to Outputs: It takes input from previous layers and converts it to some 

form of input for the next layers. 

• Essential Building Blocks: It decides what is to be fired to the next neuron.

• Beyond Linear Modeling: Without non-linearity, neural networks would be limited to linear 

decision boundaries, similar to linear regression.

• Crucial for Performance: Non-linear functions allow neural networks to solve advanced 

problems like image and speech recognition, and natural language processing.



Types of  Activation Function

Each activation function has its own 

unique properties and is suitable for 

certain use cases. Using the right 

activation function for the task leads 

to faster training and better 

performance.



Linear Activation Function

The linear activation function is the simplest activation function, defined as:

𝑓 𝑥 = 𝑥

which simply returns the input 𝑥 as the output. Graphically, it looks like a straight line with a slope of 1.

• Ideal for Regression Output:

• "Primarily used in the output layer of neural networks for regression problems."

• "Aids in predicting numerical values without altering or squashing the output."

• Rare in Hidden Layers:

• "Seldom used in hidden layers due to its inability to introduce non-linearity."

• "Neural networks require non-linear functions in hidden layers to learn complex patterns."

• Linear Transformations Limitation:

• "A linear activation function throughout the network limits it to only learning linear 

relationships, reducing the model's complexity and adaptability."



Sigmoid Activation Function

Sigmoid activation function is one of the most widely used non-linear activation functions. Defined as:

𝑓 𝑧 =
1

1 + 𝑒−𝑧

• Sigmoid function transforms real-valued input into a range between 0 and 1.

• Characterized by an “S”-shaped curve, asymptoting at 0 for large negative inputs and 1 for large 

positive inputs.

• Output can be interpreted as probabilities of a particular class, ideal for binary classification tasks.

• Initially popular due to strong gradient near the midpoint (0.5), facilitating efficient backpropagation 

training.

• Vanishing Gradient Problem: it suffers from 'vanishing gradient' when inputs are significantly 

high or low, leading to a flat slope.

• Commonly used as the activation function in the output layer of binary classification models.



Tanh (Hyperbolic Tangent) Activation

The Tanh Function is very similar to the sigmoid function. The only difference is that it is symmetric 

around the origin. It is defined as:

𝑡𝑎𝑛ℎ 𝑧 = 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑 2𝑧 − 1 =
2

1 + 𝑒−2𝑧 − 1

• Output range: -1 to 1, handling negative values better than the sigmoid function.

• Zero-Centered Nature: symmetric around the origin, allowing for faster convergence in learning 

algorithms.

• Stronger Gradients: More resilient against the vanishing gradient problem, especially beneficial in 

networks with many layers, compared to sigmoid.

• Vanishing Gradient Issue: though better than sigmoid function, tanh still faces the vanishing gradient 

problem in deep networks.

• Usage: Commonly used in hidden layers due to its zero-centered nature and efficiency, especially 

when data is normalized with mean zero.



ReLU (Rectified Linear Unit) Activation
The ReLU function is defined as:

𝑓 𝑧 = max(0, 𝑧)

• ReLU is another non-linear activation function that has gained popularity in deep learning.

• Main advantage: it does not activate all the neurons at the same time. The neurons will only 

be activated if the output of the linear transformation is greater than 0.

• Linear for Positive Inputs: Acts as a linear function with a gradient of 1 for positive 

     inputs, which allows the gradient to pass through unchanged during backpropagation, 

     helping to mitigate the vanishing gradient problem.

• Non-Linearity: Despite being linear for half of its input space, ReLU is non-linear 

     due to its non-differentiable point at 𝑥 = 0. Its derivative is zero for negative inputs (the 

      dying ReLU problem). 

• Computational Efficiency: ReLU is computationally inexpensive, involving simple 

thresholding at zero. Its simplicity allows networks to scale to many layers with minimal 

increase in computational burden. 



Softmax Activation

The softmax function is defined as:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧𝑖 =
exp(𝑧𝑖)

σ𝑗 exp(𝑧𝑗)

• Ideal for Multi-Class Classification: Each element in the output signifies the probability of the 

input belonging to a specific class..

• Non-negative outputs: Uses the exponential function to ensure all outputs are non-negative, aligning 

with the nature of probabilities.

• Amplification of Differences: Small variations in input values can result in significant differences in 

output probabilities, which leads to one class dominating in the probability distribution.

• Sensitivity to Outliers: Can be sensitive to outliers or extreme values in the input vector.

• Usage: Commonly used in the output layer for tasks involving classification into multiple categories.



Activation Functions in PyTorch

def linear_activation(x):

 return x

# Passing the array to linear activation function

output = linear_activation(z)

sig = nn.Sigmoid()

# Applying sigmoid to the tensor

output = sig(z)

t = nn.Tanh()

# Applying Tanh to the tensor

output = t(z) 

r = nn.ReLU()

# Passing the array to relu function

output = r(z)

sm = nn.Softmax(dim=0) 

# Applying function to the tensor

output = sm(z) 

Linear activation:

Sigmoid activation:

Tanh activation:

ReLU activation:

Softmax activation:



Activation Function Choice

For binary classification:

Use the sigmoid activation function in the output layer. It will squash outputs between 0 and 1, representing 

probabilities for the two classes.

For multi-class classification:

Use the softmax activation function in the output layer. It will output probability distributions over all classes.

If unsure:

Use the ReLU activation function in the hidden layers. ReLU is the most common default activation function 

and usually a good choice.



Other Activation Functions

Prince (2023)
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Loss Function

Definition: a measure of error between what your model 

predicts and what the actual value is. 

Purpose: quantifies how well the neural network matches 

what we want to output and thus guides the optimization 

process.

Importance: The choice of loss function directly impacts 

how the weights of the model are adjusted.

Examples: Mean Squared Error (Regression), Cross-

Entropy (Classification).

Notation: 

ℒ(𝑓 𝑿; 𝑾 , 𝒚)

Prediction True



Recipe for Constructing Loss Functions

4
5



Loss Function for Regression



Loss Function for Regression - MSE

Mean Square Error (MSE), also called L2 Loss, is the most commonly used regression loss function. 

It calculates the average of the squares of the errors between actual and predicted values.

𝑀𝑆𝐸 =
1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 − ො𝑦𝑖
2 , 

where 𝑦𝑖 is the actual value, ො𝑦𝑖 is the predicted 

value, and 𝑛 is the number of samples.

Characteristics:

• Emphasizes larger errors due to squaring, leading to a 

focus on model accuracy in areas with higher error 

rates.

• Sensitive to outliers as errors are squared, potentially 

leading to overemphasis on outliers.

Preferred when larger errors are significantly undesirable



Loss Function for Regression - MAE

Mean Absolute Error (MAE), also called L1 Loss. It is the sum of absolute differences between our 

target and predicted variables. It measures the average magnitude of errors in a set of predictions, 

without considering their direction.

𝑀𝐴𝐸 =
1

𝑛
σ𝑖=1

𝑛 |𝑦𝑖 − ො𝑦𝑖| , 

where 𝑦𝑖 is the actual value, ො𝑦𝑖 is the predicted value, 

and 𝑛 is the number of samples.

Characteristics:

• Provides a linear score that gives equal weight 

to all errors, regardless of their size.

• Less sensitive to outliers compared to MSE, 

offering a more robust error metric in datasets 

with anomalies.

Useful when you want to avoid the over-penalization of 

large errors and when dealing with outliers.



MSE vs MAE

For MAE, its gradient is the same throughout, 

which means the gradient will be large even 

for small loss values. We can use dynamic 

learning rate which decreases as we move 

closer to the minima to fix this problem.

For MSE, the gradient is high for larger loss 

values and decreases as loss approaches 0, 

making it more precise at the end of 

training. It can easily converge even with a 

fixed learning rate.



MSE vs MAE

Using the squared error is easier to solve, but using the absolute error is more robust to outliers.



Loss Function for Classification

Binary Classification Task

Binary Cross-Entropy

Multi-Class Classification Task

Cross-Entropy Loss

Kullback Leibler Divergence Loss

Negative Log Likelihood Loss



Binary Cross-Entropy Loss (BCE)

Binary Cross-Entropy Loss (BCE), also called log loss, is used to evaluate the performance of a 

binary classification model where the output is a probability between 0 and 1. 

It measures the dissimilarity between the actual labels and the predicted probabilities of the data 

points being in the positive class. It penalizes the predictions that are confident but wrong. 

𝐵𝐶𝐸 = −
1

𝑛
σ𝑖=1

𝑛 [𝑦𝑖 log ො𝑦𝑖 + 1 − 𝑦𝑖 log(1 − ො𝑦𝑖)] , 

where 𝑦𝑖 is the actual value, ො𝑦𝑖 is the predicted value, and 𝑛 is the number of samples.

Formula:



nn.BCELoss in PyTorch

# Example predictions and labels

predictions = torch.sigmoid(torch.randn(4))

labels = torch.tensor([1, 0, 1, 0], dtype=torch.float32)

# Binary Cross-Entropy Loss

criterion = nn.BCELoss()

loss = criterion(predictions, labels)

tensor([0.6882, 0.4268, 0.6981, 0.6192])

tensor([1., 0., 1., 0.])

tensor(0.5638)

𝐵𝐶𝐸 = −
1

4
(log 0.6882 + log 1 − 0.4268 + log 0.6981 + log(1 − 0.6192)) ≈ 0.5638

Should be probability (0 to 1), usually obtained from

a sigmoid function.

Should be binary (0 or 1), match the shape of predictions.

Note: Use nn.BCEWithLogitsLoss if the output 

layer of your model does not include a sigmoid.



Loss Function for Classification – Cross Entropy

Entropy

In information theory, entropy measures the uncertainty or randomness of a set of outcomes.

Higher entropy means higher unpredictability in the data.

Think of a box filled with balls that are either red or green. We're looking at how "messy" or 

"organized" the balls can be, which is what we call entropy. In what case, the balls have the lowest 

entropy? The highest entropy? (Look at the binary entropy plot across all probabilities for hints.)

𝐻 𝑋 =

− න 𝑝 𝑥 log 𝑝 𝑥 , 𝑖𝑓 𝑋 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠

− ෍ 𝑝 𝑥 log 𝑝 𝑥 , 𝑖𝑓 𝑋 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒



Cross Entropy

Entropy

In information theory, entropy measures the uncertainty or randomness of a set of outcomes.

Higher entropy means higher unpredictability in the data.

When all balls are red or green, they have the lowest entropy, 0. When balls are half red and half 

green, they have the highest entropy, log2.

𝐻 𝑋 =

− න 𝑝 𝑥 log 𝑝 𝑥 , 𝑖𝑓 𝑋 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠

− ෍ 𝑝 𝑥 log 𝑝 𝑥 , 𝑖𝑓 𝑋 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒



Cross Entropy

Cross Entropy

Cross-entropy measures the dissimilarity between two probability distributions, ‘P’ and ‘Q’, over the 

same set of events.

What will happen to cross entropy if ‘Q’ is the same as ‘P’?

It tells you how inefficient your predictions would be when you use them to encode the actual 

distribution.

In discrete case, cross entropy can be defined as:

𝐻 𝑃, 𝑄 = − ෍
𝑖
𝑃(𝑥𝑖) ∙ log(𝑄(𝑥𝑖))

Cross-entropy is equal to entropy.

What if ‘Q’ diverges from ‘P’? Cross-entropy will increase, larger than entropy.



Cross Entropy

− ෍
𝑐=1

𝑀

𝑦𝑜,𝑐log(𝑝𝑜,𝑐)

where 𝑀 is the number of classes, 𝑦𝑜,𝑐 is a binary indicator showing if class label 𝑐 is the correct 

classification for observation 𝑜, and 𝑝𝑜,𝑐 is the predicted probability output by softmax function,

ranging from 0 to 1, in the corresponding class 𝑐 for observation 𝑜. 𝑛 is the number of observations.

Formula:

Cross Entropy Loss

Cross-entropy loss measures the performance of a classification model whose output is a probability 

value between 0 and 1. 

Cross-entropy loss increases as the predicted probability diverges from the actual label.
ground truth

class

Predicted probability of

the observation belonging

to the ground truth class

Exercise: derive binary cross entropy loss function from the cross entropy loss.

This is the loss for

one observation 𝑜

1

𝑛
෍

𝑜=1

𝑛



nn.CrossEntropyLoss in PyTorch

# Example predictions and labels

predictions = torch.randn(4, 5) # 4 samples, 5 class predictions

labels = torch.tensor([1, 0, 3, 2], dtype=torch.long)

# Cross-Entropy Loss

criterion = nn.CrossEntropyLoss()

loss = criterion(predictions, labels)

tensor([[ 0.7114, -0.9152, -0.3899,  0.9435, -0.1819],

        [-0.6162, -0.0346, -0.5723, -1.1487, -1.4400],

        [ 0.3388, -0.9662, -0.2876, -0.1088, -0.1857],

        [-1.3066,  1.5789, -0.3382, -0.6364,  2.9867]])

tensor([1, 0, 3, 2])

tensor(2.3831)

Can be the direct output from the

network. nn.CrossEntropyLoss 

applies softmax internally to make it

range from 0 to 1.

Should contain the class indices (not one-hot encoded) 

and should be of type torch.long.



nn.CrossEntropyLoss in PyTorch

# Example predictions and labels

predictions = torch.randn(4, 5) # 4 samples, 5 class predictions

labels = torch.tensor([1, 0, 3, 2], dtype=torch.long)

softmax_predictions = torch.softmax(predictions, dim=1)

# Cross-Entropy Loss

criterion = nn.CrossEntropyLoss()

loss = criterion(predictions, labels)

tensor([[0.3125, 0.0614, 0.1039, 0.3942, 0.1279],

        [0.2058, 0.3681, 0.2150, 0.1208, 0.0903],

        [0.3293, 0.0893, 0.1760, 0.2105, 0.1949],

        [0.0103, 0.1852, 0.0272, 0.0202, 0.7570]])

tensor([1, 0, 3, 2])

tensor(2.3831)

Predicted probabilities after

passing through softmax function.

−
1

4
(log 0.0614 + log 0.2058

+ log 0.2105 + log(0.0272)) ≈ 2.3831



KL Divergence

Kullback-Leibler Divergence, shortened to KL Divergence, measures how one probability 

distribution diverges from a second, expected probability distribution.

Recall, cross entropy is defined as: 𝐻 𝑃, 𝑄 = − ෍
𝑖
𝑃(𝑥𝑖) ∙ log(𝑄(𝑥𝑖))

If ‘Q’ is the same as ‘P’, cross entropy will be equal to entropy, which will likely never happen in 

reality. Cross entropy will be larger than the entropy:

𝐻 𝑃, 𝑄 − 𝐻(𝑋) ≥ 0

This difference between cross-entropy and entropy has a name:

𝐷𝐾𝐿(𝑃| 𝑄 = − ෍

𝑥

𝑃 𝑥 ∙ log 𝑄 𝑥 − 𝑃 𝑥 ∙ log 𝑃 𝑥 = − ෍

𝑥

𝑃 𝑥 ∙ log
𝑄 𝑥

𝑃 𝑥
= ෍

𝑥

𝑃 𝑥 ∙ log(
𝑃(𝑥)

𝑄(𝑥)
)



KL Divergence

𝐷𝐾𝐿(𝑃||𝑄) is called KL Divergence of 𝑃 from 𝑄. Recall the formula:

𝐷𝐾𝐿(𝑃| 𝑄 = − ෍

𝑥

𝑃 𝑥 ∙ log 𝑄 𝑥 − 𝑃 𝑥 ∙ log 𝑃 𝑥 = − ෍

𝑥

𝑃 𝑥 ∙ log
𝑄 𝑥

𝑃 𝑥
= ෍

𝑥

𝑃 𝑥 ∙ log(
𝑃(𝑥)

𝑄(𝑥)
)

What is the formula of KL Divergence of Q from P?

𝐷𝐾𝐿(𝑄| 𝑃 = − ෍

𝑥

𝑄 𝑥 ∙ log 𝑃 𝑥 − 𝑄 𝑥 ∙ log 𝑄 𝑥 = − ෍

𝑥

𝑄 𝑥 ∙ log
𝑃 𝑥

𝑄 𝑥
= ෍

𝑥

𝑄 𝑥 ∙ log(
𝑄(𝑥)

𝑃(𝑥)
)

Notice that the divergence function is not symmetric: 𝐷𝐾𝐿(𝑃| 𝑄 ≠ 𝐷𝐾𝐿(𝑄||𝑃)

This is why KL Divergence cannot be used as a distance metric.

Use Case Scenario: Effective in model fine-tuning and scenarios where the precise matching of 

probability distributions is key, e.g. variational autoencoders (VAE) or fine-tuning probability distributions.



nn.KLDivLoss in PyTorch

# Example predicted and target distributions

predicted_log_probs = torch.log_softmax(torch.randn(4, 5), dim=1)

true_probs = torch.softmax(torch.randn(4, 5), dim=1)

# Kullback-Leibler Divergence Loss

criterion = nn.KLDivLoss(reduction='batchmean')

loss = criterion(predicted_log_probs, true_probs)

tensor([[-4.4963, -1.2036, -1.5853, -1.4722, -1.3688],

        [-2.6413, -2.2889, -2.2535, -0.5027, -2.1419],

        [-2.3875, -1.0028, -2.9582, -3.1580, -0.8055],

        [-2.3296, -0.4341, -2.2907, -2.1956, -3.1619]])

tensor([[0.0345, 0.1775, 0.1944, 0.2313, 0.3622],

        [0.1333, 0.6237, 0.1228, 0.0795, 0.0406],

        [0.3026, 0.1969, 0.0661, 0.2365, 0.1979],

        [0.1164, 0.4287, 0.2206, 0.1695, 0.0648]])

Should be log probabilities (use 

torch.log_softmax)

Should be probabilities (use 

torch.softmax or equivalent). If this

true probabilities are in the log-space,

then add log_target=True to the

argument in nn.KLDivLoss.



nn.KLDivLoss in PyTorch

# Example predicted and target distributions

predicted_log_probs = torch.log_softmax(torch.randn(4, 5), dim=1)

true_probs = torch.softmax(torch.randn(4, 5), dim=1)

# Kullback-Leibler Divergence Loss

criterion = nn.KLDivLoss(reduction='batchmean')

loss = criterion(predicted_log_probs, true_probs)

tensor([[-4.4963, -1.2036, -1.5853, -1.4722, -1.3688],

        [-2.6413, -2.2889, -2.2535, -0.5027, -2.1419],

        [-2.3875, -1.0028, -2.9582, -3.1580, -0.8055],

        [-2.3296, -0.4341, -2.2907, -2.1956, -3.1619]])

tensor([[0.0345, 0.1775, 0.1944, 0.2313, 0.3622],

        [0.1333, 0.6237, 0.1228, 0.0795, 0.0406],

        [0.3026, 0.1969, 0.0661, 0.2365, 0.1979],

        [0.1164, 0.4287, 0.2206, 0.1695, 0.0648]])

tensor(0.4276)

1/4*sum(sum(true_probs*(torch.log(

true_probs)-predicted_log_probs)))



nn.KLDivLoss in PyTorch

# Example predicted and target distributions

predicted_log_probs = torch.log_softmax(torch.randn(4, 5), dim=1)

true_probs = torch.softmax(torch.randn(4, 5), dim=1)

# Kullback-Leibler Divergence Loss

criterion = nn.KLDivLoss(reduction='batchmean')

loss = criterion(predicted_log_probs, true_probs)

The reduction parameter in PyTorch loss functions controls how the individual loss values in a 

batch are combined into a single scalar loss value.

There are typically three options for reduction:

• 'none': No reduction is applied, and the loss is returned for each element in the batch.

• 'mean': The mean of the loss values over the batch is computed.

• 'sum': The sum of the loss values over the batch is computed.



nn.KLDivLoss in PyTorch

# Example predicted and target distributions

predicted_log_probs = torch.log_softmax(torch.randn(4, 5), dim=1)

true_probs = torch.softmax(torch.randn(4, 5), dim=1)

# Kullback-Leibler Divergence Loss

criterion = nn.KLDivLoss(reduction='batchmean')

loss = criterion(predicted_log_probs, true_probs)

Specific warning for nn.KLDivLoss in PyTorch <= 2.1:

reduction= ‘mean’ doesn’t return the true KL divergence value. Use reduction= ‘batchmean’ 

which aligns with the mathematical definition, instead.



Loss Function for Classification – NLL Loss

Negative Log-Likelihood Loss function (NLL) measures the negative log likelihood of a set of 

predictions, given their true class labels.

NLL is applied only on models with the softmax function as an output activation layer.

To derive the NLL Loss, let’s start from the likelihood function of an observed data, with the input 

image 𝑿 and some output class labels 𝒚.

If we make an observation 𝑖 and observed outcome 𝑗 whose estimated likelihood is ො𝑦𝑖,𝑗 , and encode

the ground truth outcome 𝑗 to one-hot vector 𝒚𝒊 (the 𝑗th element, 𝑦𝑖,𝑗 is 1 and all other elements are 0;

length is equal to the number of classes, 𝑀), then the likelihood of the observation is ς𝑗=1
𝑀 ො𝑦

𝑖,𝑗

𝑦𝑖,𝑗
.

We want to find good parameters 𝜽 to represent the relationship between 𝑿 and 𝒚, by maximizing the 

likelihood of the observed data.



Loss Function for Classification – NLL Loss

Then, the likelihood function of all 𝑛 observations is ς𝑖=1
𝑛 ς𝑗=1

𝑀 ො𝑦
𝑖,𝑗

𝑦𝑖,𝑗
.

After taking log and average, we get: 𝑁𝐿𝐿 𝐿𝑜𝑠𝑠 = −
1

𝑛
σ𝑖=1

𝑛 σ𝑗=1
𝑀 𝑦𝑖,𝑗 ∙ log( ො𝑦𝑖,𝑗).

To find good parameters 𝜽, we need to maximize the likelihood, and thus minimize the NLL loss.

Compare the NLL loss to the Cross Entropy loss. What do you find?

Maximizing the likelihood, or minimizing the negative log-likelihood loss

is the same as minimizing the cross entropy loss.



nn.NLLLoss in PyTorch

# Example log probabilities and labels

log_probs = torch.log_softmax(torch.randn(4, 5), dim=1)

labels = torch.tensor([1, 0, 3, 2]) # Class labels for each sample

# Negative Log Likelihood Loss

criterion = nn.NLLLoss()

loss = criterion(log_probs, labels)

tensor([[-2.1952, -2.0639, -0.3655, -4.2204, -2.9338],

        [-2.2309, -1.6147, -1.2787, -1.6363, -1.5118],

        [-2.1938, -3.0970, -1.5740, -1.3624, -0.9675],

        [-1.9533, -1.1320, -3.2088, -1.2513, -1.5640]])

tensor([1, 0, 3, 2])

tensor(2.2165)

Should be log probabilities, 

typically obtained by applying 

torch.log_softmax to the neural 

network's output.

Similar to nn.CrossEntropyLoss, should contain the 

class indices and should be of type torch.long.



Loss Function for Classification Summary
Loss Function Advantages Disadvantages Usage Scenario PyTorch Example

Binary Cross

Entropy Loss

• Handles imbalanced datasets

• Encourages model to predict high 

probabilities for the correct class.

Vanishing gradient and slow 

convergence when the 

predicted probabilities are 

far from the true labels.

Binary 

classification
nn.BCELoss()

Cross Entropy 

Loss

• Includes softmax internally

• Invariant to scaling and shifting 

of the predicted probabilities.

Sensitive to outliers and 

imbalanced data (biased 

towards majority class).

Multi-class 

classification
nn.CrossEntropyLoss()

KL Divergence 

Loss

• Measures the difference between 

two probability distributions

• Useful in generative models

Not symmetric, not suitable

to be used solely in training 

classifier

Comparing two 

probability 

distributions

nn.KLDivLoss()

Negative Log 

Likelihood 

Loss

• Similar to cross entropy

• Often used with log-softmax

output layer

Requires log probabilities as 

inputs

Multi-class 

classification with 

log-softmax output

nn.NLLLoss()



Create Custom Loss Function

def custom_cross_entropy_loss(y_pred, y_true):

#Specifying the batch size

my_batch_size = y_pred.size()[0]

#Get the log probabilities values 

log_probabilities = torch.log_softmax(y_pred, dim=1)

#Pick the probabilities corresponding to the true labels

relevant_log_probs = log_probabilities[range(my_batch_size), y_true]

#Take the negative and mean of these log probabilities

loss = -torch.mean(relevant_log_probs)

return loss

# Example usage

y_pred = torch.tensor([[1.5, 0.5, -0.5], [-0.5, 1.5, 0.5], [0.5, -0.5, 1.5]]) # 

Predicted logits for 3 classes

y_true = torch.tensor([0, 1, 2]) # True labels

loss = custom_cross_entropy_loss(y_pred, y_true)

print("Custom Cross-Entropy Loss:", loss.item())



Create Custom Loss Function with Class Definition

class CustomCrossEntropyLoss(nn.Module):

def __init__(self):

 super(CustomCrossEntropyLoss, self).__init__()

def forward(self, y_pred, y_true):

# Ensuring the predicted values are in log form probabilities

log_probs = torch.log_softmax(y_pred, dim=1)

# Picking the log probabilities corresponding to true labels

relevant_log_probs = log_probs[range(len(y_true)), y_true]

# Negative log likelihood loss

loss = -torch.mean(relevant_log_probs)

return loss

# Example usage

loss_function = CustomCrossEntropyLoss()

loss = loss_function(y_pred, y_true)

print("Custom Cross-Entropy Loss:", loss.item())

Create the loss function as a subclass of nn.Module. Why?
PyTorch’s built-in modules and loss functions are subclasses of nn.Module,

so using nn.Module for our own custom loss function ensures the

consistency and compatibility with PyTorch's design and practices.

Constructor (__init__ method): initializes parameters or settings

This function is called when you create an instance of your custom loss function

class. Some more complex loss functions might require initialization of parameter.

Forward Method 

(forward method):

computes loss
This is where the 

actual computation of 

the loss happens.

This custom loss function can be used in a typical training 

loop in PyTorch, just like built-in loss functions.



Dice Loss Function

Dice Loss is derived from the Dice Coefficient, which is a statistical tool to measure the similarity or

overlaps between two sets.

Unlike cross entropy loss, dice loss is particularly effective when dealing with imbalanced datasets 

and when the focus is on capturing fine details in the segmentation masks. It’s a very popular loss 

function in medical image segmentation.

𝐷𝑖𝑐𝑒 =
2 × |𝐴 ∩ 𝐵|

𝐴 + |𝐵|

To avoid division by zero, a small constant (smooth) is added to the numerator and denominator.

Dice coefficient:

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒𝑠𝑚𝑜𝑜𝑡ℎ𝐷𝑖𝑐𝑒𝑠𝑚𝑜𝑜𝑡ℎ =
2 × 𝐴 ∩ 𝐵 + 𝑠𝑚𝑜𝑜𝑡ℎ

𝐴 + 𝐵 + 𝑠𝑚𝑜𝑜𝑡ℎ
and



Dice Loss Function

In the case of image segmentation, we will have 𝐴 to be the predicted segmentation mask, which can

be directly obtained from the output of the network, e.g. represented as a prediction map:

𝐵 is the true/target mask, e.g. represented as:

𝐷𝐿𝑠𝑜𝑓𝑡 = 1 −
2 σ𝑖=1

𝑁 𝑎𝑖𝑏𝑖 + 𝜖

σ𝑖=1
𝑁 𝑎𝑖

2 + σ𝑖=1
𝑁 𝑏𝑖

2 + 𝜖

Soft dice loss:

0.72
0.85
0.40

0.12
0.61
0.05

0.09 0.99

0.06
0.08
0.79

0.63
0.68
0.13

0.93 0.04
0
1
0

0
1
0

0 0

1
1
0

1
0
1

1 0

Soft label: Label 

indicates the probability 

of the presence of a class Hard label: Binary label 

indicates absence (0) or 

presence (1) of a class.

where 𝑁 is the total number of elements in prediction map 𝐴 and true mask 𝐵 (pixels in the image),

𝑎𝑖 and 𝑏𝑖 are the value of the 𝑖 th element in 𝐴 and 𝐵, 𝜖 is the smooth term.

Why use square in the denominator?
Check this great argument:

https://mediatum.ub.tum.de/doc/1395260/1395260.pdf

(page 72)

https://mediatum.ub.tum.de/doc/1395260/1395260.pdf


Dice Loss Function in PyTorch

class DiceLoss(nn.Module):

def __init__(self, weight=None, size_average=True):

 super(DiceLoss, self).__init__()

def forward(self, inputs, targets, smooth=1): 

#flatten label and prediction tensors

inputs = inputs.view(-1)

targets = targets.view(-1)

intersection = (inputs * targets).sum() 

dice = (2.*intersection+smooth)/(inputs.square().sum() +

targets.square().sum() + smooth) 

return 1 – dice



Dice Loss Function in PyTorch

# Example usage

y_pred = torch.sigmoid(torch.randn(1, 1, 5, 5)) # Example predicted mask

y_true = torch.tensor([[[[1, 0, 0, 0, 1], [0, 1, 0, 0, 1], [0, 0, 1, 0, 1], [0, 0, 

0, 1, 1], [1, 1, 1, 1, 1]]]]) # Example true mask

dice_loss = DiceLoss()

loss = dice_loss(y_pred, y_true)

print("Dice Loss:", loss.item())

Ensure the y_pred is probability (0 to 1) by passing it through sigmoid function.

For coding practice, check the notebook “Chapter2 Loss Function.ipynb”.



Imbalanced Data-Loss Functions

❖ Consider Data Characteristics:

❖ Imbalanced Data: Use Weighted 

Cross-Entropy or Focal Loss.

❖ Outliers: Use Huber Loss or 

Mean Absolute Error.



Outliers-Loss Functions

Barron, J. T. (2019). A general and adaptive robust loss function. In CVPR.
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Fitting DL Models

Find a criterion/measurement of goodness

Get the best model for the problem

Design the neural network𝑿𝟏

𝑿𝟐

𝑿𝒏

…
… Designed 

Neural N
etw

ork
ෝ𝒚𝟏

…
…

ෝ𝒚𝟐

ෝ𝒚𝒏

…
…

𝒚𝟏

𝒚𝟐

𝒚𝒏

A loss function is needed here, 
to measure the difference between the output and truth

Total loss: 𝑳 = ෍ ℓ(ෝ𝒚𝒊, 𝒚𝒊)

Find the network parameters to minimize the loss



Loss Optimization

Goal: find the network weight that achieve the lowest loss.

ℒ(𝑓 𝑿; 𝑾 , 𝒚)
Prediction True

Write this goal in mathematical format:

argmin
𝑾

෡𝑊 =

𝑾 = [𝑾 𝟏 , 𝑾 𝟐 , … ]

contains all the weight

vectors needed to be adjusted

in the neural network

The loss function is a

function of the network

weights 𝑾.

Find the value of the parameters that help the loss function reach the lowest value.



Gradient Descent

A first-order iterative optimization algorithm for finding the 
minimum of a function.

Step 1. Compute the derivatives of the loss w.r.t. the 
parameters

Step 2. Update the parameters according to the rule: 

𝒘𝒏𝒆𝒘  =  𝒘 −  𝛼
𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚) 

𝜕𝑾
where the positive scalar 𝛼 (learning rate) determines the 
magnitude of the change. 

𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚) 

𝜕𝑾

෡𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛 ℒ(𝑓 𝑿; 𝑾 , 𝒚)



Multi-Dimension Optimization Process

1. Randomly pick an initial, a start point

(𝑤0, 𝑤1)
Go through the neural

network feed forward

propagation process to get a

prediction of the output, ො𝑦.

Compute loss:

ℒ( ො𝑦, 𝑦)

which is not satisfied.



Multi-Dimension Optimization Process

2. Compute gradient respect to

all the interested parameters:

𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚) 

𝜕𝑾

The opposite direction of the gradient is

where we can decrease the loss.



Multi-Dimension Optimization Process

3. Take a small step in the opposite direction

of the gradient to get a new proposal of the

parameter values.
(𝑤0

′ , 𝑤1
′)The magnitude of this

step is determined by

learning rate.

4. Repeat steps 2 and 3 until the loss converges.

ℒ(𝑓 𝑿; 𝑾′ , 𝑦)

Check if it converges.

Compute loss with the new values:



Gradient Descent

3. Take a small step in the opposite direction

of the gradient to get a new proposal of the

parameter values.
(𝑤0

′ , 𝑤1
′)The magnitude of this

step is determined by

learning rate.

4. Repeat steps 2 and 3 until the loss converges.

ℒ(𝑓 𝑿; 𝑾′ , 𝑦)

Check if it converges.

Compute loss with the new values:



Gradient Descent

Input:

Choose a starting point 𝒘 (initial guess, usually from 𝒩(0, 𝜎2)).

Set the learning rate 𝛼 (a small positive number).

Define a small positive number 𝜀 as the convergence threshold (optional).

Set a maximum number of iterations, 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠.

Output: 𝒘∗, a local minimum of the loss function 𝑓.

Begin

1. For 𝑘 from 1 to 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠:

    a. Compute the gradient ∇𝑓(𝒘), the partial derivatives of the function 𝑓 at point 𝒘.

    b. Update the weight 𝒘 by moving in the opposite direction of the gradient: 𝒘𝒏𝒆𝒘  =  𝒘 −  𝛼 ∗ ∇𝑓(𝒘)

    c. If the change in the function value is small enough (i.e., |𝑓(𝒘𝒏𝒆𝒘)  −  𝑓(𝒘)|  < 𝜀), then:

 stop and return 𝒘𝒏𝒆𝒘 as the optimal weight. (optional step)

    d. Update 𝒘 to 𝒘𝒏𝒆𝒘.

2. If the maximum number of iterations is reached, return the current value of 𝒘.

End



Review: Train a Model
model = SimpleNet()

loss_function = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# Iteratively train the model on the dataset

for epoch in range(num_epochs):

running_loss = 0.0

optimizer.zero_grad()

outputs = model(input_data)

loss = loss_function(outputs, labels)

loss.backward()

optimizer.step()

# Print statistics

running_loss += loss.item()

print(f"Epoch {epoch + 1}, Loss: {running_loss}")



Gradient Descent

Input:

Choose a starting point 𝒘 (initial guess, usually from 𝒩(0, 𝜎2)).

Set the learning rate 𝛼 (a small positive number).

Define a small positive number 𝜀 as the convergence threshold (optional).

Set a maximum number of iterations, 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠.

Output: 𝒘∗, a local minimum of the loss function 𝑓.

Begin

1. For 𝑘 from 1 to 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠:

    a. Compute the gradient ∇𝑓(𝒘), the partial derivatives of the function 𝑓 at point 𝒘.

    b. Update the weight 𝒘 by moving in the opposite direction of the gradient: 𝒘𝒏𝒆𝒘  =  𝒘 −  𝛼 ∗ ∇𝑓(𝒘)

    c. If the change in the function value is small enough (i.e., |𝑓(𝒘𝒏𝒆𝒘)  −  𝑓(𝒘)|  < 𝜀), then:

 stop and return 𝒘𝒏𝒆𝒘 as the optimal weight. (optional step)

    d. Update 𝒘 to 𝒘𝒏𝒆𝒘.

2. If the maximum number of iterations is reached, return the current value of 𝒘.

End

# Create an instance of the network

model = SimpleNet()

When a new instance of the network was

created, the __init__ method within

SimpleNet class will be automatically

executed. The initialization of the weights

is thus implemented.



Gradient Descent

Input:

Choose a starting point 𝒘 (initial guess, usually from 𝒩(0, 𝜎2)).

Set the learning rate 𝛼 (a small positive number).

Define a small positive number 𝜀 as the convergence threshold (optional).

Set a maximum number of iterations, 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠.

Output: 𝒘∗, a local minimum of the loss function 𝑓.

Begin

1. For 𝑘 from 1 to 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠:

    a. Compute the gradient ∇𝑓(𝒘), the partial derivatives of the function 𝑓 at point 𝒘.

    b. Update the weight 𝒘 by moving in the opposite direction of the gradient: 𝒘𝒏𝒆𝒘  =  𝒘 −  𝛼 ∗ ∇𝑓(𝒘)

    c. If the change in the function value is small enough (i.e., |𝑓(𝒘𝒏𝒆𝒘)  −  𝑓(𝒘)|  < 𝜀), then:

 stop and return 𝒘𝒏𝒆𝒘 as the optimal weight. (optional step)

    d. Update 𝒘 to 𝒘𝒏𝒆𝒘.

2. If the maximum number of iterations is reached, return the current value of 𝒘.

End

# Create an instance of the network

model = SimpleNet()

class SimpleNet(nn.Module):

def __init__(self):

super(SimpleNet, self).__init__()

self.fc1 = nn.Linear(in_features=784, out_features=128)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(128, 10)

def forward(self, x):

x = self.fc1(x)

x = self.relu(x)

x = self.fc2(x)

return x

Parameter initialized here.

If you want to manually specify weight parameters,

you can also specify within this _init_ method, e.g.:
nn.init.normal_(weight, mean=0.0, 

std=0.1)

More in Chapter 1 PyTorch Basics: Neural 

Networks Module.



Gradient Descent

Input:

Choose a starting point 𝒘 (initial guess, usually from 𝒩(0, 𝜎2)).

Set the learning rate 𝛼 (a small positive number).

Define a small positive number 𝜀 as the convergence threshold (optional).

Set a maximum number of iterations, 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠.

Output: 𝒘∗, a local minimum of the loss function 𝑓.

Begin

1. For 𝑘 from 1 to 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠:

    a. Compute the gradient ∇𝑓(𝒘), the partial derivatives of the function 𝑓 at point 𝒘.

    b. Update the weight 𝒘 by moving in the opposite direction of the gradient: 𝒘𝒏𝒆𝒘  =  𝒘 −  𝛼 ∗ ∇𝑓(𝒘)

    c. If the change in the function value is small enough (i.e., |𝑓(𝒘𝒏𝒆𝒘)  −  𝑓(𝒘)|  < 𝜀), then:

 stop and return 𝒘𝒏𝒆𝒘 as the optimal weight. (optional step)

    d. Update 𝒘 to 𝒘𝒏𝒆𝒘.

2. If the maximum number of iterations is reached, return the current value of 𝒘.

End

# Create an instance of the network

model = SimpleNet()

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# Number of epochs

num_epochs = 30

loss.backward()

optimizer.step()



Gradient Descent

Input:

Choose a starting point 𝒘 (initial guess, usually from 𝒩(0, 𝜎2)).

Set the learning rate 𝛼 (a small positive number).

Define a small positive number 𝜀 as the convergence threshold (optional).

Set a maximum number of iterations, 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠.

Output: 𝒘∗, a local minimum of the loss function 𝑓.

Begin

1. For 𝑘 from 1 to 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠:

    a. Compute the gradient ∇𝑓(𝒘), the partial derivatives of the function 𝑓 at point 𝒘.

    b. Update the weight 𝒘 by moving in the opposite direction of the gradient: 𝒘𝒏𝒆𝒘  =  𝒘 −  𝛼 ∗ ∇𝑓(𝒘)

    c. If the change in the function value is small enough (i.e., |𝑓(𝒘𝒏𝒆𝒘)  −  𝑓(𝒘)|  < 𝜀), then:

 stop and return 𝒘𝒏𝒆𝒘 as the optimal weight. (optional step)

    d. Update 𝒘 to 𝒘𝒏𝒆𝒘.

2. If the maximum number of iterations is reached, return the current value of 𝒘.

End

model = SimpleNet()

loss_function = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

num_epochs = 30

# Iteratively train the model on the dataset

for epoch in range(num_epochs):

running_loss = 0.0

optimizer.zero_grad()

outputs = model(input_data)

loss = loss_function(outputs, labels)

loss.backward()

optimizer.step()

# Print statistics

running_loss += loss.item()

print(f"Epoch {epoch + 1}, Loss: {running_loss}")



Gradient Computation: Backpropagation

𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚)

𝜕𝑤1

𝑥1 𝑧1 ෝ𝒚 ℒ(𝑓 𝑿; 𝑾 , 𝒚)
𝑤1 𝑤2

=
𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚)

𝜕 ො𝑦
∙

𝜕 ො𝑦

𝜕𝑤1
Chain rule

𝜕 ො𝑦

𝜕𝑤1

=
𝜕 ො𝑦

𝜕𝑧1
∙

𝜕𝑧1

𝜕𝑤1

Chain rule again



Gradient Computation: Backpropagation

𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚)

𝜕𝑤1

𝑥1 𝑧1 ෝ𝒚 ℒ(𝑓 𝑿; 𝑾 , 𝒚)
𝑤1 𝑤2

=
𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚)

𝜕 ො𝑦
∙

𝜕 ො𝑦

𝜕𝑧1
∙

𝜕𝑧1

𝜕𝑤1

Backpropagation

Repeat this process for each layer, see the visual on the right: 



Effect of Learning Rate on Optimization



Adaptive Learning Rate

Recall the MAE loss function for regression

task:

Its gradient is the same throughout, which 

means the gradient will be large even for 

small loss values, and thus the step token to

obtain a new weight will be large. 

In this case, a dynamic learning rate that can 

decrease as we move closer to the minima is

more efficient.



Adaptive Learning Rate

Adaptive learning rate methods can adjust the learning rate dynamically during training for better 

performance and stability.

Benefits:

• Faster Convergence: Automatically adjusts the learning rate to take larger steps when far from the 

minimum and smaller steps when closer.

• Improved Stability: Prevents overshooting the minimum, which is a common problem with a high 

fixed learning rate.

• No Need for Manual Tuning: Reduces the need for extensive hyperparameter tuning of the 

learning rate.



Optimization Algorithms in PyTorch

Stochastic Gradient Descent (SGD)

Gradient Descent with Momentum

AdaGrad (Adaptive Gradient Algorithm)

Adam (Adaptive Moment Estimation)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

optimizer = torch.optim.Adagrad(model.parameters(), lr=0.01)

optimizer = torch.optim.Adam(model.parameters(), lr=0.001)



Stochastic Gradient Descent (SGD)

Characteristics:

• Basic form of gradient descent used in neural networks.

• Fixed learning rate.

• In each iteration, randomly select a single data point (or a batch of data points) from the 

training set to calculate the gradient of the loss function.

• Updates parameters for each training example, leading to frequent updates with high variance.

Advantages:

• Simple and easy to understand.

• Can escape local minima due to its inherent noise.

Disadvantages:

• Slow convergence on large datasets and high variance in updates.

• Sensitive to learning rate and other hyperparameters.

Batch Size: 
Epoch: 



Gradient Descent with Momentum

Characteristics:

• Builds upon SGD by considering past gradients to smooth out the updates.

• Uses a momentum factor to accelerate SGD in the relevant direction.

Advantages:

• Faster convergence than standard SGD.

• Reduces oscillations and improves stability.

Parameter update rule:

1. Update Velocity: 𝑣 = 𝛾𝑣 − 𝛼∇𝑓(𝑥).

2. Update Parameter: 𝑥 = 𝑥 + 𝑣



AdaGrad (Adaptive Gradient Algorithm)

Parameter update rule:

1. Update accumulation: 𝐺 = 𝐺 + 𝑔2, where 𝑔 is the gradient of the loss function with respect 

to each parameter.

2. Adjust Learning Rate: Scale the learning rate for each parameter inversely proportional to 

the square root of 𝐺.

3. Update Parameters: Update the parameters using the adjusted learning rate, 𝑥 = 𝑥 −
𝛼

𝐺 + 𝜖
∙ 𝑔

where 𝛼 is the initial learning rate, 𝜖 is a small constant added to improve numerical stability. 



AdaGrad (Adaptive Gradient Algorithm)

Characteristics:

• Adjusts the learning rate to each parameter, decreasing it for parameters with large gradients.

• Each parameter has its own learning rate, which can be beneficial for datasets with features 

of varying importance or scale.

Advantages:

• The effective learning rate decreases over time for each parameter. Eliminates the need to 

manually tune the learning rate.

• Well-suited for dealing with sparse features or data with different scales.

Disadvantages:

• The continuously accumulating squared gradient can lead to an excessively reduced learning 

rate, causing the algorithm to stop learning too early.



Adam (Adaptive Moment Estimation)

Parameter update algorithm:

1. Moving averages: two vectors 𝑚 and 𝑣 are used to store moving averages of the gradients 

and squared gradients, both initialized to zero.

2. Hyperparameters: 𝛽1 and 𝛽2, close to 1 (common defaults are 0.9 and 0.999).

3. Update Moving Averages: 𝑚 = 𝛽1𝑚 + 1 − 𝛽1 𝑔 and 𝑣 = 𝛽2𝑣 + 1 − 𝛽2 𝑔2.

4. Correct Bias: ෝ𝑚 =
𝑚

1−𝛽1
𝑡 and ො𝑣 =

𝑣

1−𝛽2
𝑡.

5. Adjust parameters: 𝑥 = 𝑥 −
𝛼

ො𝑣+𝜖
ෝ𝑚

where 𝛼 is the initial learning rate, 𝜖 is a small constant added to improve numerical stability. 



Adam (Adaptive Moment Estimation)

Characteristics:

• Designed to combine the advantages of two other popular optimizers: the adaptive learning 

rate feature of AdaGrad and the momentum feature of RMSprop.

• Different learning rates for different parameters and adjusts them throughout training.

• Corrects the bias in moving averages, especially important in the initial training phase.

Advantages:

• Combines the benefits of AdaGrad and RMSprop.

• Performs well in practice and across a wide range of non-convex optimization problems and large

dataset.

Disadvantages:

• Can be memory-intensive due to storing moving averages for each parameter.

• Might not converge to the optimal solution in certain theoretical cases.



Optimization

➢ Batch SGD

➢ Momentum

➢ Adaptive Moment  Estimation (Adam)

➢ Backpropagation algorithm

Forward Pass Backward Passes



Efficient Gradient Calculation

 Why It’s Important:

• Neural networks often contain billions to trillions of parameters (e.g., models with ∼billions+parameters).

• During training, gradients need to be computed for every parameter at each iteration of the optimization process.

  Challenges:

• Computational Complexity: Calculating gradients for all parameters in large-scale models is computationally 
intensive.

• Memory Constraints: Storing intermediate results for backpropagation in large models requires significant memory. 

  Solutions:

• Backpropagation Algorithm: Efficiently calculates gradients by applying the chain rule of differentiation.

• Automatic Differentiation Libraries: Frameworks like TensorFlow, PyTorch, and JAX automate gradient 
computation.

• Distributed Training: Parallelizing computations across multiple GPUs or TPUs helps handle large models.



Backpropagation Algorithm

2 Steps:

1. Forward Propagation

2. Backpropagation

• Forward propagation is how neural networks make predictions.

• Involves passing input data through the network layer by layer to the 

output.

• Backpropagation is the process of adjusting the weights of the 

network by propagating through the neural network backward.

• Involves calculating the gradient of the loss function with respect 

to each weight by the chain rule.

• The weights are adjusted in the direction that reduces the loss.

Forward Propagation

Backpropagation

Both steps are iteratively repeated for several epochs to minimize the 

loss and improve the model's accuracy.



Backpropagation Algorithm



Parameter Initialization
Proper initialization is critical because:

a) Convergence Speed: Poor initialization can slow down the training process.

b) Gradient Stability: Ensures gradients do not vanish or explode during backpropagation.

c) Optimization Performance: Facilitates better navigation of the loss landscape, avoiding saddle points and bad

 local minima.
 

Challenges in Parameter Initialization: 

a. Vanishing Gradients: Occurs when the gradients become excessively small during backpropagation, leading to 

negligible weight updates. This is typically caused by: Small initial weight values and Activation functions like Sigmoid 

or Tanh that squash outputs to a narrow range.

b. Exploding Gradients:  Occurs when gradients grow exponentially during backpropagation, causing instability and 

divergence in the optimization process. This is typically caused by: Large initial weight values and  Improper scaling of 

weights in deep layers.

c. Symmetry Breaking: Initializing all weights to the same value (e.g., zero) causes symmetry in the network, preventing 

neurons in the same layer from learning distinct features.



Initialization Techniques
Zero Initialization: All weights set to 0, leading to symmetry.

Random Initialization: Weights are initialized randomly (e.g., sampled from N(0, 1)). Issue:  Without proper 
scaling, it can lead to vanishing or exploding gradients.

Xavier Initialization (Glorot Initialization):  Designed for Sigmoid and Tanh activation functions. Ensures 
variance of activations remains consistent across layers:

He (Kaiming) Initialization: Designed for ReLU and its variants. 

LeCun Initialization: Suitable for activation functions like SELU:  

 
Orthogonal Initialization: Ensures weights are orthogonal, maintaining variance stability across layers. 

Effective for RNNs and deep networks with large dimensions.

Bias Initialization: Biases are often initialized to small positive values (e.g., 0.01).

Pretrained Initializations: Using weights from pretrained models (transfer learning).

Layer-Specific Initialization:  Input layers: Focus on uniform weight distribution. 

                                                        Output layers: Smaller initialization to stabilize predictions.

 



Batch Normalization
• Definition: Batch Normalization (BN) is a technique used in 

deep learning to normalize the inputs to each layer within a 
neural network. It ensures that the inputs have a consistent 
distribution, which stabilizes and accelerates training.

• Purpose: Reduce internal covariate shift: This occurs 
when the distribution of inputs to a layer changes during 
training. 

• Benefits: 

a)  Improved Stability: Keeps activations in a stable range, 
mitigating vanishing/exploding gradients.

b)  Faster Convergence:  Allows for higher learning rates and 
reduces sensitivity to initialization.

c)  Regularization Effect:  Adds noise due to batch statistics, 
reducing overfitting.

d) Enhanced Generalization: Produces better results on unseen 
data.

https://kharshit.github.io/blog/2018/12/28/why-batch-normalization



Batch Normalization import torch.nn as nn

class CNNWithBatchNorm(nn.Module):

        def __init__(self):

         super(CNNWithBatchNorm, self).__init__()

        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)

        self.bn1 = nn.BatchNorm2d(16)  # BatchNorm for convolutional 
layers

        self.relu = nn.ReLU()

        self.fc1 = nn.Linear(16 * 32 * 32, 10)

        self.bn_fc = nn.BatchNorm1d(10)  # BatchNorm for dense layers

 def forward(self, x):

        x = self.conv1(x)

        x = self.bn1(x)  # Normalize feature maps

        x = self.relu(x)

        x = x.view(x.size(0), -1)  # Flatten

        x = self.fc1(x)

        x = self.bn_fc(x)  # Normalize dense layer output

        return x



Batch Normalization

https://e2eml.school/batch_normalization https://kharshit.github.io/blog/2018/12/28/why-batch-normalization



Regularization Methods

Four Mechanisms: 
❖ Make the modeled function smoother.

❖ Increase the effective amount of data.

❖ Combine multiple models to mitigate uncertainty 

in the fitting process.

❖ Encourages the training process to converge to 
a wide minimum, where small errors in the 

estimated parameters are less important.
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The Universal Approximation Theorems



Universal Approximation Theorem



Statistical Theory of  Deep Learning

1
2
0

Approximation theory viewpoint

Recently, a large collection of works bridge approximation 

theory of neural network models with empirical processes.

Applications: Fast convergence rates of excess risks in 

regression and classification tasks.

Perspectives: Measuring complexities of neural networks 

for function approximations.

Scaling Parameters: Network width, depth, and active 

parameters should scale with sample size, data dimension, 

and function smoothness index.

Assumptions:

➢ Assumes global minimizers of loss functions are 

obtainable.

➢ Focuses on statistical properties without optimization 

concerns.

➢ Recognizes non-convexity of loss functions due to non-

linear activation functions.

Training Dynamics Viewpoint

                                                                                  
Understanding non-convex loss functions for neural network 
models is crucial. Key implications for generalization capabilities.

Key Empirical Findings: Overparameterized neural networks 
trained by stochastic gradient descent can fit noisy data or 
random noise perfectly but still generalize well.

Overparameterization Insights:

• The dynamics of deep neural networks with large enough 
width, trained via gradient descent (GD) in ℓ2-loss, behave 
similarly to those of functions in reproducing kernel Hilbert 
spaces (RKHS),where the kernel is associated with a specific 
network architecture. 

• In the Mean-Field (MF) regime, the network parameters have 
the flexibility to deviate significantly from their initial values, 
even though it necessitates an infinite width.

• Comprehensive understanding of weight initializations and 
learning rate scalings in gradient-based methods.



Deep learning theory

~ p(x)p(y|x)Data

Model

Assumption

Ideal 

Estimate

The Risk Error

Approx Error

Complexity



Functional Equivalence can reduce 
stochastic and optimization errors



Deep learning theory

• Much of the current theoretical understanding is 
counterintuitive and falls short of explaining why deep 
learning or reinforcement learning methods perform 
effectively in real-world scenarios. There is a big gap between 
popular deep learning algorithms and current theoretical 
results. 

• Many deep learning (DL) theoretical studies primarily focus 
on fully connected neural networks (FNN) within 
nonparametric settings, while making unrealistic 
assumptions.

• Key breakthroughs in algorithmic modeling often lack a solid 
mathematical foundation due to the absence of powerful tools 
in such complex scenarios. 

• Furthermore, existing methodologies, such as traditional  
harmonic analysis and empirical process theory, are 
insufficient for addressing heterogeneous object structures 
(e.g., Lie group/algebra) commonly encountered in computer 
vision (CV) and natural language processing (NLP). 
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