
Bios 740- Chapter 2. Neural Networks Fundamentals

Acknowledgement: Thanks to Miss Jiarui Tang for preparing some
of the slides and we use some pictures from Dr. Prince’s book at

https://udlbook.github.io/udlbook/

Content

1 Neural Network Basics

2 Perceptron Model and Multilayer Perceptrons (MLP)

3 Activation Functions

4 Loss Functions

5 Optimization Techniques

6 Theoretical Challenges

Content

1 Neural Network Basics

2 Perceptron Model and Multilayer Perceptrons (MLP)

3 Activation Functions

4 Loss Functions

5 Optimization Techniques

6 Theoretical Challenges

Neural Network Basics

Recap:

What is the relationship between neural network and deep learning?

What are the three types of layers in neural network?

Neurons (Nodes)

• Fundamental units of a neural network.

• Receive input signals and perform

computations and produce an output.

• Neurons in hidden and output layers may

use activation functions.

• Activation functions introduce non-

linearities for learning complex patterns.

Neural Network Basics
Channels (connections)

• The information is transferred from one layer

(or neurons) to another layer (or neurons) over

connecting channels.

• Each connection is associated with a weight

value that determines the strength of the

connection. These weights can be adjusted

during training to influence the network's

behavior.

• The output of one neuron is multiplied by the

weight of the connection and passed as input to

the connected neuron in the subsequent layer.

0.8

0.1

0.6

0.3

Weight

Neural Network Basics

Bias

• Biases are also adjustable parameters associated

with the connections between neurons in neural

networks, which is added to the weighted sum

of inputs at each neuron and then applied to

activation function.

• It allows the network to account for potential

systematic errors or deviations from the ideal

relationship between inputs and outputs.

• Bias is conceptually similar to the intercept in

linear regression, providing flexibility for the

network to fit data more accurately.

0.8

0.1

0.6

0.3

Weight
Bias

𝐵1

𝐵2

𝑋1

𝑋2

𝐵1

+
(𝑋1 ∗ 0.1 + 𝑋2 ∗ 0.8)

Activation function

output

Neural Network Basics

Activation function

• Activation functions are threshold values that

introduce non-linearities into the neural

network, enabling it to comprehend complex

relationships between inputs and outputs.

• Common activation functions: sigmoid, tanh,

ReLU (Rectified Linear Unit), and softmax.

• The results of the activation function determine

if the particular neuron will get activated or not.

• An activated neuron transmits data (or

information) to the neurons of the next layer

through channels.

0.8

0.1

0.6

0.3

Weight
Bias

𝐵1

𝐵2

𝑋1

𝑋2

𝐵1

+
(𝑋1 ∗ 0.1 + 𝑋2 ∗ 0.8)

Activation function

output

Training of a Neural Network

2 Steps:

1. Forward Propagation

2. Backpropagation

• Forward propagation is how neural networks make predictions.

• Involves passing input data through the network layer by layer to the

output.

• Backpropagation is the process of adjusting the weights of the

network by propagating through the neural network backward.

• Involves calculating the gradient of the loss function with respect

to each weight by the chain rule.

• The weights are adjusted in the direction that reduces the loss.

Forward Propagation

Backpropagation

Both steps are iteratively repeated for several epochs to minimize the

loss and improve the model's accuracy.

Modern DL Model Architectures

1
• Key Features: Utilizes convolutional layers to

process data in a grid pattern (like images).

• Key Components:

• Convolutional Layers: Extract features from

input images using filters.

• Pooling Layers: Reduce dimensions and

computational load, retaining key information.

• Fully Connected Layers: Classify images based

on extracted features.

• Example Models: LeNet-5, AlexNet, VGGNet.

Convolutional Neural Networks (CNNs)

• Applications in Biomedicine:

• Image classification in diagnostics

(e.g., cancer detection from scans).

• Image segmentation for identifying

regions of interest in medical images.

Figure. Basic CNN structure.

2

Modern DL Model Architectures

• Key Features: Processes sequences of data (time-

series data), with memory of previous inputs,

capturing temporal dynamics.

• Unique Feature: Loop-like architecture allowing

previous outputs to be used as inputs while having

hidden states, enabling information persistence.

• Challenges & Solutions: Problem of vanishing

gradients; solved by advanced RNNs, e.g. LSTM and

GRU.

• Example Models: LSTM (Long Short-Term

Memory), GRU (Gated Recurrent Unit).

Recurrent Neural Networks (RNNs)

• Applications in Biomedicine:

• Analysis of sequential patient data in

EHRs.

• Time-series analysis in physiological

signal processing.

3

Modern DL Model Architectures

• Key Features: U-shaped architecture with symmetric encoder
and decoder paths. Skip connections that concatenate feature
maps from encoder to decoder

• Structure: Encoder: Series of convolutional and max-pooling
layers that capture context. Bottleneck: Intermediate layer
connecting encoder and decoder. Decoder: Series of up-
convolution and concatenation layers that restore resolution.
Final Layer: Convolutional layer that maps features to the desired
output.

• Types: 2D/3D U-Net, Attention U-Net.

U-Net

• Applications in Biomedicine: Medical image segmentation.
Satellite image segmentation. Biomedical image analysis.
Autonomous driving. General image segmentation tasks.

U-Net for segmenting HeLa cells. The U-Net has an
encoder-decoder structure, in which the representation is
downsampled (orange blocks) and then re-upsampled (blue
blocks). The encoder uses regular convolutions, and the
decoder uses transposed convolutions. Residual
connections append the last representation at each scale in
the encoder to the first representation at the same scale
in the decoder (orange arrows).

4

Modern DL Model Architectures

• Key Features: Unsupervised learning models for

dimensionality reduction and feature learning.

• Structure: Composed of an encoder (compressing input)

and a decoder (reconstructing input).

• Types: Standard Autoencoders, Variational Autoencoders

(VAEs).

Autoencoders

• Applications in Biomedicine:

• Data denoising (e.g., removing noise from images).

• Anomaly detection in medical imaging (e.g., identifying

unusual patterns).

Figure 1. Visualization of an autoencoder

Figure 2. Autoencoders are a specific type of feedforward

neural networks where the input is the same as the output.

5

Modern DL Model Architectures

• Key Features: Ability to process graph-structured data. Utilizes

node features and graph topology for learning. Effective in

capturing dependencies between nodes. Supports inductive and

transductive learning.

• Structure: Nodes, Edges, Node Features, Graph Convolution,

and Readout Layer.

• Types: Graph Convolutional Networks (GCNs), Graph Attention

Networks (GATs), Graph Recurrent Networks (GRNs), Graph

Autoencoders, Graph U-Net

Graph Neural Network

• Applications in Biomedicine:

Social Network Analysis, Knowledge Graphs, Drug Discovery,

Recommender Systems, Network Security

Graph U-Net

GNN GAT

6

Modern DL Model Architectures

• Key Features: Comprises two neural networks, a

generator and a discriminator, competing against each

other.

• Mechanism:

• Generator creates images, trying to fool the

discriminator by generating data similar to those in

the training set.

• Discriminator evaluates them, trying to distinguish

between fake data and real data

• Example Models: DCGAN, Pix2Pix, CycleGAN.

Generative Adversarial Networks (GANs)

• Applications in Biomedicine:

• Generate high-resolution images from

low-resolution inputs, enabling

improved image quality.

• Data augmentation in medical

imaging for robust model training.

Figure. Visualization of the flow of GAN

Figure. Transformer architecture

7

Modern DL Model Architectures

• Key Features: Utilizes self-attention mechanisms,

excellent for handling sequences of data.

• Key Innovation: Following an encoder-decoder structure,

eliminating recurrence and convolutions.

• Example Models: BERT (adapted for biomedical

applications), AlphaFold.

Transformer Models

• Applications in Biomedicine:

• Genomic sequence analysis for personalized medicine.

• Protein structure prediction (e.g., AlphaFold's

breakthroughs).

8

Modern DL Model Architectures

• Key Features: DRL leverages neural networks to approximate

value functions and policies, enabling agents to learn complex

tasks from high-dimensional sensory inputs.

• Key Components: Agent, Environment, Reward, Policy, and

Value Function.

• Example Models: DQN (Deep Q-Network), A3C

(Asynchronous Advantage Actor-Critic), PPO (Proximal Policy

Optimization) ,SAC (Soft Actor-Critic)

Deep Reinforcement Learning

• Applications:

• Game Playing; Robotics

• Autonomous Vehicles; Healthcare

Types of Deep Learning

Deep

Learning

Unsupervised

Learning

Supervised

Learning
Reinforcement

Learning
Neural network learns to make

predictions or classify data

based on the labeled datasets.

CNN

RNN

An agent learns to make decisions in

an environment to maximize a

reward signal. The agent interacts

with the environment by taking action

and observing the resulting rewards.

The neural network learns to

discover the patterns or to cluster the

dataset based on unlabeled datasets.

There are no target variables.

Autoencoders

Generative

Model

Deep Q

Network

DDPG

…

Content

1 Neural Network Basics

2 Perceptron Model and Multilayer Perceptrons (MLP)

3 Activation Functions

4 Loss Functions

5 Optimization Techniques

6 Theoretical Challenges

Perceptron Model

• Definition: The perceptron is a fundamental building block of artificial neural networks,

inspired by the biological neuron.

• You can think of a perceptron as a single neuron in previous diagram, which is called Perceptron

in neural network.

• Functionality: It takes multiple input signals, applies weights and bias, and produces a binary

output.

• Purpose: Originally designed for binary classification tasks.

• Activation Function: Initially utilizes a step function for activation.

Anatomy of a Perceptron

…

𝑥1

𝑥2

𝑥3

𝑥𝑝

Inputs

𝚺

𝑤1

𝑤2

𝑤3

𝑤𝑝

ෝ𝒚

Weights Sum Non-linearity Output

෍
𝑖=1

𝑝

𝑥𝑖𝑤𝑖

Linear combinations

of inputs

𝑔

Non-linear

activation function

ො𝑦 =Output

Enough?

One more term -

Bias

Step function

Anatomy of a Perceptron

…

𝑥1

𝑥2

𝑥3

𝑥𝑝

Inputs

𝚺

𝑤1

𝑤2

𝑤3

𝑤𝑝

ෝ𝒚

Weights Sum Non-linearity Output

𝑏 + ෍
𝑖=1

𝑝

𝑥𝑖𝑤𝑖

Linear combinations

of inputs

𝑔

Non-linear

activation function

ො𝑦 =Output

1

𝑏

bias

Write in matrix:

ො𝑦 = 𝑔 (𝑏 + 𝑿𝑇𝑾)

where 𝑿 =

𝑥1
𝑥2

…
𝑥𝑝

and

𝑾 =

𝑤1
𝑤2

…
𝑤𝑝

.

Perceptron Model in PyTorch from Scratch

Define the Perceptron model

class Perceptron(torch.nn.Module):

def __init__(self, input_size):

super(Perceptron, self).__init__()

self.weights = torch.nn.Parameter(torch.rand(input_size, 1),requires_grad=True)

self.bias = torch.nn.Parameter(torch.rand(1), requires_grad=True)

def forward(self, x):

z = torch.matmul(x, self.weights) + self.bias

return torch.sigmoid(z)

Create the Perceptron model

input_size = 2 # Number of input features

model = Perceptron(input_size)

Forward pass

outputs = model(X)

Code available in Chapter2 Perceptron Model.ipynb

Inputs

𝑝

𝑊

𝑏

Sum

Activation function
Step function is discontinuous and non-

differentiable. Driven by the need for

differentiability, better gradient

information, versatility, and improved

training stability, researchers preferred the

sigmoid function and other smooth

activation functions.

Perceptron: Simplified

…

𝑥1

𝑥2

𝑥𝑝

𝑧

𝑤1

𝑤2

𝑤𝑝

𝑦 = 𝑔 (𝑧),

where

𝑿 =

𝑥1
𝑥2

…
𝑥𝑝

and 𝑾 =

𝑤1
𝑤2

…
𝑤𝑝

.

𝑧 = 𝑏 + 𝑿𝑇𝑾𝑦 = 𝑔(𝒛)

Q: What if I want to have multiple outputs, e.g. 𝑦1 and 𝑦2?

Multi Output Perceptron

…

𝑥1

𝑥2

𝑥𝑝

𝑧1
𝑦1 = 𝑔(𝑧1)

𝑧2
𝑦2 = 𝑔(𝑧2)

𝑧1 = 𝑏1 + 𝑿𝑇𝑾𝟏

𝑧2 = 𝑏2 + 𝑿𝑇𝑾𝟐

More?

Multi Output Perceptron

…

𝑥1

𝑥2

𝑥𝑝

𝑧1

𝑧2

𝑧1 = 𝑏1 + 𝑿𝑇𝑾𝟏

𝑧2 = 𝑏2 + 𝑿𝑇𝑾𝟐

𝑧3

𝑧4

𝑦1 = 𝑔(𝑧1)

𝑦3 = 𝑔(𝑧3)

𝑦2 = 𝑔(𝑧2)

𝑦4 = 𝑔(𝑧4)

𝑧3 = 𝑏3 + 𝑿𝑇𝑾𝟑

𝑧4 = 𝑏4 + 𝑿𝑇𝑾𝟒

Multi Output Perceptron

…

𝑥1

𝑥2

𝑥𝑝

𝑧1

𝑧2

𝑧3

𝑧4

𝑦1 = 𝑔(𝑧1)

𝑦3 = 𝑔(𝑧3)

𝑦2 = 𝑔(𝑧2)

𝑦4 = 𝑔(𝑧4)

𝑧𝑚

…
𝑦𝑚 = 𝑔(𝑧𝑚)

Corresponding code in PyTorch:

nn.Linear(input_size, output_size)

The number of input features: 𝑝

The number of output features: 𝑚

Unlike a single perceptron that makes one prediction,

this network is capable of making multiple predictions

simultaneously due to its multiple output nodes.

Single-Layer Neural Network

…

𝑥1

𝑥2

𝑥𝑝

𝑧1

𝑧2

𝑧3

𝑧4

𝑔(𝑧1)

𝑔(𝑧3)

𝑔(𝑧2)

𝑔(𝑧4)

𝑧𝑚

…
𝑔(𝑧𝑚)

ෞ𝑦1

ෞ𝑦2

𝑾(𝟏) 𝑾(𝟐)

Inputs Output

Hidden Layer

𝒛 = 𝒃𝒛 + 𝑿𝑇𝑾(𝟏)

Hidden layer:

ෝ𝒚 = 𝒃𝒚 + 𝑿𝑇𝑾(𝟐)

Output:

“Single layer” refers to a

network that has one layer of

hidden nodes between the input

and the output layers.

self.hidden = nn.Linear(3, m)

self.output = nn.Linear(m, 2)

Corresponding code:

Shallow Neural Networks

Prince (2023)

Multilayer Perceptrons (MLP)
• Definition: A Multilayer Perceptron (MLP) is a class of feedforward artificial neural network that

consists of at least three layers of nodes: an input layer, 2+ hidden layers, and an output layer.

• Hyperparameters: The width of a network refers to the number of hidden units in each layer, while

its depth indicates the number of hidden layers. The total number of hidden units serves as a

measure of the network's overall capacity.

• Key Characteristics:

• Multiple Layers: Unlike single-layer perceptrons, MLPs have multiple layers of neurons in a

directed graph, meaning that each layer feeds into the next.

• Dense Connections: Each neuron in one layer connects with a certain weight to every neuron in

the following layer, facilitating complex data representations.

• Why Multilayer?

• Single-layer networks are only capable of learning linearly separable functions. MLPs can

overcome this by learning non-linear decision boundaries.

Deep Neural Network

The maximum number of linear regions for neural networks increases

rapidly with the network depth.

Multilayer Perceptrons (MLP) in PyTorch

Define the MLP model

class MLP(nn.Module):

def __init__(self, input_size, hidden_size1, hidden_size2, output_size):

super(MLP, self).__init__()

First hidden layer

self.hidden1 = nn.Linear(input_size, hidden_size1)

Second hidden layer

self.hidden2 = nn.Linear(hidden_size1, hidden_size2)

Output layer

self.output = nn.Linear(hidden_size2, output_size)

def forward(self, x):

Pass the input through the first hidden layer and apply activation function

x = F.relu(self.hidden1(x))

Pass the output through the second hidden layer and apply activation function

x = F.relu(self.hidden2(x))

Pass the output through the final layer

x = self.output(x)

return x

Code available in Chapter2 Perceptron Model.ipynb

Define the first hidden layer

Define the second hidden layer

Define the output layer

Inputs

𝒁 𝑔 – activation function

Content

1 Neural Network Basics

2 Perceptron Model and Multilayer Perceptrons (MLP)

3 Activation Functions

4 Loss Functions

5 Optimization Techniques

6 Theoretical Challenges

Activation Function - The Gateway to Non-Linearity

• Introducing Non-Linearity: Activation functions introduce non-linear properties to the

network, enabling it to learn complex data patterns beyond the capability of linear models.

• Transforming Inputs to Outputs: It takes input from previous layers and converts it to some

form of input for the next layers.

• Essential Building Blocks: It decides what is to be fired to the next neuron.

• Beyond Linear Modeling: Without non-linearity, neural networks would be limited to linear

decision boundaries, similar to linear regression.

• Crucial for Performance: Non-linear functions allow neural networks to solve advanced

problems like image and speech recognition, and natural language processing.

Types of Activation Function

Each activation function has its own

unique properties and is suitable for

certain use cases. Using the right

activation function for the task leads

to faster training and better

performance.

Linear Activation Function

The linear activation function is the simplest activation function, defined as:

𝑓 𝑥 = 𝑥

which simply returns the input 𝑥 as the output. Graphically, it looks like a straight line with a slope of 1.

• Ideal for Regression Output:

• "Primarily used in the output layer of neural networks for regression problems."

• "Aids in predicting numerical values without altering or squashing the output."

• Rare in Hidden Layers:

• "Seldom used in hidden layers due to its inability to introduce non-linearity."

• "Neural networks require non-linear functions in hidden layers to learn complex patterns."

• Linear Transformations Limitation:

• "A linear activation function throughout the network limits it to only learning linear

relationships, reducing the model's complexity and adaptability."

Sigmoid Activation Function

Sigmoid activation function is one of the most widely used non-linear activation functions. Defined as:

𝑓 𝑧 =
1

1 + 𝑒−𝑧

• Sigmoid function transforms real-valued input into a range between 0 and 1.

• Characterized by an “S”-shaped curve, asymptoting at 0 for large negative inputs and 1 for large

positive inputs.

• Output can be interpreted as probabilities of a particular class, ideal for binary classification tasks.

• Initially popular due to strong gradient near the midpoint (0.5), facilitating efficient backpropagation

training.

• Vanishing Gradient Problem: it suffers from 'vanishing gradient' when inputs are significantly

high or low, leading to a flat slope.

• Commonly used as the activation function in the output layer of binary classification models.

Tanh (Hyperbolic Tangent) Activation

The Tanh Function is very similar to the sigmoid function. The only difference is that it is symmetric

around the origin. It is defined as:

𝑡𝑎𝑛ℎ 𝑧 = 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑 2𝑧 − 1 =
2

1 + 𝑒−2𝑧 − 1

• Output range: -1 to 1, handling negative values better than the sigmoid function.

• Zero-Centered Nature: symmetric around the origin, allowing for faster convergence in learning

algorithms.

• Stronger Gradients: More resilient against the vanishing gradient problem, especially beneficial in

networks with many layers, compared to sigmoid.

• Vanishing Gradient Issue: though better than sigmoid function, tanh still faces the vanishing gradient

problem in deep networks.

• Usage: Commonly used in hidden layers due to its zero-centered nature and efficiency, especially

when data is normalized with mean zero.

ReLU (Rectified Linear Unit) Activation
The ReLU function is defined as:

𝑓 𝑧 = max(0, 𝑧)

• ReLU is another non-linear activation function that has gained popularity in deep learning.

• Main advantage: it does not activate all the neurons at the same time. The neurons will only

be activated if the output of the linear transformation is greater than 0.

• Linear for Positive Inputs: Acts as a linear function with a gradient of 1 for positive

 inputs, which allows the gradient to pass through unchanged during backpropagation,

 helping to mitigate the vanishing gradient problem.

• Non-Linearity: Despite being linear for half of its input space, ReLU is non-linear

 due to its non-differentiable point at 𝑥 = 0. Its derivative is zero for negative inputs (the

 dying ReLU problem).

• Computational Efficiency: ReLU is computationally inexpensive, involving simple

thresholding at zero. Its simplicity allows networks to scale to many layers with minimal

increase in computational burden.

Softmax Activation

The softmax function is defined as:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧𝑖 =
exp(𝑧𝑖)

σ𝑗 exp(𝑧𝑗)

• Ideal for Multi-Class Classification: Each element in the output signifies the probability of the

input belonging to a specific class..

• Non-negative outputs: Uses the exponential function to ensure all outputs are non-negative, aligning

with the nature of probabilities.

• Amplification of Differences: Small variations in input values can result in significant differences in

output probabilities, which leads to one class dominating in the probability distribution.

• Sensitivity to Outliers: Can be sensitive to outliers or extreme values in the input vector.

• Usage: Commonly used in the output layer for tasks involving classification into multiple categories.

Activation Functions in PyTorch

def linear_activation(x):

 return x

Passing the array to linear activation function

output = linear_activation(z)

sig = nn.Sigmoid()

Applying sigmoid to the tensor

output = sig(z)

t = nn.Tanh()

Applying Tanh to the tensor

output = t(z)

r = nn.ReLU()

Passing the array to relu function

output = r(z)

sm = nn.Softmax(dim=0)

Applying function to the tensor

output = sm(z)

Linear activation:

Sigmoid activation:

Tanh activation:

ReLU activation:

Softmax activation:

Activation Function Choice

For binary classification:

Use the sigmoid activation function in the output layer. It will squash outputs between 0 and 1, representing

probabilities for the two classes.

For multi-class classification:

Use the softmax activation function in the output layer. It will output probability distributions over all classes.

If unsure:

Use the ReLU activation function in the hidden layers. ReLU is the most common default activation function

and usually a good choice.

Other Activation Functions

Prince (2023)

Content

1 Neural Network Basics

2 Perceptron Model and Multilayer Perceptrons (MLP)

3 Activation Functions

4 Loss Functions

5 Optimization Techniques

6 Theoretical Challenges

Loss Function

Definition: a measure of error between what your model

predicts and what the actual value is.

Purpose: quantifies how well the neural network matches

what we want to output and thus guides the optimization

process.

Importance: The choice of loss function directly impacts

how the weights of the model are adjusted.

Examples: Mean Squared Error (Regression), Cross-

Entropy (Classification).

Notation:

ℒ(𝑓 𝑿; 𝑾 , 𝒚)

Prediction True

Recipe for Constructing Loss Functions

4
5

Loss Function for Regression

Loss Function for Regression - MSE

Mean Square Error (MSE), also called L2 Loss, is the most commonly used regression loss function.

It calculates the average of the squares of the errors between actual and predicted values.

𝑀𝑆𝐸 =
1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 − ො𝑦𝑖
2 ,

where 𝑦𝑖 is the actual value, ො𝑦𝑖 is the predicted

value, and 𝑛 is the number of samples.

Characteristics:

• Emphasizes larger errors due to squaring, leading to a

focus on model accuracy in areas with higher error

rates.

• Sensitive to outliers as errors are squared, potentially

leading to overemphasis on outliers.

Preferred when larger errors are significantly undesirable

Loss Function for Regression - MAE

Mean Absolute Error (MAE), also called L1 Loss. It is the sum of absolute differences between our

target and predicted variables. It measures the average magnitude of errors in a set of predictions,

without considering their direction.

𝑀𝐴𝐸 =
1

𝑛
σ𝑖=1

𝑛 |𝑦𝑖 − ො𝑦𝑖| ,

where 𝑦𝑖 is the actual value, ො𝑦𝑖 is the predicted value,

and 𝑛 is the number of samples.

Characteristics:

• Provides a linear score that gives equal weight

to all errors, regardless of their size.

• Less sensitive to outliers compared to MSE,

offering a more robust error metric in datasets

with anomalies.

Useful when you want to avoid the over-penalization of

large errors and when dealing with outliers.

MSE vs MAE

For MAE, its gradient is the same throughout,

which means the gradient will be large even

for small loss values. We can use dynamic

learning rate which decreases as we move

closer to the minima to fix this problem.

For MSE, the gradient is high for larger loss

values and decreases as loss approaches 0,

making it more precise at the end of

training. It can easily converge even with a

fixed learning rate.

MSE vs MAE

Using the squared error is easier to solve, but using the absolute error is more robust to outliers.

Loss Function for Classification

Binary Classification Task

Binary Cross-Entropy

Multi-Class Classification Task

Cross-Entropy Loss

Kullback Leibler Divergence Loss

Negative Log Likelihood Loss

Binary Cross-Entropy Loss (BCE)

Binary Cross-Entropy Loss (BCE), also called log loss, is used to evaluate the performance of a

binary classification model where the output is a probability between 0 and 1.

It measures the dissimilarity between the actual labels and the predicted probabilities of the data

points being in the positive class. It penalizes the predictions that are confident but wrong.

𝐵𝐶𝐸 = −
1

𝑛
σ𝑖=1

𝑛 [𝑦𝑖 log ො𝑦𝑖 + 1 − 𝑦𝑖 log(1 − ො𝑦𝑖)] ,

where 𝑦𝑖 is the actual value, ො𝑦𝑖 is the predicted value, and 𝑛 is the number of samples.

Formula:

nn.BCELoss in PyTorch

Example predictions and labels

predictions = torch.sigmoid(torch.randn(4))

labels = torch.tensor([1, 0, 1, 0], dtype=torch.float32)

Binary Cross-Entropy Loss

criterion = nn.BCELoss()

loss = criterion(predictions, labels)

tensor([0.6882, 0.4268, 0.6981, 0.6192])

tensor([1., 0., 1., 0.])

tensor(0.5638)

𝐵𝐶𝐸 = −
1

4
(log 0.6882 + log 1 − 0.4268 + log 0.6981 + log(1 − 0.6192)) ≈ 0.5638

Should be probability (0 to 1), usually obtained from

a sigmoid function.

Should be binary (0 or 1), match the shape of predictions.

Note: Use nn.BCEWithLogitsLoss if the output

layer of your model does not include a sigmoid.

Loss Function for Classification – Cross Entropy

Entropy

In information theory, entropy measures the uncertainty or randomness of a set of outcomes.

Higher entropy means higher unpredictability in the data.

Think of a box filled with balls that are either red or green. We're looking at how "messy" or

"organized" the balls can be, which is what we call entropy. In what case, the balls have the lowest

entropy? The highest entropy? (Look at the binary entropy plot across all probabilities for hints.)

𝐻 𝑋 =

− න 𝑝 𝑥 log 𝑝 𝑥 , 𝑖𝑓 𝑋 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠

− ෍ 𝑝 𝑥 log 𝑝 𝑥 , 𝑖𝑓 𝑋 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒

Cross Entropy

Entropy

In information theory, entropy measures the uncertainty or randomness of a set of outcomes.

Higher entropy means higher unpredictability in the data.

When all balls are red or green, they have the lowest entropy, 0. When balls are half red and half

green, they have the highest entropy, log2.

𝐻 𝑋 =

− න 𝑝 𝑥 log 𝑝 𝑥 , 𝑖𝑓 𝑋 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠

− ෍ 𝑝 𝑥 log 𝑝 𝑥 , 𝑖𝑓 𝑋 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒

Cross Entropy

Cross Entropy

Cross-entropy measures the dissimilarity between two probability distributions, ‘P’ and ‘Q’, over the

same set of events.

What will happen to cross entropy if ‘Q’ is the same as ‘P’?

It tells you how inefficient your predictions would be when you use them to encode the actual

distribution.

In discrete case, cross entropy can be defined as:

𝐻 𝑃, 𝑄 = − ෍
𝑖
𝑃(𝑥𝑖) ∙ log(𝑄(𝑥𝑖))

Cross-entropy is equal to entropy.

What if ‘Q’ diverges from ‘P’? Cross-entropy will increase, larger than entropy.

Cross Entropy

− ෍
𝑐=1

𝑀

𝑦𝑜,𝑐log(𝑝𝑜,𝑐)

where 𝑀 is the number of classes, 𝑦𝑜,𝑐 is a binary indicator showing if class label 𝑐 is the correct

classification for observation 𝑜, and 𝑝𝑜,𝑐 is the predicted probability output by softmax function,

ranging from 0 to 1, in the corresponding class 𝑐 for observation 𝑜. 𝑛 is the number of observations.

Formula:

Cross Entropy Loss

Cross-entropy loss measures the performance of a classification model whose output is a probability

value between 0 and 1.

Cross-entropy loss increases as the predicted probability diverges from the actual label.
ground truth

class

Predicted probability of

the observation belonging

to the ground truth class

Exercise: derive binary cross entropy loss function from the cross entropy loss.

This is the loss for

one observation 𝑜

1

𝑛
෍

𝑜=1

𝑛

nn.CrossEntropyLoss in PyTorch

Example predictions and labels

predictions = torch.randn(4, 5) # 4 samples, 5 class predictions

labels = torch.tensor([1, 0, 3, 2], dtype=torch.long)

Cross-Entropy Loss

criterion = nn.CrossEntropyLoss()

loss = criterion(predictions, labels)

tensor([[0.7114, -0.9152, -0.3899, 0.9435, -0.1819],

 [-0.6162, -0.0346, -0.5723, -1.1487, -1.4400],

 [0.3388, -0.9662, -0.2876, -0.1088, -0.1857],

 [-1.3066, 1.5789, -0.3382, -0.6364, 2.9867]])

tensor([1, 0, 3, 2])

tensor(2.3831)

Can be the direct output from the

network. nn.CrossEntropyLoss

applies softmax internally to make it

range from 0 to 1.

Should contain the class indices (not one-hot encoded)

and should be of type torch.long.

nn.CrossEntropyLoss in PyTorch

Example predictions and labels

predictions = torch.randn(4, 5) # 4 samples, 5 class predictions

labels = torch.tensor([1, 0, 3, 2], dtype=torch.long)

softmax_predictions = torch.softmax(predictions, dim=1)

Cross-Entropy Loss

criterion = nn.CrossEntropyLoss()

loss = criterion(predictions, labels)

tensor([[0.3125, 0.0614, 0.1039, 0.3942, 0.1279],

 [0.2058, 0.3681, 0.2150, 0.1208, 0.0903],

 [0.3293, 0.0893, 0.1760, 0.2105, 0.1949],

 [0.0103, 0.1852, 0.0272, 0.0202, 0.7570]])

tensor([1, 0, 3, 2])

tensor(2.3831)

Predicted probabilities after

passing through softmax function.

−
1

4
(log 0.0614 + log 0.2058

+ log 0.2105 + log(0.0272)) ≈ 2.3831

KL Divergence

Kullback-Leibler Divergence, shortened to KL Divergence, measures how one probability

distribution diverges from a second, expected probability distribution.

Recall, cross entropy is defined as: 𝐻 𝑃, 𝑄 = − ෍
𝑖
𝑃(𝑥𝑖) ∙ log(𝑄(𝑥𝑖))

If ‘Q’ is the same as ‘P’, cross entropy will be equal to entropy, which will likely never happen in

reality. Cross entropy will be larger than the entropy:

𝐻 𝑃, 𝑄 − 𝐻(𝑋) ≥ 0

This difference between cross-entropy and entropy has a name:

𝐷𝐾𝐿(𝑃| 𝑄 = − ෍

𝑥

𝑃 𝑥 ∙ log 𝑄 𝑥 − 𝑃 𝑥 ∙ log 𝑃 𝑥 = − ෍

𝑥

𝑃 𝑥 ∙ log
𝑄 𝑥

𝑃 𝑥
= ෍

𝑥

𝑃 𝑥 ∙ log(
𝑃(𝑥)

𝑄(𝑥)
)

KL Divergence

𝐷𝐾𝐿(𝑃||𝑄) is called KL Divergence of 𝑃 from 𝑄. Recall the formula:

𝐷𝐾𝐿(𝑃| 𝑄 = − ෍

𝑥

𝑃 𝑥 ∙ log 𝑄 𝑥 − 𝑃 𝑥 ∙ log 𝑃 𝑥 = − ෍

𝑥

𝑃 𝑥 ∙ log
𝑄 𝑥

𝑃 𝑥
= ෍

𝑥

𝑃 𝑥 ∙ log(
𝑃(𝑥)

𝑄(𝑥)
)

What is the formula of KL Divergence of Q from P?

𝐷𝐾𝐿(𝑄| 𝑃 = − ෍

𝑥

𝑄 𝑥 ∙ log 𝑃 𝑥 − 𝑄 𝑥 ∙ log 𝑄 𝑥 = − ෍

𝑥

𝑄 𝑥 ∙ log
𝑃 𝑥

𝑄 𝑥
= ෍

𝑥

𝑄 𝑥 ∙ log(
𝑄(𝑥)

𝑃(𝑥)
)

Notice that the divergence function is not symmetric: 𝐷𝐾𝐿(𝑃| 𝑄 ≠ 𝐷𝐾𝐿(𝑄||𝑃)

This is why KL Divergence cannot be used as a distance metric.

Use Case Scenario: Effective in model fine-tuning and scenarios where the precise matching of

probability distributions is key, e.g. variational autoencoders (VAE) or fine-tuning probability distributions.

nn.KLDivLoss in PyTorch

Example predicted and target distributions

predicted_log_probs = torch.log_softmax(torch.randn(4, 5), dim=1)

true_probs = torch.softmax(torch.randn(4, 5), dim=1)

Kullback-Leibler Divergence Loss

criterion = nn.KLDivLoss(reduction='batchmean')

loss = criterion(predicted_log_probs, true_probs)

tensor([[-4.4963, -1.2036, -1.5853, -1.4722, -1.3688],

 [-2.6413, -2.2889, -2.2535, -0.5027, -2.1419],

 [-2.3875, -1.0028, -2.9582, -3.1580, -0.8055],

 [-2.3296, -0.4341, -2.2907, -2.1956, -3.1619]])

tensor([[0.0345, 0.1775, 0.1944, 0.2313, 0.3622],

 [0.1333, 0.6237, 0.1228, 0.0795, 0.0406],

 [0.3026, 0.1969, 0.0661, 0.2365, 0.1979],

 [0.1164, 0.4287, 0.2206, 0.1695, 0.0648]])

Should be log probabilities (use

torch.log_softmax)

Should be probabilities (use

torch.softmax or equivalent). If this

true probabilities are in the log-space,

then add log_target=True to the

argument in nn.KLDivLoss.

nn.KLDivLoss in PyTorch

Example predicted and target distributions

predicted_log_probs = torch.log_softmax(torch.randn(4, 5), dim=1)

true_probs = torch.softmax(torch.randn(4, 5), dim=1)

Kullback-Leibler Divergence Loss

criterion = nn.KLDivLoss(reduction='batchmean')

loss = criterion(predicted_log_probs, true_probs)

tensor([[-4.4963, -1.2036, -1.5853, -1.4722, -1.3688],

 [-2.6413, -2.2889, -2.2535, -0.5027, -2.1419],

 [-2.3875, -1.0028, -2.9582, -3.1580, -0.8055],

 [-2.3296, -0.4341, -2.2907, -2.1956, -3.1619]])

tensor([[0.0345, 0.1775, 0.1944, 0.2313, 0.3622],

 [0.1333, 0.6237, 0.1228, 0.0795, 0.0406],

 [0.3026, 0.1969, 0.0661, 0.2365, 0.1979],

 [0.1164, 0.4287, 0.2206, 0.1695, 0.0648]])

tensor(0.4276)

1/4*sum(sum(true_probs*(torch.log(

true_probs)-predicted_log_probs)))

nn.KLDivLoss in PyTorch

Example predicted and target distributions

predicted_log_probs = torch.log_softmax(torch.randn(4, 5), dim=1)

true_probs = torch.softmax(torch.randn(4, 5), dim=1)

Kullback-Leibler Divergence Loss

criterion = nn.KLDivLoss(reduction='batchmean')

loss = criterion(predicted_log_probs, true_probs)

The reduction parameter in PyTorch loss functions controls how the individual loss values in a

batch are combined into a single scalar loss value.

There are typically three options for reduction:

• 'none': No reduction is applied, and the loss is returned for each element in the batch.

• 'mean': The mean of the loss values over the batch is computed.

• 'sum': The sum of the loss values over the batch is computed.

nn.KLDivLoss in PyTorch

Example predicted and target distributions

predicted_log_probs = torch.log_softmax(torch.randn(4, 5), dim=1)

true_probs = torch.softmax(torch.randn(4, 5), dim=1)

Kullback-Leibler Divergence Loss

criterion = nn.KLDivLoss(reduction='batchmean')

loss = criterion(predicted_log_probs, true_probs)

Specific warning for nn.KLDivLoss in PyTorch <= 2.1:

reduction= ‘mean’ doesn’t return the true KL divergence value. Use reduction= ‘batchmean’

which aligns with the mathematical definition, instead.

Loss Function for Classification – NLL Loss

Negative Log-Likelihood Loss function (NLL) measures the negative log likelihood of a set of

predictions, given their true class labels.

NLL is applied only on models with the softmax function as an output activation layer.

To derive the NLL Loss, let’s start from the likelihood function of an observed data, with the input

image 𝑿 and some output class labels 𝒚.

If we make an observation 𝑖 and observed outcome 𝑗 whose estimated likelihood is ො𝑦𝑖,𝑗 , and encode

the ground truth outcome 𝑗 to one-hot vector 𝒚𝒊 (the 𝑗th element, 𝑦𝑖,𝑗 is 1 and all other elements are 0;

length is equal to the number of classes, 𝑀), then the likelihood of the observation is ς𝑗=1
𝑀 ො𝑦

𝑖,𝑗

𝑦𝑖,𝑗
.

We want to find good parameters 𝜽 to represent the relationship between 𝑿 and 𝒚, by maximizing the

likelihood of the observed data.

Loss Function for Classification – NLL Loss

Then, the likelihood function of all 𝑛 observations is ς𝑖=1
𝑛 ς𝑗=1

𝑀 ො𝑦
𝑖,𝑗

𝑦𝑖,𝑗
.

After taking log and average, we get: 𝑁𝐿𝐿 𝐿𝑜𝑠𝑠 = −
1

𝑛
σ𝑖=1

𝑛 σ𝑗=1
𝑀 𝑦𝑖,𝑗 ∙ log(ො𝑦𝑖,𝑗).

To find good parameters 𝜽, we need to maximize the likelihood, and thus minimize the NLL loss.

Compare the NLL loss to the Cross Entropy loss. What do you find?

Maximizing the likelihood, or minimizing the negative log-likelihood loss

is the same as minimizing the cross entropy loss.

nn.NLLLoss in PyTorch

Example log probabilities and labels

log_probs = torch.log_softmax(torch.randn(4, 5), dim=1)

labels = torch.tensor([1, 0, 3, 2]) # Class labels for each sample

Negative Log Likelihood Loss

criterion = nn.NLLLoss()

loss = criterion(log_probs, labels)

tensor([[-2.1952, -2.0639, -0.3655, -4.2204, -2.9338],

 [-2.2309, -1.6147, -1.2787, -1.6363, -1.5118],

 [-2.1938, -3.0970, -1.5740, -1.3624, -0.9675],

 [-1.9533, -1.1320, -3.2088, -1.2513, -1.5640]])

tensor([1, 0, 3, 2])

tensor(2.2165)

Should be log probabilities,

typically obtained by applying

torch.log_softmax to the neural

network's output.

Similar to nn.CrossEntropyLoss, should contain the

class indices and should be of type torch.long.

Loss Function for Classification Summary
Loss Function Advantages Disadvantages Usage Scenario PyTorch Example

Binary Cross

Entropy Loss

• Handles imbalanced datasets

• Encourages model to predict high

probabilities for the correct class.

Vanishing gradient and slow

convergence when the

predicted probabilities are

far from the true labels.

Binary

classification
nn.BCELoss()

Cross Entropy

Loss

• Includes softmax internally

• Invariant to scaling and shifting

of the predicted probabilities.

Sensitive to outliers and

imbalanced data (biased

towards majority class).

Multi-class

classification
nn.CrossEntropyLoss()

KL Divergence

Loss

• Measures the difference between

two probability distributions

• Useful in generative models

Not symmetric, not suitable

to be used solely in training

classifier

Comparing two

probability

distributions

nn.KLDivLoss()

Negative Log

Likelihood

Loss

• Similar to cross entropy

• Often used with log-softmax

output layer

Requires log probabilities as

inputs

Multi-class

classification with

log-softmax output

nn.NLLLoss()

Create Custom Loss Function

def custom_cross_entropy_loss(y_pred, y_true):

#Specifying the batch size

my_batch_size = y_pred.size()[0]

#Get the log probabilities values

log_probabilities = torch.log_softmax(y_pred, dim=1)

#Pick the probabilities corresponding to the true labels

relevant_log_probs = log_probabilities[range(my_batch_size), y_true]

#Take the negative and mean of these log probabilities

loss = -torch.mean(relevant_log_probs)

return loss

Example usage

y_pred = torch.tensor([[1.5, 0.5, -0.5], [-0.5, 1.5, 0.5], [0.5, -0.5, 1.5]]) #

Predicted logits for 3 classes

y_true = torch.tensor([0, 1, 2]) # True labels

loss = custom_cross_entropy_loss(y_pred, y_true)

print("Custom Cross-Entropy Loss:", loss.item())

Create Custom Loss Function with Class Definition

class CustomCrossEntropyLoss(nn.Module):

def __init__(self):

 super(CustomCrossEntropyLoss, self).__init__()

def forward(self, y_pred, y_true):

Ensuring the predicted values are in log form probabilities

log_probs = torch.log_softmax(y_pred, dim=1)

Picking the log probabilities corresponding to true labels

relevant_log_probs = log_probs[range(len(y_true)), y_true]

Negative log likelihood loss

loss = -torch.mean(relevant_log_probs)

return loss

Example usage

loss_function = CustomCrossEntropyLoss()

loss = loss_function(y_pred, y_true)

print("Custom Cross-Entropy Loss:", loss.item())

Create the loss function as a subclass of nn.Module. Why?
PyTorch’s built-in modules and loss functions are subclasses of nn.Module,

so using nn.Module for our own custom loss function ensures the

consistency and compatibility with PyTorch's design and practices.

Constructor (__init__ method): initializes parameters or settings

This function is called when you create an instance of your custom loss function

class. Some more complex loss functions might require initialization of parameter.

Forward Method

(forward method):

computes loss
This is where the

actual computation of

the loss happens.

This custom loss function can be used in a typical training

loop in PyTorch, just like built-in loss functions.

Dice Loss Function

Dice Loss is derived from the Dice Coefficient, which is a statistical tool to measure the similarity or

overlaps between two sets.

Unlike cross entropy loss, dice loss is particularly effective when dealing with imbalanced datasets

and when the focus is on capturing fine details in the segmentation masks. It’s a very popular loss

function in medical image segmentation.

𝐷𝑖𝑐𝑒 =
2 × |𝐴 ∩ 𝐵|

𝐴 + |𝐵|

To avoid division by zero, a small constant (smooth) is added to the numerator and denominator.

Dice coefficient:

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒𝑠𝑚𝑜𝑜𝑡ℎ𝐷𝑖𝑐𝑒𝑠𝑚𝑜𝑜𝑡ℎ =
2 × 𝐴 ∩ 𝐵 + 𝑠𝑚𝑜𝑜𝑡ℎ

𝐴 + 𝐵 + 𝑠𝑚𝑜𝑜𝑡ℎ
and

Dice Loss Function

In the case of image segmentation, we will have 𝐴 to be the predicted segmentation mask, which can

be directly obtained from the output of the network, e.g. represented as a prediction map:

𝐵 is the true/target mask, e.g. represented as:

𝐷𝐿𝑠𝑜𝑓𝑡 = 1 −
2 σ𝑖=1

𝑁 𝑎𝑖𝑏𝑖 + 𝜖

σ𝑖=1
𝑁 𝑎𝑖

2 + σ𝑖=1
𝑁 𝑏𝑖

2 + 𝜖

Soft dice loss:

0.72
0.85
0.40

0.12
0.61
0.05

0.09 0.99

0.06
0.08
0.79

0.63
0.68
0.13

0.93 0.04
0
1
0

0
1
0

0 0

1
1
0

1
0
1

1 0

Soft label: Label

indicates the probability

of the presence of a class Hard label: Binary label

indicates absence (0) or

presence (1) of a class.

where 𝑁 is the total number of elements in prediction map 𝐴 and true mask 𝐵 (pixels in the image),

𝑎𝑖 and 𝑏𝑖 are the value of the 𝑖 th element in 𝐴 and 𝐵, 𝜖 is the smooth term.

Why use square in the denominator?
Check this great argument:

https://mediatum.ub.tum.de/doc/1395260/1395260.pdf

(page 72)

https://mediatum.ub.tum.de/doc/1395260/1395260.pdf

Dice Loss Function in PyTorch

class DiceLoss(nn.Module):

def __init__(self, weight=None, size_average=True):

 super(DiceLoss, self).__init__()

def forward(self, inputs, targets, smooth=1):

#flatten label and prediction tensors

inputs = inputs.view(-1)

targets = targets.view(-1)

intersection = (inputs * targets).sum()

dice = (2.*intersection+smooth)/(inputs.square().sum() +

targets.square().sum() + smooth)

return 1 – dice

Dice Loss Function in PyTorch

Example usage

y_pred = torch.sigmoid(torch.randn(1, 1, 5, 5)) # Example predicted mask

y_true = torch.tensor([[[[1, 0, 0, 0, 1], [0, 1, 0, 0, 1], [0, 0, 1, 0, 1], [0, 0,

0, 1, 1], [1, 1, 1, 1, 1]]]]) # Example true mask

dice_loss = DiceLoss()

loss = dice_loss(y_pred, y_true)

print("Dice Loss:", loss.item())

Ensure the y_pred is probability (0 to 1) by passing it through sigmoid function.

For coding practice, check the notebook “Chapter2 Loss Function.ipynb”.

Imbalanced Data-Loss Functions

❖ Consider Data Characteristics:

❖ Imbalanced Data: Use Weighted

Cross-Entropy or Focal Loss.

❖ Outliers: Use Huber Loss or

Mean Absolute Error.

Outliers-Loss Functions

Barron, J. T. (2019). A general and adaptive robust loss function. In CVPR.

Content

1 Neural Network Basics

2 Perceptron Model and Multilayer Perceptrons (MLP)

3 Activation Functions

4 Loss Functions

5 Optimization Techniques

6 Theoretical Challenges

Fitting DL Models

Find a criterion/measurement of goodness

Get the best model for the problem

Design the neural network𝑿𝟏

𝑿𝟐

𝑿𝒏

…
… Designed

Neural N
etw

ork
ෝ𝒚𝟏

…
…

ෝ𝒚𝟐

ෝ𝒚𝒏

…
…

𝒚𝟏

𝒚𝟐

𝒚𝒏

A loss function is needed here,
to measure the difference between the output and truth

Total loss: 𝑳 = ෍ ℓ(ෝ𝒚𝒊, 𝒚𝒊)

Find the network parameters to minimize the loss

Loss Optimization

Goal: find the network weight that achieve the lowest loss.

ℒ(𝑓 𝑿; 𝑾 , 𝒚)
Prediction True

Write this goal in mathematical format:

argmin
𝑾

෡𝑊 =

𝑾 = [𝑾 𝟏 , 𝑾 𝟐 , …]

contains all the weight

vectors needed to be adjusted

in the neural network

The loss function is a

function of the network

weights 𝑾.

Find the value of the parameters that help the loss function reach the lowest value.

Gradient Descent

A first-order iterative optimization algorithm for finding the
minimum of a function.

Step 1. Compute the derivatives of the loss w.r.t. the
parameters

Step 2. Update the parameters according to the rule:

𝒘𝒏𝒆𝒘 = 𝒘 − 𝛼
𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚)

𝜕𝑾
where the positive scalar 𝛼 (learning rate) determines the
magnitude of the change.

𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚)

𝜕𝑾

෡𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛 ℒ(𝑓 𝑿; 𝑾 , 𝒚)

Multi-Dimension Optimization Process

1. Randomly pick an initial, a start point

(𝑤0, 𝑤1)
Go through the neural

network feed forward

propagation process to get a

prediction of the output, ො𝑦.

Compute loss:

ℒ(ො𝑦, 𝑦)

which is not satisfied.

Multi-Dimension Optimization Process

2. Compute gradient respect to

all the interested parameters:

𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚)

𝜕𝑾

The opposite direction of the gradient is

where we can decrease the loss.

Multi-Dimension Optimization Process

3. Take a small step in the opposite direction

of the gradient to get a new proposal of the

parameter values.
(𝑤0

′ , 𝑤1
′)The magnitude of this

step is determined by

learning rate.

4. Repeat steps 2 and 3 until the loss converges.

ℒ(𝑓 𝑿; 𝑾′ , 𝑦)

Check if it converges.

Compute loss with the new values:

Gradient Descent

3. Take a small step in the opposite direction

of the gradient to get a new proposal of the

parameter values.
(𝑤0

′ , 𝑤1
′)The magnitude of this

step is determined by

learning rate.

4. Repeat steps 2 and 3 until the loss converges.

ℒ(𝑓 𝑿; 𝑾′ , 𝑦)

Check if it converges.

Compute loss with the new values:

Gradient Descent

Input:

Choose a starting point 𝒘 (initial guess, usually from 𝒩(0, 𝜎2)).

Set the learning rate 𝛼 (a small positive number).

Define a small positive number 𝜀 as the convergence threshold (optional).

Set a maximum number of iterations, 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠.

Output: 𝒘∗, a local minimum of the loss function 𝑓.

Begin

1. For 𝑘 from 1 to 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠:

 a. Compute the gradient ∇𝑓(𝒘), the partial derivatives of the function 𝑓 at point 𝒘.

 b. Update the weight 𝒘 by moving in the opposite direction of the gradient: 𝒘𝒏𝒆𝒘 = 𝒘 − 𝛼 ∗ ∇𝑓(𝒘)

 c. If the change in the function value is small enough (i.e., |𝑓(𝒘𝒏𝒆𝒘) − 𝑓(𝒘)| < 𝜀), then:

 stop and return 𝒘𝒏𝒆𝒘 as the optimal weight. (optional step)

 d. Update 𝒘 to 𝒘𝒏𝒆𝒘.

2. If the maximum number of iterations is reached, return the current value of 𝒘.

End

Review: Train a Model
model = SimpleNet()

loss_function = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

Iteratively train the model on the dataset

for epoch in range(num_epochs):

running_loss = 0.0

optimizer.zero_grad()

outputs = model(input_data)

loss = loss_function(outputs, labels)

loss.backward()

optimizer.step()

Print statistics

running_loss += loss.item()

print(f"Epoch {epoch + 1}, Loss: {running_loss}")

Gradient Descent

Input:

Choose a starting point 𝒘 (initial guess, usually from 𝒩(0, 𝜎2)).

Set the learning rate 𝛼 (a small positive number).

Define a small positive number 𝜀 as the convergence threshold (optional).

Set a maximum number of iterations, 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠.

Output: 𝒘∗, a local minimum of the loss function 𝑓.

Begin

1. For 𝑘 from 1 to 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠:

 a. Compute the gradient ∇𝑓(𝒘), the partial derivatives of the function 𝑓 at point 𝒘.

 b. Update the weight 𝒘 by moving in the opposite direction of the gradient: 𝒘𝒏𝒆𝒘 = 𝒘 − 𝛼 ∗ ∇𝑓(𝒘)

 c. If the change in the function value is small enough (i.e., |𝑓(𝒘𝒏𝒆𝒘) − 𝑓(𝒘)| < 𝜀), then:

 stop and return 𝒘𝒏𝒆𝒘 as the optimal weight. (optional step)

 d. Update 𝒘 to 𝒘𝒏𝒆𝒘.

2. If the maximum number of iterations is reached, return the current value of 𝒘.

End

Create an instance of the network

model = SimpleNet()

When a new instance of the network was

created, the __init__ method within

SimpleNet class will be automatically

executed. The initialization of the weights

is thus implemented.

Gradient Descent

Input:

Choose a starting point 𝒘 (initial guess, usually from 𝒩(0, 𝜎2)).

Set the learning rate 𝛼 (a small positive number).

Define a small positive number 𝜀 as the convergence threshold (optional).

Set a maximum number of iterations, 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠.

Output: 𝒘∗, a local minimum of the loss function 𝑓.

Begin

1. For 𝑘 from 1 to 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠:

 a. Compute the gradient ∇𝑓(𝒘), the partial derivatives of the function 𝑓 at point 𝒘.

 b. Update the weight 𝒘 by moving in the opposite direction of the gradient: 𝒘𝒏𝒆𝒘 = 𝒘 − 𝛼 ∗ ∇𝑓(𝒘)

 c. If the change in the function value is small enough (i.e., |𝑓(𝒘𝒏𝒆𝒘) − 𝑓(𝒘)| < 𝜀), then:

 stop and return 𝒘𝒏𝒆𝒘 as the optimal weight. (optional step)

 d. Update 𝒘 to 𝒘𝒏𝒆𝒘.

2. If the maximum number of iterations is reached, return the current value of 𝒘.

End

Create an instance of the network

model = SimpleNet()

class SimpleNet(nn.Module):

def __init__(self):

super(SimpleNet, self).__init__()

self.fc1 = nn.Linear(in_features=784, out_features=128)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(128, 10)

def forward(self, x):

x = self.fc1(x)

x = self.relu(x)

x = self.fc2(x)

return x

Parameter initialized here.

If you want to manually specify weight parameters,

you can also specify within this _init_ method, e.g.:
nn.init.normal_(weight, mean=0.0,

std=0.1)

More in Chapter 1 PyTorch Basics: Neural

Networks Module.

Gradient Descent

Input:

Choose a starting point 𝒘 (initial guess, usually from 𝒩(0, 𝜎2)).

Set the learning rate 𝛼 (a small positive number).

Define a small positive number 𝜀 as the convergence threshold (optional).

Set a maximum number of iterations, 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠.

Output: 𝒘∗, a local minimum of the loss function 𝑓.

Begin

1. For 𝑘 from 1 to 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠:

 a. Compute the gradient ∇𝑓(𝒘), the partial derivatives of the function 𝑓 at point 𝒘.

 b. Update the weight 𝒘 by moving in the opposite direction of the gradient: 𝒘𝒏𝒆𝒘 = 𝒘 − 𝛼 ∗ ∇𝑓(𝒘)

 c. If the change in the function value is small enough (i.e., |𝑓(𝒘𝒏𝒆𝒘) − 𝑓(𝒘)| < 𝜀), then:

 stop and return 𝒘𝒏𝒆𝒘 as the optimal weight. (optional step)

 d. Update 𝒘 to 𝒘𝒏𝒆𝒘.

2. If the maximum number of iterations is reached, return the current value of 𝒘.

End

Create an instance of the network

model = SimpleNet()

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

Number of epochs

num_epochs = 30

loss.backward()

optimizer.step()

Gradient Descent

Input:

Choose a starting point 𝒘 (initial guess, usually from 𝒩(0, 𝜎2)).

Set the learning rate 𝛼 (a small positive number).

Define a small positive number 𝜀 as the convergence threshold (optional).

Set a maximum number of iterations, 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠.

Output: 𝒘∗, a local minimum of the loss function 𝑓.

Begin

1. For 𝑘 from 1 to 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑠:

 a. Compute the gradient ∇𝑓(𝒘), the partial derivatives of the function 𝑓 at point 𝒘.

 b. Update the weight 𝒘 by moving in the opposite direction of the gradient: 𝒘𝒏𝒆𝒘 = 𝒘 − 𝛼 ∗ ∇𝑓(𝒘)

 c. If the change in the function value is small enough (i.e., |𝑓(𝒘𝒏𝒆𝒘) − 𝑓(𝒘)| < 𝜀), then:

 stop and return 𝒘𝒏𝒆𝒘 as the optimal weight. (optional step)

 d. Update 𝒘 to 𝒘𝒏𝒆𝒘.

2. If the maximum number of iterations is reached, return the current value of 𝒘.

End

model = SimpleNet()

loss_function = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

num_epochs = 30

Iteratively train the model on the dataset

for epoch in range(num_epochs):

running_loss = 0.0

optimizer.zero_grad()

outputs = model(input_data)

loss = loss_function(outputs, labels)

loss.backward()

optimizer.step()

Print statistics

running_loss += loss.item()

print(f"Epoch {epoch + 1}, Loss: {running_loss}")

Gradient Computation: Backpropagation

𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚)

𝜕𝑤1

𝑥1 𝑧1 ෝ𝒚 ℒ(𝑓 𝑿; 𝑾 , 𝒚)
𝑤1 𝑤2

=
𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚)

𝜕 ො𝑦
∙

𝜕 ො𝑦

𝜕𝑤1
Chain rule

𝜕 ො𝑦

𝜕𝑤1

=
𝜕 ො𝑦

𝜕𝑧1
∙

𝜕𝑧1

𝜕𝑤1

Chain rule again

Gradient Computation: Backpropagation

𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚)

𝜕𝑤1

𝑥1 𝑧1 ෝ𝒚 ℒ(𝑓 𝑿; 𝑾 , 𝒚)
𝑤1 𝑤2

=
𝜕ℒ(𝑓 𝑿; 𝑾 , 𝒚)

𝜕 ො𝑦
∙

𝜕 ො𝑦

𝜕𝑧1
∙

𝜕𝑧1

𝜕𝑤1

Backpropagation

Repeat this process for each layer, see the visual on the right:

Effect of Learning Rate on Optimization

Adaptive Learning Rate

Recall the MAE loss function for regression

task:

Its gradient is the same throughout, which

means the gradient will be large even for

small loss values, and thus the step token to

obtain a new weight will be large.

In this case, a dynamic learning rate that can

decrease as we move closer to the minima is

more efficient.

Adaptive Learning Rate

Adaptive learning rate methods can adjust the learning rate dynamically during training for better

performance and stability.

Benefits:

• Faster Convergence: Automatically adjusts the learning rate to take larger steps when far from the

minimum and smaller steps when closer.

• Improved Stability: Prevents overshooting the minimum, which is a common problem with a high

fixed learning rate.

• No Need for Manual Tuning: Reduces the need for extensive hyperparameter tuning of the

learning rate.

Optimization Algorithms in PyTorch

Stochastic Gradient Descent (SGD)

Gradient Descent with Momentum

AdaGrad (Adaptive Gradient Algorithm)

Adam (Adaptive Moment Estimation)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

optimizer = torch.optim.Adagrad(model.parameters(), lr=0.01)

optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

Stochastic Gradient Descent (SGD)

Characteristics:

• Basic form of gradient descent used in neural networks.

• Fixed learning rate.

• In each iteration, randomly select a single data point (or a batch of data points) from the

training set to calculate the gradient of the loss function.

• Updates parameters for each training example, leading to frequent updates with high variance.

Advantages:

• Simple and easy to understand.

• Can escape local minima due to its inherent noise.

Disadvantages:

• Slow convergence on large datasets and high variance in updates.

• Sensitive to learning rate and other hyperparameters.

Batch Size:
Epoch:

Gradient Descent with Momentum

Characteristics:

• Builds upon SGD by considering past gradients to smooth out the updates.

• Uses a momentum factor to accelerate SGD in the relevant direction.

Advantages:

• Faster convergence than standard SGD.

• Reduces oscillations and improves stability.

Parameter update rule:

1. Update Velocity: 𝑣 = 𝛾𝑣 − 𝛼∇𝑓(𝑥).

2. Update Parameter: 𝑥 = 𝑥 + 𝑣

AdaGrad (Adaptive Gradient Algorithm)

Parameter update rule:

1. Update accumulation: 𝐺 = 𝐺 + 𝑔2, where 𝑔 is the gradient of the loss function with respect

to each parameter.

2. Adjust Learning Rate: Scale the learning rate for each parameter inversely proportional to

the square root of 𝐺.

3. Update Parameters: Update the parameters using the adjusted learning rate, 𝑥 = 𝑥 −
𝛼

𝐺 + 𝜖
∙ 𝑔

where 𝛼 is the initial learning rate, 𝜖 is a small constant added to improve numerical stability.

AdaGrad (Adaptive Gradient Algorithm)

Characteristics:

• Adjusts the learning rate to each parameter, decreasing it for parameters with large gradients.

• Each parameter has its own learning rate, which can be beneficial for datasets with features

of varying importance or scale.

Advantages:

• The effective learning rate decreases over time for each parameter. Eliminates the need to

manually tune the learning rate.

• Well-suited for dealing with sparse features or data with different scales.

Disadvantages:

• The continuously accumulating squared gradient can lead to an excessively reduced learning

rate, causing the algorithm to stop learning too early.

Adam (Adaptive Moment Estimation)

Parameter update algorithm:

1. Moving averages: two vectors 𝑚 and 𝑣 are used to store moving averages of the gradients

and squared gradients, both initialized to zero.

2. Hyperparameters: 𝛽1 and 𝛽2, close to 1 (common defaults are 0.9 and 0.999).

3. Update Moving Averages: 𝑚 = 𝛽1𝑚 + 1 − 𝛽1 𝑔 and 𝑣 = 𝛽2𝑣 + 1 − 𝛽2 𝑔2.

4. Correct Bias: ෝ𝑚 =
𝑚

1−𝛽1
𝑡 and ො𝑣 =

𝑣

1−𝛽2
𝑡.

5. Adjust parameters: 𝑥 = 𝑥 −
𝛼

ො𝑣+𝜖
ෝ𝑚

where 𝛼 is the initial learning rate, 𝜖 is a small constant added to improve numerical stability.

Adam (Adaptive Moment Estimation)

Characteristics:

• Designed to combine the advantages of two other popular optimizers: the adaptive learning

rate feature of AdaGrad and the momentum feature of RMSprop.

• Different learning rates for different parameters and adjusts them throughout training.

• Corrects the bias in moving averages, especially important in the initial training phase.

Advantages:

• Combines the benefits of AdaGrad and RMSprop.

• Performs well in practice and across a wide range of non-convex optimization problems and large

dataset.

Disadvantages:

• Can be memory-intensive due to storing moving averages for each parameter.

• Might not converge to the optimal solution in certain theoretical cases.

Optimization

➢ Batch SGD

➢ Momentum

➢ Adaptive Moment Estimation (Adam)

➢ Backpropagation algorithm

Forward Pass Backward Passes

Efficient Gradient Calculation

 Why It’s Important:

• Neural networks often contain billions to trillions of parameters (e.g., models with ∼billions+parameters).

• During training, gradients need to be computed for every parameter at each iteration of the optimization process.

 Challenges:

• Computational Complexity: Calculating gradients for all parameters in large-scale models is computationally
intensive.

• Memory Constraints: Storing intermediate results for backpropagation in large models requires significant memory.

 Solutions:

• Backpropagation Algorithm: Efficiently calculates gradients by applying the chain rule of differentiation.

• Automatic Differentiation Libraries: Frameworks like TensorFlow, PyTorch, and JAX automate gradient
computation.

• Distributed Training: Parallelizing computations across multiple GPUs or TPUs helps handle large models.

Backpropagation Algorithm

2 Steps:

1. Forward Propagation

2. Backpropagation

• Forward propagation is how neural networks make predictions.

• Involves passing input data through the network layer by layer to the

output.

• Backpropagation is the process of adjusting the weights of the

network by propagating through the neural network backward.

• Involves calculating the gradient of the loss function with respect

to each weight by the chain rule.

• The weights are adjusted in the direction that reduces the loss.

Forward Propagation

Backpropagation

Both steps are iteratively repeated for several epochs to minimize the

loss and improve the model's accuracy.

Backpropagation Algorithm

Parameter Initialization
Proper initialization is critical because:

a) Convergence Speed: Poor initialization can slow down the training process.

b) Gradient Stability: Ensures gradients do not vanish or explode during backpropagation.

c) Optimization Performance: Facilitates better navigation of the loss landscape, avoiding saddle points and bad

 local minima.

Challenges in Parameter Initialization:

a. Vanishing Gradients: Occurs when the gradients become excessively small during backpropagation, leading to

negligible weight updates. This is typically caused by: Small initial weight values and Activation functions like Sigmoid

or Tanh that squash outputs to a narrow range.

b. Exploding Gradients: Occurs when gradients grow exponentially during backpropagation, causing instability and

divergence in the optimization process. This is typically caused by: Large initial weight values and Improper scaling of

weights in deep layers.

c. Symmetry Breaking: Initializing all weights to the same value (e.g., zero) causes symmetry in the network, preventing

neurons in the same layer from learning distinct features.

Initialization Techniques
Zero Initialization: All weights set to 0, leading to symmetry.

Random Initialization: Weights are initialized randomly (e.g., sampled from N(0, 1)). Issue: Without proper
scaling, it can lead to vanishing or exploding gradients.

Xavier Initialization (Glorot Initialization): Designed for Sigmoid and Tanh activation functions. Ensures
variance of activations remains consistent across layers:

He (Kaiming) Initialization: Designed for ReLU and its variants.

LeCun Initialization: Suitable for activation functions like SELU:

Orthogonal Initialization: Ensures weights are orthogonal, maintaining variance stability across layers.

Effective for RNNs and deep networks with large dimensions.

Bias Initialization: Biases are often initialized to small positive values (e.g., 0.01).

Pretrained Initializations: Using weights from pretrained models (transfer learning).

Layer-Specific Initialization: Input layers: Focus on uniform weight distribution.

 Output layers: Smaller initialization to stabilize predictions.

Batch Normalization
• Definition: Batch Normalization (BN) is a technique used in

deep learning to normalize the inputs to each layer within a
neural network. It ensures that the inputs have a consistent
distribution, which stabilizes and accelerates training.

• Purpose: Reduce internal covariate shift: This occurs
when the distribution of inputs to a layer changes during
training.

• Benefits:

a) Improved Stability: Keeps activations in a stable range,
mitigating vanishing/exploding gradients.

b) Faster Convergence: Allows for higher learning rates and
reduces sensitivity to initialization.

c) Regularization Effect: Adds noise due to batch statistics,
reducing overfitting.

d) Enhanced Generalization: Produces better results on unseen
data.

https://kharshit.github.io/blog/2018/12/28/why-batch-normalization

Batch Normalization import torch.nn as nn

class CNNWithBatchNorm(nn.Module):

 def __init__(self):

 super(CNNWithBatchNorm, self).__init__()

 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)

 self.bn1 = nn.BatchNorm2d(16) # BatchNorm for convolutional
layers

 self.relu = nn.ReLU()

 self.fc1 = nn.Linear(16 * 32 * 32, 10)

 self.bn_fc = nn.BatchNorm1d(10) # BatchNorm for dense layers

 def forward(self, x):

 x = self.conv1(x)

 x = self.bn1(x) # Normalize feature maps

 x = self.relu(x)

 x = x.view(x.size(0), -1) # Flatten

 x = self.fc1(x)

 x = self.bn_fc(x) # Normalize dense layer output

 return x

Batch Normalization

https://e2eml.school/batch_normalization https://kharshit.github.io/blog/2018/12/28/why-batch-normalization

Regularization Methods

Four Mechanisms:
❖ Make the modeled function smoother.

❖ Increase the effective amount of data.

❖ Combine multiple models to mitigate uncertainty

in the fitting process.

❖ Encourages the training process to converge to
a wide minimum, where small errors in the

estimated parameters are less important.

Content

1 Neural Network Basics

2 Perceptron Model and Multilayer Perceptrons (MLP)

3 Activation Functions

4 Loss Functions

5 Optimization Techniques

6 Theoretical Challenges

The Universal Approximation Theorems

Universal Approximation Theorem

Statistical Theory of Deep Learning

1
2
0

Approximation theory viewpoint

Recently, a large collection of works bridge approximation

theory of neural network models with empirical processes.

Applications: Fast convergence rates of excess risks in

regression and classification tasks.

Perspectives: Measuring complexities of neural networks

for function approximations.

Scaling Parameters: Network width, depth, and active

parameters should scale with sample size, data dimension,

and function smoothness index.

Assumptions:

➢ Assumes global minimizers of loss functions are

obtainable.

➢ Focuses on statistical properties without optimization

concerns.

➢ Recognizes non-convexity of loss functions due to non-

linear activation functions.

Training Dynamics Viewpoint

Understanding non-convex loss functions for neural network
models is crucial. Key implications for generalization capabilities.

Key Empirical Findings: Overparameterized neural networks
trained by stochastic gradient descent can fit noisy data or
random noise perfectly but still generalize well.

Overparameterization Insights:

• The dynamics of deep neural networks with large enough
width, trained via gradient descent (GD) in ℓ2-loss, behave
similarly to those of functions in reproducing kernel Hilbert
spaces (RKHS),where the kernel is associated with a specific
network architecture.

• In the Mean-Field (MF) regime, the network parameters have
the flexibility to deviate significantly from their initial values,
even though it necessitates an infinite width.

• Comprehensive understanding of weight initializations and
learning rate scalings in gradient-based methods.

Deep learning theory

~ p(x)p(y|x)Data

Model

Assumption

Ideal

Estimate

The Risk Error

Approx Error

Complexity

Functional Equivalence can reduce
stochastic and optimization errors

Deep learning theory

• Much of the current theoretical understanding is
counterintuitive and falls short of explaining why deep
learning or reinforcement learning methods perform
effectively in real-world scenarios. There is a big gap between
popular deep learning algorithms and current theoretical
results.

• Many deep learning (DL) theoretical studies primarily focus
on fully connected neural networks (FNN) within
nonparametric settings, while making unrealistic
assumptions.

• Key breakthroughs in algorithmic modeling often lack a solid
mathematical foundation due to the absence of powerful tools
in such complex scenarios.

• Furthermore, existing methodologies, such as traditional
harmonic analysis and empirical process theory, are
insufficient for addressing heterogeneous object structures
(e.g., Lie group/algebra) commonly encountered in computer
vision (CV) and natural language processing (NLP).

1
2
3

References
Bartlett, P. L., Montanari, A., & Rakhlin, A. (2021). Deep learning: a statistical viewpoint. Acta numerica, 30, 87-201.

Jianqing Fan, Cong Ma, and Yiqiao Zhong. A selective overview of deep learning. Statistical Science, 36(2):264-291, 2021.

Z. Lu, H. Pu, F. Wang, Z. Hu, L. Wang. The Expressive Power of Neural Networks: A View from the Width. NeurIPS. 30, 6231–

6239, 2017.

Prince, S. J. D. (2023). Understanding Deep Learning.

Shen, G. (2024). Exploring the Complexity of Deep Neural Networks through Functional Equivalence. International Conference

on Machine Learning 2024.

Suh, N. and Cheng, G. (2024). A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and

Generative Models.

How to succeed in this course?

Practice

Explore

Visualize

Ask

Discuss

	Slide 1: Bios 740- Chapter 2. Neural Networks Fundamentals
	Slide 2: Content
	Slide 3: Content
	Slide 4: Neural Network Basics
	Slide 5: Neural Network Basics
	Slide 6: Neural Network Basics
	Slide 7: Neural Network Basics
	Slide 8: Training of a Neural Network
	Slide 9: Modern DL Model Architectures
	Slide 10: Modern DL Model Architectures
	Slide 11: Modern DL Model Architectures
	Slide 12: Modern DL Model Architectures
	Slide 13: Modern DL Model Architectures
	Slide 14: Modern DL Model Architectures
	Slide 15: Modern DL Model Architectures
	Slide 16: Modern DL Model Architectures
	Slide 17: Types of Deep Learning
	Slide 18: Content
	Slide 19: Perceptron Model
	Slide 20: Anatomy of a Perceptron
	Slide 21: Anatomy of a Perceptron
	Slide 22: Perceptron Model in PyTorch from Scratch
	Slide 23: Perceptron: Simplified
	Slide 24: Multi Output Perceptron
	Slide 25: Multi Output Perceptron
	Slide 26: Multi Output Perceptron
	Slide 27: Single-Layer Neural Network
	Slide 28: Shallow Neural Networks
	Slide 29: Multilayer Perceptrons (MLP)
	Slide 30: Deep Neural Network
	Slide 31: Multilayer Perceptrons (MLP) in PyTorch
	Slide 32: Content
	Slide 33: Activation Function - The Gateway to Non-Linearity
	Slide 34: Types of Activation Function
	Slide 35: Linear Activation Function
	Slide 36: Sigmoid Activation Function
	Slide 37: Tanh (Hyperbolic Tangent) Activation
	Slide 38: ReLU (Rectified Linear Unit) Activation
	Slide 39: Softmax Activation
	Slide 40: Activation Functions in PyTorch
	Slide 41: Activation Function Choice
	Slide 42: Other Activation Functions
	Slide 43: Content
	Slide 44: Loss Function
	Slide 45: Recipe for Constructing Loss Functions
	Slide 46: Loss Function for Regression
	Slide 47: Loss Function for Regression - MSE
	Slide 48: Loss Function for Regression - MAE
	Slide 49: MSE vs MAE
	Slide 50: MSE vs MAE
	Slide 51: Loss Function for Classification
	Slide 52: Binary Cross-Entropy Loss (BCE)
	Slide 53: nn.BCELoss in PyTorch
	Slide 54: Loss Function for Classification – Cross Entropy
	Slide 55: Cross Entropy
	Slide 56: Cross Entropy
	Slide 57: Cross Entropy
	Slide 58: nn.CrossEntropyLoss in PyTorch
	Slide 59: nn.CrossEntropyLoss in PyTorch
	Slide 60: KL Divergence
	Slide 61: KL Divergence
	Slide 62: nn.KLDivLoss in PyTorch
	Slide 63: nn.KLDivLoss in PyTorch
	Slide 64: nn.KLDivLoss in PyTorch
	Slide 65: nn.KLDivLoss in PyTorch
	Slide 66: Loss Function for Classification – NLL Loss
	Slide 67: Loss Function for Classification – NLL Loss
	Slide 68: nn.NLLLoss in PyTorch
	Slide 69: Loss Function for Classification Summary
	Slide 70: Create Custom Loss Function
	Slide 71: Create Custom Loss Function with Class Definition
	Slide 72: Dice Loss Function
	Slide 73: Dice Loss Function
	Slide 74: Dice Loss Function in PyTorch
	Slide 75: Dice Loss Function in PyTorch
	Slide 76: Imbalanced Data-Loss Functions
	Slide 77: Outliers-Loss Functions
	Slide 78: Content
	Slide 79
	Slide 80: Loss Optimization
	Slide 81: Gradient Descent
	Slide 84: Multi-Dimension Optimization Process
	Slide 85: Multi-Dimension Optimization Process
	Slide 86: Multi-Dimension Optimization Process
	Slide 87: Gradient Descent
	Slide 88: Gradient Descent
	Slide 89: Review: Train a Model
	Slide 90: Gradient Descent
	Slide 91: Gradient Descent
	Slide 92: Gradient Descent
	Slide 93: Gradient Descent
	Slide 95: Gradient Computation: Backpropagation
	Slide 96: Gradient Computation: Backpropagation
	Slide 97: Effect of Learning Rate on Optimization
	Slide 98: Adaptive Learning Rate
	Slide 99: Adaptive Learning Rate
	Slide 100: Optimization Algorithms in PyTorch
	Slide 101: Stochastic Gradient Descent (SGD)
	Slide 102: Gradient Descent with Momentum
	Slide 103: AdaGrad (Adaptive Gradient Algorithm)
	Slide 104: AdaGrad (Adaptive Gradient Algorithm)
	Slide 105: Adam (Adaptive Moment Estimation)
	Slide 106: Adam (Adaptive Moment Estimation)
	Slide 107: Optimization
	Slide 108: Efficient Gradient Calculation
	Slide 109: Backpropagation Algorithm
	Slide 110: Backpropagation Algorithm
	Slide 111: Parameter Initialization
	Slide 112: Initialization Techniques
	Slide 113: Batch Normalization
	Slide 114: Batch Normalization
	Slide 115: Batch Normalization
	Slide 116: Regularization Methods
	Slide 117: Content
	Slide 118: The Universal Approximation Theorems
	Slide 119: Universal Approximation Theorem
	Slide 120: Statistical Theory of Deep Learning
	Slide 121: Deep learning theory
	Slide 122: Functional Equivalence can reduce stochastic and optimization errors
	Slide 123: Deep learning theory
	Slide 124: References
	Slide 125: How to succeed in this course?

