Bios 740- Chapter 2. Neural Networks Fundamentals

Acknowledgement: Thanks to Miss Jiarui Tang for preparing some
of the slides and we use some pictures from Dr. Prince’s book at

https://udlbook.github.io/udlbook/
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Neural Network Basics

Recap:

What is the relationship between neural network and deep learning?

What are the three types of layers in neural network?

Neurons (Nodes)
 Fundamental units of a neural network.

* Receive input signals and perform

computations and produce an output.

* Neurons in hidden and output layers may
use activation functions.

 Activation functions introduce non-

linearities for learning complex patterns.
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Neural Network Basics

Channels (connections)

* The information is transferred from one layer
(or neurons) to another layer (or neurons) over
connecting channels.

» Each connection is associated with a weight

value that determines the strength of the
connection. These weights can be adjusted

during training to influence the network's

behavior.

* The output of one neuron 1s multiplied by the
weight of the connection and passed as input to

Output Layer
the connected neuron in the subsequent layer.

Input Layer
Hidden Layer Hidden Layer
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B4

Neural Network Basics ¥

(X1 0.1+ X, x0.8)

Bias i 1

s

* Biases are also adjustable parameters associated

with the connections between neurons in neural
networks, which is added to the weighted sum
of inputs at each neuron and then applied to

activation function.

« It allows the network to account for potential ~ *
systematic errors or deviations from the ideal
relationship between inputs and outputs.

* Bias is conceptually similar to the intercept in
linear regression, providing flexibility for the X2
network to fit data more accurately.

Output Layer

Input Layer
Hidden Layer Hidden Layer
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Neural Network Basics ;

(X1 0.1+ X, x0.8)

Activation function , ﬁ

* Activation functions are threshold values that

introduce non-linearities into the neural

network, enabling it to comprehend complex
relationships between inputs and outputs.

*  Common activation functions: sigmoid, tanh,
ReLU (Rectified Linear Unit), and softmax.

* The results of the activation function determine X1
if the particular neuron will get activated or not.

* An activated neuron transmits data (or X,

information) to the neurons of the next layer Output Layer

through channels.

Input Layer
Hidden Layer Hidden Layer
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Training of a Neural Network

2 Steps . Forward Propagation

1. Forward Propagation

Forward propagation is how neural networks make predictions.

Involves passing input data through the network layer by layer to the
output.

2. Backpropagation

* Backpropagation is the process of adjusting the weights of the Backpropagation
network by propagating through the neural network backward.

BB BB B

* Involves calculating the gradient of the loss function with respect
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to each weight by the chain rule.
* The weights are adjusted in the direction that reduces the loss.

)(010]0[010]0]0)010)0]0)0)6)
O

O00000

Both steps are iteratively repeated for several epochs to minimize the
loss and improve the model's accuracy.
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Modern DL Model Architectures

1 Convolutional Neural Networks (CNNs) Fully
Convolution ij_rgcted
* Key Features: Utilizes convolutional layers to Input Pooling " 5 .. Output
. . . . N R
process data in a grid pattern (like images). s ‘ ‘Fﬂ e
i I By N O Lf};}
1 & ::t": e Lj:'{:'
« Key Components: ‘_\g{g—_:‘-f‘
* Convolutional Layers: Extract features from \ y AN y )
input images using filters. Feature Extraction Classification
* Pooling Layers: Reduce dimensions and Figure. Basic CNN structure.

computational load, retaining key information.

o . Applications in Biomedicine:
« Fully Connected Layers: Classify images based pplications in BIomMEFICine

on extracted features. * Image classification in diagnostics

(e.g., cancer detection from scans).

* Example Models: LeNet-5, AlexNet, VGGNet. * Image segmentation for identifying

regions of interest in medical images.
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Modern DL. Model Architectures

Recurrent Neural Network

2 Recurrent Neural Networks (RNNs)

* Key Features: Processes sequences of data (time-
series data), with memory of previous inputs,
capturing temporal dynamics.

* Unique Feature: Loop-like architecture allowing y &
previous outputs to be used as inputs while having L_A'j ‘A ’A ’A ‘A ‘A
hidden states, enabling information persistence. h - i»| < 7 < ' —Cﬂ‘—C»’—‘%

 Challenges & Solutions: Problem of vanishing l
érﬁc[l}ents; solved by advanced RNNs, e.g. LSTM and Applications in Biomedicine:

. * Analysis of sequential patient data in

* Example Models: LSTM (Long Short-Term EHRs.

Memory), GRU (Gated Recurrent Unit).  Time-series analysis in physiological

signal processing.
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Modern DL. Model Architectures

- t K "x ok
3 U-Ne

e
. . . V74
* Key Features: U-shaped architecture with symmetric encoder Crop and concatenste
and decoder paths. Skip connections that concatenate feature
maps from encoder to decoder / Ctop and concatenate

Crop and concatenate

e Structure: Encoder: Series of convolutional and max-pooling
layers that capture context. Bottleneck: Intermediate layer
connecting encoder and decoder. Decoder: Series of up-
convolution and concatenation layers that restore resolution. 2
Final Layer: Convolutional layer that maps features to the desired ¢ RS
output.

3 o
W

R L
o o (ﬁ\(ﬂ U{‘LF w 03

U-Net for segmenting Hela cells. The U-Net has an

) encoder-decoder structure, in which the representation is
* Types: 2D/3D U-Net, Attention U-Net. downsampled (orange blocks) and then re-upsampled (blue

blocks). The encoder uses regular convolutions, and the

« Applications in Biomedicine: Medical image segmentation. decoder —uses transposed  convolutions.  Residual

Satellit . tati Bi dical i IVsi connections append the last representation at each scale in
atellite  Image  segmentation. lomedaical  Image  analysis. the encoder to the first representation at the same scale

Autonomous driving. General image segmentation tasks. in the decoder (orange arrows).
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Modern DL. Model Architectures

4

BUNC

Input Output
Autoencoders ’
AR Ve //
- : RN ST
Key Features: Unsupervised learning models for \ < Code - /
. . . . . / \ / /
dimensionality reduction and feature learning. . NS o N
/ Ny \ 7/ \ /
\
. . / \ / /
Structure: Composed of an encoder (compressing input) A /<\ />\ A\
L / / \ /
and a decoder (reconstructing input). /o ;) - A\ ;o\
A Ve S~/ \\
. . /
Types: Standard Autoencoders, Variational Autoencoders e g Y \\
(VAEs). g h
A\ J . J
Y Y
Applications in Biomedicine: Encoder Decoder

Figure 1. Visualization of an autoencoder

* Data denoising (e.g., removing noise from images).

* Anomaly detection in medical imaging (e.g., identifying - % —
unusual patterns).

Input Code Output

Figure 2. Autoencoders are a specific type of feedforward
neural networks where the input is the same as the output.
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Modern DL Model Architectures

Hidden layer

Hidden layer

5 Graph Neural Network <

Input

* Key Features: Ability to process graph-structured data. Utilizes %
node features and graph topology for learning. Effective in W

capturing dependencies between nodes. Supports inductive and
transductive learning.

* Structure: Nodes, Edges, Node Features, Graph Convolution,

and Readout Layer.

* Types: Graph Convolutional Networks (GCNs), Graph Attention {7%]_{

Networks (GATs), Graph Recurrent Networks (GRNs), Graph
Autoencoders, Graph U-Net

* Applications in Biomedicine:

Social Network Analysis, Knowledge Graphs, Drug Discovery,
Recommender Systems, Network Security
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Modern DL. Model Architectures

Real examples

6 Generative Adversarial Networks (GANS) B | oecoic

real/fake

* Key Features: Comprises two neural networks, a Fake imagesinoise
generator and a discriminator, competing against each o
other.

Generator Fake generated
example

* Mechanism: Figure. Visualization of the flow of GAN
* Generator creates images, trying to fool the
discriminator by generating data similar to those in  « Applications in Biomedicine:

the training set. * Generate high-resolution images from

between fake data and real data improved image quality.
« Example Models: DCGAN, Pix2Pix, CycleGAN. * Data augmentation in medical

imaging for robust model training.
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Modern DL. Model Architectures

Probabilities

1 Transformer Models

((sge.tom ]
oqe . . Feed
* Key Features: Utilizes self-attention mechanisms, Fanirt
excellent for handling sequences of data. - N
o . ee Attenti
* Key Innovation: Following an encoder-decoder structure, Fowerd —F— Nx
eliminating recurrence and convolutions. E— éﬁ
g Nx | —(CAdd & Norm )
] . Multi-Head Multi-Head
« Example Models: BERT (adapted for biomedical Attention Attention
applications), AlphaFold. —] )
Positional D @ Positional
. . . . e o Encoding ¥ Encodi
 Applications in Biomedicine: L = T
. . . .. Embedding Embedding
* Genomic sequence analysis for personalized medicine. i
. . . I O
e Protein structure prediction (e.g., AlphaFold's nous shittes right)
breakthroughs). Figure. Transformer architecture
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Modern DL. Model Architectures

Convglulion Conv'o\uhon Fulh/cgnnecled Fuwycgnnecled

. . | Agert

Deep Reinforcement Learning — - ;

| | i ‘3 0 ]

* Key Features: DRL leverages neural networks to approximate I i Z
value functions and policies, enabling agents to learn complex Jaf L Al
tasks from high-dimensional sensory inputs. - Enifonment 4= lgD ) 1910
VR |

* Key Components: Agent, Environment, Reward, Policy, and o ol B
Value Function. (3@% Al h aG O of] !
WV '

* Example Models: DQN (Deep Q-Network), A3C 0¢0

(Asynchronous Advantage Actor-Critic), PPO (Proximal Policy
Optimization) ,SAC (Soft Actor-Critic)

* Applications:
* Game Playing; Robotics

« Autonomous Vehicles; Healthcare
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Types of Deep Learning

The neural network learns to
discover the patterns or to cluster the
dataset based on unlabeled datasets.

\ .
N There are no target variables.
\

P \
,/
DDPG 7 -
,/
,/
,/
,/
4
An agent learns to make decisions in .
an environment to maximize a Reinforcement
reward signal. The agent interacts Le arning
with the environment by taking action Neural network learns to make
and observing the resulting rewards. Deep Q predictions or classify data
Network based on the labeled datasets.
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2 Perceptron Model and Multilayer Perceptrons (MLP)
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Perceptron Model

* Definition: The perceptron is a fundamental building block of artificial neural networks,
inspired by the biological neuron.

* You can think of a perceptron as a single neuron in previous diagram, which is called Perceptron
in neural network.

* Functionality: It takes multiple input signals, applies weights and bias, and produces a binary
output.

* Purpose: Originally designed for binary classification tasks.

* Activation Function: Initially utilizes a step function for activation.
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Anatomy of a Perceptron

Inputs Weights Sum Non-linearity Output Enough?

\
1
|
|
|
|

1.0
0.8

. 0.6
Step function
0.4

0 One more term -

Bias

Non-linear Linear combinations

activation function / of inputs
\ p

Output ——> y = g z XiWi

i=1

T e ey

LT T T - . -— - -— -
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Anatomy of a Perceptron

Inputs Weights Sum Non-linearity Output Write in matrix:
o= N
-' : yp =g b+X'W
. . y =90+ )
[ : X
: 1
] | where x = [*2| and
1 .
: | P
@ w

I 2

i | )X W=I
: . Wp
| I
1 |
! l
: : Non-linear Linear combinations
] | activation function of inputs
| | U
: l P
: I Output ——> § = g b +z XiWi
I : \ i=1
| |
'\\ ) bias
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Perceptron Model in PyTorch from Scratch

# Define the Perceptron model
class Perceptron(torch.nn.Module) :

Code available in Chapter2 Perceptron Model.ipynb

def init (self, input size): w
super (Perceptron, self). init () T
self.weights = torch.nn.Parameter (torch.rand(input size, 1), requires grad=True)
self.bias = torch.nn.Parameter (torch.rand(l), requires grad=True) > )

def forward(self, x):
z = torch.matmul (x, self.weights) + self.bias Sum

return| torch.sigmoid (z)

# Create the Perceptron model

—— Activation function

input size = 2 # Number of input features

P

model = Perceptron (input size)

# Forward pass

outputs = model Inputs
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Step function is discontinuous and non-
differentiable. Driven by the need for
differentiability, better gradient
information, versatility, and improved
training stability, researchers preferred the
sigmoid function and other smooth
activation functions.




Perceptron: Simplified

y =49 (2),

y =9(2) where z= b+ X"W

X
2 and W = e
Xy wp '

X =

Q: What if I want to have multiple outputs, e.g. y; and y,?
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Multi Output Perceptron

y1 =9(z1) z,= by + X"TW4
Z1

7 V2 = g(23) z; = by + X"W,
2

More?
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Multi Output Perceptron

1 =9(21)

Z1 71 = by + XTW,
V2 = 9(22)

Zy 7° 2 2, = by + XTW,
y3 = 9(23) Z3 = by + XTW;

— T
P V4 = g(z4) Zy = b4 + X W4_
4
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Multi Output Perceptron

y1=9(21) Corresponding code in PyTorch:

v, = g(2,) nn.Linear (input size, output size)
y3 = g(23)

Va = 9(24)

The number of input features: p

Unlike a single perceptron that makes one prediction,
this network 1s capable of making multiple predictions
Ym = 9(Zm) simultaneously due to its multiple output nodes.
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Single-Layer Neural Network

9(z)) Hidden layer:
z=b,+X"Ww
§(22) ’
9(z3) Output:
, y=b,+X"W®?
9(24) Y Y
“Single layer” refers to a
network that has one layer of
hidden nodes between the input
and the output layers.
Corresponding code:
g(zm) Output self.hidden = nn.Linear (3, m)
W(Z) self.output = nn.Linear(m, 2)
Hidden Layer
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Shallow Neural Networks

- 7
3)1.0 b) c) 1.0
5
%o,o-/ | ;3
+J
2 5
Q. 0.01
- 010 + 0117 Oo0 + 021 030 + 031 "5
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0 O
d),. ) f

1 0o+ @1l +@2ho+P3hs3

‘5’ _/ ' -10 T T T :
%0.0- 4 ! 0.0 1.0 2.0
(@]

Input,
1.0 h1 - a[010 + 011%] h.g = a[()g() i ()-21;'11] h3 = 3[930 + 9313’}]
0 10 2000 10 2000 10 20
g)]O h) i)

drhy daha éshs Prince (2023)
% 10 2.0 0.0 10 2.0 0.0 10 2.0
Input, = N Input, =
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Multilayer Perceptrons (MLP)

* Definition: A Multilayer Perceptron (MLP) is a class of feedforward artificial neural network that
consists of at least three layers of nodes: an input layer, 2+ hidden layers, and an output layer.

* Hyperparameters: The width of a network refers to the number of hidden units in each layer, while
its depth indicates the number of hidden layers. The total number of hidden units serves as a
measure of the network's overall capacity.

* Key Characteristics:

* Multiple Layers: Unlike single-layer perceptrons, MLPs have multiple layers of neurons in a
directed graph, meaning that each layer feeds into the next.

* Dense Connections: Each neuron in one layer connects with a certain weight to every neuron in
the following layer, facilitating complex data representations.
Why Multilayer?
* Single-layer networks are only capable of learning linearly separable functions. MLPs can
overcome this by learning non-linear decision boundaries.
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Deep Neural Network

h1 = a:,BO+QOX] B, € R* o B € R? By € R’ B; € R?

i
\\.

)
(5]
4D
(

hy, = al8;+Qhy]
h3 = a:,@2—|—92h2]

/0

4
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=
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il
g
X
i

f

)

hK — a[/BK—l — QK—lhK—l] Q, € R4*3 Q, € R2x4 0, € R3%2 Q3 € R2%3
Hidden Hidden Hidden
y = /3 K + QK hK : L layer, h; layer, hy layer, hs
D, =3 D=1 Dy =2 D3 =3

y = /BK + Qra [IBK—l +QK_1a[. . .,62 + sa [61 —|—Qla[,60 —|—Q()X]] - ]] .
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Multilayer Perceptrons (MLP) in PyTorch

# Define the MLP model Code available in Chapter2 Perceptron Model.ipynb
class MLP(nn.Module) :
def init (self, input size, hidden sizel, hidden size2, output size):

super (MLP, self). 1init ()

~

(# First hidden layer

self.hiddenl = nn.Linear (input_size, hidden sizel) | I)eﬁnethefhstkﬁddenlayer
[ Second hidden layer )

felf.hiddeHZ = nn.Linear (hidden sizel, hidden_sizeZJ I)eﬁnethesecondlﬁddenlayer
# Output layer

self.output = nn.Linear (hidden size2, output size)
def forward(self, x): 7 g — activation function
# P Lha inpuf fhFough e first hidden layer and apply activation function
X =iF.relu|self.hidden1 Inputs
C_# Pass thoowr coma—rrdden layer and apply activation function

X = F.relu(self.hlddeHZ(%))
Pass the output through the final layer

X = Self.outputfx)
:TEtﬁfﬁ*X
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3 Activation Functions
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Activation Function - The Gateway to Non-Linearity

Introducing Non-Linearity: Activation functions introduce non-linear properties to the
network, enabling it to learn complex data patterns beyond the capability of linear models.

*  Transforming Inputs to Outputs: It takes input from previous layers and converts it to some
form of input for the next layers.

* Essential Building Blocks: It decides what 1s to be fired to the next neuron.

*  Beyond Linear Modeling: Without non-linearity, neural networks would be limited to linear
decision boundaries, similar to linear regression.

* Crucial for Performance: Non-linear functions allow neural networks to solve advanced
problems like image and speech recognition, and natural language processing.
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Types of Activation Function

Tanh RelLU
tanh(z) i max(0,z) 1
_explx))
’ / Softmax(x;) = T exp(e)
X J s
>
X
Each activation function has its own
unique properties and 1s suitable for
Sigmoid Linear

1 certain use cases. Using the right

A A .. :
1+e=* 0 activation function for the task leads
/ to faster training and better
J performance.
>

=X
X *x

o(z) =
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Linear Activation Function

The linear activation function is the simplest activation function, defined as:

fx) =x
which simply returns the input x as the output. Graphically, it looks like a straight line with a slope of 1.

* Ideal for Regression Output:

* "Primarily used in the output layer of neural networks for regression problems."

* "Aids in predicting numerical values without altering or squashing the output."
* Rare in Hidden Layers:

* "Seldom used in hidden layers due to its inability to introduce non-linearity."

* "Neural networks require non-linear functions in hidden layers to learn complex patterns."
* Linear Transformations Limitation:

* "Alinear activation function throughout the network limits it to only learning linear

relationships, reducing the model's complexity and adaptability."
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Sigmoid Activation Function

Sigmoid activation function is one of the most widely used non-linear activation functions. Defined as:
1
1+e72

f2) =

* Sigmoid function transforms real-valued mput into a range between 0 and 1.

* Characterized by an “S”-shaped curve, asymptoting at 0 for large negative inputs and 1 for large
positive inputs.

* Output can be interpreted as probabilities of a particular class, 1deal for binary classification tasks.

* Initially popular due to strong gradient near the midpoint (0.5), facilitating efficient backpropagation
training.

* Vanishing Gradient Problem: it suffers from 'vanishing gradient' when inputs are significantly
high or low, leading to a flat slope.

 Commonly used as the activation function in the output layer of binary classification models.
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Tanh (Hyperbolic Tangent) Activation

The Tanh Function is very similar to the sigmoid function. The only difference is that it is symmetric
around the origin. It is defined as:

tanh(z) = 2sigmoid(2z) — 1 = 1t o2z

* Output range: -1 to 1, handling negative values better than the sigmoid function.

» Zero-Centered Nature: symmetric around the origin, allowing for faster convergence in learning
algorithms.

* Stronger Gradients: More resilient against the vanishing gradient problem, especially beneficial in
networks with many layers, compared to sigmoid.

* Vanishing Gradient Issue: though better than sigmoid function, tanh still faces the vanishing gradient
problem in deep networks.

* Usage: Commonly used in hidden layers due to its zero-centered nature and efficiency, especially
when data is normalized with mean zero.
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ReLLU (Rectified Linear Unit) Activation

The ReLLU function is defined as:
f(z) = max(0, z)

* ReLU i1s another non-linear activation function that has gained popularity in deep learning.

* Main advantage: it does not activate all the neurons at the same time. The neurons will only

be activated if the output of the linear transformation is greater than 0.
* Linear for Positive Inputs: Acts as a linear function with a gradient of 1 for positive

inputs, which allows the gradient to pass through unchanged during backpropagation, [RellJ|
eLu|z

helping to mitigate the vanishing gradient problem.

* Non-Linearity: Despite being linear for half of its input space, ReLU is non-linear
due to its non-differentiable point at x = 0. Its derivative is zero for negative inputs (the
dying ReLLU problem).

* Computational Efficiency: ReLU is computationally inexpensive, involving simple

1 PReLU[z,0.25]

40

" 0.0

thresholding at zero. Its simplicity allows networks to scale to many layers with minimal

increase in computational burden.
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Softmax Activation

The softmax function 1s defined as:

BUNC

exp(z;)
Zj exp(z;)

softmax(z;) =

Ideal for Multi-Class Classification: Each element in the output signifies the probability of the
input belonging to a specific class..

Non-negative outputs: Uses the exponential function to ensure all outputs are non-negative, aligning
with the nature of probabilities.

Amplification of Differences: Small variations in input values can result in significant differences in
output probabilities, which leads to one class dominating in the probability distribution.

Sensitivity to Outliers: Can be sensitive to outliers or extreme values in the input vector.

Usage: Commonly used in the output layer for tasks involving classification into multiple categories.
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Activation Functions in PyTorch

Linear activation:

def linear activation (x):
return x

# Passing the array to linear activation function

output = linear activation(z)

Sigmoid activation: ReLU activation:

sig = nn.Sigmoid/() r = nn.RelU()

¥ Applying sigmoid to the tensor # Passing the array to relu function
output = sig(z) output = r(z)
Tanh activation: Softmax activation:

t = nn.Tanh ()

# Applying Tanh to the tensor
output = t(z)

sm = nn.Softmax (dim=0)
# Applying function to the tensor
output = sm(z)
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Activation Function Choice

For binary classification:

Use the sigmoid activation function in the output layer. It will squash outputs between 0 and 1, representing
probabilities for the two classes.

For multi-class classification:

Use the softmax activation function in the output layer. It will output probability distributions over all classes.

If unsure:

Use the ReLLU activation function in the hidden layers. ReLU is the most common default activation function
and usually a good choice.
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Other Activation Functions
b) c)

2.0
Activation  Func- Equation Description
tion
| : [ ] g | | Logistic Sigmoid a(x) =5 +é,m Outputs values between 0 and 1;
— SIg|z . commonly used for binary classi-
,0.01 E LRell) [AJ fication.
© GelU[z] =
] 4 SiLU[Z] Tanh tanh(z) = e Outputs values between -1 and 1;
| i | zero-centered.
ey PReLU[z, 0.25]
s ! Leaky ReLLU f(z) = max(az,z),a = | Allows a small gradient for neg-
20 0.25 ative values of x, reducing dead
-4.0 0.0 4.0 -4.0 0.0 4.0-4.0 0.0 4.0 it
d) e) f) Parametric ReLU | f(z) = max(az,z),a = | Similar to Leaky ReLU but a is a
2.0 (PReLU) 0.25 learnable parameter.
SoftPlus f(z) =In(1+€") A smooth approximation to

swish[z, 1.4]
o Y01 ELULz, 0.5] .
] =...sWish|z, 1.0]

swish|z,0.4]

ELU[z,1.0] 1 SELU[Z] i

-2.0 - - r
-4.0 0.0 4.0 -4.0 0.0 4.0-4.0 0.0
z z z

Prince (2023)

Figure 3.13 Activation functions. a) Logistic sigmoid and tanh functions. b)
Leaky ReLU and parametric ReLU with parameter 0.25. c) SoftPlus, Gaussian
error linear unit, and sigmoid linear unit. d) Exponential linear unit with param-

eters 0.5 and 1.0, e) Scaled exponential linear unit. f) Swish with parameters 0.4,
1.0, and 1.4.
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ReLU; always differentiable.

Gaussian Error Linear | f(z) = 2®(2),®(z) = | Combines non-linearity —with
Unit (GELU) Gaussian CDF stochastic behavior; better for
transformer models.
Sigmoid Linear Unit | f(z)=2-0(2) Combines linearity and sigmoid
(SiLU) behavior; known as “Swish”.
Exponential — Linear | f(x) = zifx > 0, f(xr) = | Smoothly transitions to an expo-
Unit (ELU) a(e” — 1) otherwise,a = | nential function for negative val-
0.5,1.0 ues of z.
Scaled  Exponential | f(z) = Az ifz > 0, f(z) = | Self-normalizing; maintains a sta-

Linear Unit (SELU)

Aa(e* — 1) otherwise

ble output mean and variance.

Swish

f@) = x - o(Bx)B
0.4,1.0,1.4

Allows the network to learn where
to activate and deactivate using
the parameter /3.
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L.oss Function

Definition: a measure of error between what your model Feednewdata

predicts and what the actual value is. V

Purpose: quantifies how well the neural network matches X1

what we want to output and thus guides the optimization X2 Y_pred
process. X3

Importance: The choice of loss function directly impacts Error
how the weights of the model are adjusted. " J$
Examples: Mean Squared Error (Regression), Cross- MG Y

Entropy (Classification).

vertical offset

y (response variable)

R [9-vyl
Notation: R
A AX___ w;, (slope)
L (X, W) y) a)‘ B =4y [ &x
Prediction /G ‘\ e (x v;)
w,, (intercept)

X (explanatory variable)
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Recipe for Constructing Loss Functions

Recipe for constructing loss functions

The recipe for constructing loss functions for training data {x;,y;} using the maximum
likelihood approach is hence:

1. Choose a suitable probability distribution Pr(y|@) defined over the domain of the
predictions y with distribution parameters 6.

2. Set the machine learning model f[x, @] to predict one or more of these parameters,
so 0 = flx, @] and Pr(y|0) = Pr(y|flx, ¢]).

3. To train the model, find the network parameters gAb that minimize the negative
log-likelihood loss function over the training dataset pairs {x;,y;}:

i
¢ = argmin [L[cb]} = argmin |— Z log {Pr(yﬂf[xi, IR (R R
¢ ¢ i=1

4. To perform inference for a new test example x, return either the full distribu-
tion Pr(y|f[x,¢]) or the value where this distribution is maximized.
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Data Type Domain Distribution Use
univariate, continuous, y€ER univariate regression
unbounded normal

univariate, continuous, yeR Laplace robust
unbounded or t-distribution  regression
univariate, continuous, y€ER mixture of multimodal
unbounded Gaussians regression
univariate, continuous, yeR" exponential predicting
bounded below or gamma magnitude
univariate, continuous, y€10,1] beta predicting
bounded proportions
multivariate, continuous, y € R multivariate multivariate
unbounded normal regression
univariate, continuous, y € (—m,7 von Mises predicting
circular direction
univariate, discrete, y€{0,1} Bernoulli binary
binary classification
univariate, discrete, ye{l2,... K} categorical multiclass
bounded classification
univariate, discrete, y€1[0,1,2,3,.. Poisson predicting
bounded below event counts
multivariate, discrete, y € Perm[1,2,..., K] Plackett-Luce ranking

permutation




Loss Function for Regression

Mean Squared Error Mean Absolute Error

n n

1 1 ~

MSE = Ez(y" —9,)? MAE = —Z lyi — ¥l
=1 i=1

Hange or preqicied vaiues: |- LU0uuu [0 LUUUU] | 1Tue value: Luu

le8
10000 4
10 4
05 8000 -
. :
S 044 4000 -
02 W00 4
00 ] = 0
10000 7500 5000 2500 O 100 5000 7500 10000 10000 -7500 5000 -2500 O B00 5000 7500 10000
Predictions Predictions
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Loss Function for Regression - MSE

Mean Square Error (MSE), also called L2 Loss, 1s the most commonly used regression loss function.
It calculates the average of the squares of the errors between actual and predicted values.

—_ 1 n AN\2
Yo o MSE = ;Zi=1(3’i -3,
‘ Residual “ 4 Regression |

| e earessien!  where y; is the actual value, ¥); is the predicted
Error I .
; P 7 o value, and n is the number of samples.
v
© Y > Characteristics:
e o * Emphasizes larger errors due to squaring, leading to a
focus on model accuracy in areas with higher error
e rates.
e * Sensitive to outliers as errors are squared, potentially

] leading to overemphasis on outliers.

Y

Preferred when larger errors are significantly undesirable
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Loss Function for Regression - MAE

Mean Absolute Error (MAE), also called L1 Loss. It is the sum of absolute differences between our
target and predicted variables. It measures the average magnitude of errors in a set of predictions,
without considering their direction.

MAE—_ n |yl |9

Y
A Residual ’ ° Regression! where yl 1S the actual value, y; 1s the predicted value,
Errer ih / and n is the number of samples.
o
/ )/ Characteristics:
e o * Provides a linear score that gives equal weight
Y ) € to all errors, regardless of their size.
e * Less sensitive to outliers compared to MSE,
- offering a more robust error metric in datasets
1 e with anomalies.
Useful when you want to avoid the over-penalization of

Y

large errors and when dealing with outliers.
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MSE vs MAE

Range of predicted values: (-10,000 to 10,000) | True value: 100 Range of predicted values: (10,000 to 10.000) | True value: 100
le8
10 4 10000 4
08 BO00
o 06 « E000
. 5
S 04 E 4000 -
02 - 000
0.0 - = 0.
10000 -7500  -5000  -2500 0 500 5000 7500 10000 -10000 -7500  -5000  -2500 0 300 5000 7500 10000
Predictions Predictions
For MSE, the gradient is high for larger loss For MAE, its gradient is the same throughout,
values and decreases as loss approaches 0, which means the gradient will be large even
making it more precise at the end of for small loss values. We can use dynamic
training. It can easily converge even with a learning rate which decreases as we move
fixed learning rate. closer to the minima to fix this problem.
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MSE vs MAE

MAE vs. RMSE for cases with slight variance in data  MAE vs. RMSE for cases with outliers in data

1 0 0 0 1 0

0 0
2 1 1 1 2 1 1 1
3 -2 2 4 3 1 1 1
4 -0.5 0.5 0.25 4 -2 2 4
outlier
MAE: 1 RMSE: 1.22 MAE: 3.8 RMSE: 6.79

Using the squared error is easier to solve, but using the absolute error is more robust to outliers.
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LLoss Function for Classification

Binary Classification Task

Binary Cross-Entropy

Multi-Class Classification Task

Cross-Entropy Loss
Kullback Leibler Divergence Loss
Negative Log Likelihood Loss
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Binary Cross-Entropy Loss (BCE)

Binary Cross-Entropy Loss (BCE), also called log loss, i1s used to evaluate the performance of a
binary classification model where the output 1s a probability between 0 and 1.

It measures the dissimilarity between the actual labels and the predicted probabilities of the data
points being in the positive class. It penalizes the predictions that are confident but wrong.

Formula: BCE = _%Z?=1[yi log(¥;) + (1 —y)log(1 —P)],

where y; is the actual value, ¥; is the predicted value, and n is the number of samples.
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nn.BCELoss in PyTorch

# Example predictions and labels

predictions |= torch.sigmoid(torch.randn (4))

—

labels = torch.tensor ([1, 0, 1, 0], dtype=torch.float32)

# Binary Cross-Entropy Loss
criterion = nn.BCELoss ()

loss|= criterion(predictions, labels)

Should be probability (0 to 1), usually obtained from
a sigmoid function.

tensor ([0.6882, 0.42608, 0.6981, 0.6192])

tensor ([1.

Note: Use nn.BCEWithLogitsLoss if the output

tensor (0.5638)
layer of your model does not include a sigmoid.

1
BCE = — 7 (l0g(0.6882) + log(1 — 0.4268) + log(0.6981) + log(1 — 0.6192)) ~ 0.5638
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Loss Function for Classification — Cross Entropy

Entropy

In information theory, entropy measures the uncertainty or randomness of a set of outcomes.

Higher entropy means higher unpredictability in the data.

:
- j p(x) log(p(x)), if X is continous
H(X) =+

- Z p(x) log(p(x)), if X isdiscrete
\

Think of a box filled with balls that are either red or green. We're looking at how "messy" or .,
"organized" the balls can be, which is what we call entropy. In what case, the balls have the lowest
entropy? The highest entropy? (Look at the binary entropy plot across all probabilities for hints.)
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Cross Entropy

Entropy

In information theory, entropy measures the uncertainty or randomness of a set of outcomes.

Higher entropy means higher unpredictability in the data.

:
- j p(x) log(p(x)), if X is continous

H(X) =<

- Z p(x) log(p(x)), if X isdiscrete
\

When all balls are red or green, they have the lowest entropy, 0. When balls are half red and half
green, they have the highest entropy, log?2.
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Cross Entropy

Cross Entropy

Cross-entropy measures the dissimilarity between two probability distributions, ‘P’ and ‘Q’, over the
same set of events.

It tells you how inefficient your predictions would be when you use them to encode the actual
distribution.

In discrete case, cross entropy can be defined as:
H(P,Q) = = ) P(x;) - 10g(Q(xp)
l
What will happen to cross entropy if ‘Q’ 1s the same as ‘P’? Cross-entropy 1s equal to entropy.

What if ‘Q’ diverges from ‘P’? Cross-entropy will increase, larger than entropy.
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Cross Entropy

Cross Entropy Loss

Cross-entropy loss measures the performance of a classification model whose output is a probability
value between 0 and 1.

Cross-entropy loss increases as the predicted probability diverges from the actual label.

ground truth \

This is the loss for
one observation 0

Formula:

Predicted probability of
e observation belonging
to the ground truth class

where M is the number of classes, y, . is a binary indicator showing if class label c is the correct
classification for observation o, and p, . is the predicted probability output by softmax function,
ranging from 0 to 1, in the corresponding class ¢ for observation o. n is the number of observations.

Exercise: derive binary cross entropy loss function from the cross entropy loss.
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nn.CrossEntropyLoss in PyTorch

# Example predictions and labels

predictions |= torch.randn (4, 5) # 4 samples, 5 class predictions
labels |= torch.tensor([1, O, 3, 2], dtype=torch.lonqg)

# Cross-Entropy Loss
criterion = nn.CrossEntropylLoss ()

loss|= criterion(predictions, labels)

Can be the direct output from the
network. nn. CrossEntropyLoss
applies softmax internally to make it
range from O to 1.

Should contain the class indices (not one-hot encoded)
and should be of type torch.lonag.

tensor (2.3831)
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nn.CrossEntropyLoss in Py Torch

# Example predictions and labels
predictions = torch.randn (4, 5) # 4 samples, 5 class predictions

labels |= torch.tensor([1, O, 3, 2], dtype=torch.lonqg)

softmax predictions = torch.softmax (predictions, dim=1)
# Cross-Entropy Loss

/ criterion = nn.CrossEntropylLoss ()

loss|= criterion(predictions, labels)

tensor ( [\,

1
~3 (1og(0.0614) + 10g(0.2058)
tensor (2.3831) + 10g(0.2105) + 10g(0.0272)) =~ 2.3831
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KL Divergence

Recall, cross entropy is defined as: H(P,Q) = — z P(x;) - log(Q(x)))
i

If ‘Q’ 1s the same as ‘P’, cross entropy will be equal to entropy, which will likely never happen in
reality. Cross entropy will be larger than the entropy:

H(P,Q) —H(X) =0

This difference between cross-entropy and entropy has a name:

Kullback-Leibler Divergence, shortened to KLL Divergence, measures how one probability
distribution diverges from a second, expected probability distribution.

Dy (PIIQ) = = Z(P(»o log(Q(x)) — P(x) - log(P(x)) = - ZP(@ 1og<g§ ;) zPu)-log(gE %)
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KL Divergence

Dy (P]|Q) is called KL Divergence of P from Q. Recall the formula:

Du(PIIQ) = = Y (P(3) - 108(Q00) ~ P) -10g(PC0) = = . PCx) g (53 ) = " P2 -log )

What is the formula of KL Divergence of Q from P?

Dru(QIIP) = - Z(Q(x) log(P()) — Q) - log(Q(x))) = - ZQ(x) 1og(Q( )) ZQ() 1og(p o)

Notice that the divergence function is not symmetric:  Dg;(P||Q) # Dk (Q]|P)
This 1s why KL Divergence cannot be used as a distance metric.

Use Case Scenario: Effective in model fine-tuning and scenarios where the precise matching of
probability distributions is key, e.g. variational autoencoders (VAE) or fine-tuning probability distributions.
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nn.KL.DivLoss in Py Torch

# Example predicted and target distributions
predicted log probs|= torch.log softmax (torch.randn (4, 5), dim=1)

true probs| = torch.softmax (torch.randn (4, 5), dim=1)

# Kullback-Leibler Divergence LoOsSS
criterion = nn.KLDivLoss (reduction="batchmean')

loss = criterion(predicted log probs, true probs)

Should be log probabilities (use
torch.log softmax)

Should be probabilities (use
semeoE ([ [0 . : : torch.softmax or equivalent). If this
true probabilities are in the log-space,
then add 1og target=True to the
argument in nn.KLDivLoss.
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nn.KLDivLoss in PyTorch

# Example predicted and target distributions

predicted log probs|= torch.log softmax (torch.randn (4, 5), dim=1)

true probs| = torch.softmax (torch.randn (4, 5), dim=1)

# Kullback-Leibler Divergence LoOsSS
criterion = nn.KLDivLoss (reduction="batchmean')

loss—=—efé%ef{eﬂ+p;gdjPfed_log probs, true_probs)

tensor (0.4276)

tensor (|

1/4*sum (sum(true_probs* (torch. log (
true probs)-predicted log probs)))
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nn.KL.DivLoss in Py Torch

# Example predicted and target distributions
predicted log probs = torch.log softmax (torch.randn (4, 5), dim=1)
true probs = torch.softmax(torch.randn (4, 5), dim=1)

# Kullback-Leibler Divergence LoOsSS

criterion = nn.KLDivLoss (reductions'batchmean'

loss = criterion(predicted log probs, true probeg)

The reduction parameter in PyTorch loss functions controls how the individual loss values in a
batch are combined into a single scalar loss value.

There are typically three options for reduction:
- 'none': No reduction is applied, and the loss 1s returned for each element in the batch.

- 'mean': The mean of the loss values over the batch is computed.
« 'sum': The sum of the loss values over the batch is computed.
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nn.KLDivLoss in PyTorch

# Example predicted and target distributions
predicted log probs = torch.log softmax (torch.randn (4, 5), dim=1)
true probs = torch.softmax(torch.randn (4, 5), dim=1)

# Kullback-Leibler Divergence LoOsSS

criterion = nn.KLDivLoss (reductions'batchmean'

loss = criterion(predicted log probs, true probeg)

Specific warning for nn.KLDivLoss in PyTorch <= 2.1:

reduction= ‘mean’ doesn’treturn the true KL divergence value. Use reduction= ‘batchmean’
which aligns with the mathematical definition, instead.
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LLoss Function for Classification — NLL Loss

Negative Log-Likelihood Loss function (NLL) measures the negative log likelihood of a set of
predictions, given their true class labels.

NLL is applied only on models with the softmax function as an output activation layer.

To derive the NLL Loss, let’s start from the likelihood function of an observed data, with the input
image X and some output class labels y.

We want to find good parameters 0 to represent the relationship between X and y, by maximizing the
likelihood of the observed data.

If we make an observation i and observed outcome j whose estimated likelihood is J; ;, and encode
the ground truth outcome j to one-hot vector y; (the jth element, y; ; is 1 and all other elements are 0,

length 1s equal to the number of classes, M), then the likelihood of the observation is ]_[ﬂ‘-/’=1 ?iyji’j .
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LLoss Function for Classification — NLL Loss

Then, the likelihood function of all n observations is [Ti2, [T}, ¥ Aly]”.
After taking log and average, we get: NLL Loss = —=Y 1, 2/ i=1Yij - log(¥i ).

To find good parameters 8, we need to maximize the likelihood, and thus minimize the NLL loss.

Compare the NLL loss to the Cross Entropy loss. What do you find?

Maximizing the likelihood, or minimizing the negative log-likelihood loss
1s the same as minimizing the cross entropy loss.
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nn.NLLLoss in PyTorch

# Example log probabilities and labels
log probs = |torch.log softmax (torch.randn (4, 5), dim=1)
abels =| torch.tensor([1, 0, 3, 2]) # Class labels for each sample

# Negative Log Likelihood Loss
criterion = nn.NLLLoss ()

loss| = criterion(log probs, labels)

Should be log probabilities,
typically obtained by applying
torch.log softmax to the neural
network's output.

Similar to nn.CrossEntropyLoss, should contain the
class indices and should be of type torch.long.

tensor (2.2165)
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Loss Function for Classification Summary

Loss Function Advantages Disadvantages Usage Scenario PyTorch Example

* Handles imbalanced datasets Vanishing gradient and slow

Binary Cross Encourages model to predict high convergence when the B%nary. nn.BCELoss()
Entropy Loss oo predicted probabilities are classification
probabilities for the correct class.
far from the true labels.
* Includes softmax internally Sensitive to outliers and :
Cross Entropy : : o : . Multi-class
* Invariant to scaling and shifting  imbalanced data (biased . . nn.CrossEntropyLoss()
Loss : s . classification
of the predicted probabilities. towards majority class).
KL Divercence . Measures the difference between Not symmetric, not suitable = Comparing two
Lossg two probability distributions  to be used solely in training probability nn.KLDivLoss()
* Useful in generative models classifier distributions
Negative Log * Similar to cross entropy Reauires loe brobabilities as Multi-class
Likelihood e Often used with log-softmax 1 1%1 P Ut classification with nn.NLLLoss()
Loss output layer P log-softmax output
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Create Custom Loss Function

def custom cross entropy loss(y pred, y true):
#Specifying the batch size
my batch size = y pred.size () [0]
#Get the log probabilities values
log probabilities = torch.log softmax(y pred, dim=1)
#Pick the probabilities corresponding to the true labels
relevant log probs = log probabilities[range (my batch size), y true]
#Take the negative and mean of these log probabilities
loss = -torch.mean(relevant log probs)

return loss

# Example usage

y pred = torch.tensor([[1.5, 0.5, -0.5], [-0.5, 1.5, 0.5], [0.5, -0.5, 1.5]1]) #
Predicted logits for 3 classes

y true = torch.tensor ([0, 1, 2]) # True labels

loss = custom cross entropy loss(y pred, y true)

print ("Custom Cross-Entropy Loss:", loss.item())
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Create Custom Loss Function with Class Definition

Create the loss function as a subclass of nn.Module. Why?
PyTorch’s built-in modules and loss functions are subclasses of nn.Module,
SO using nn.Module for our own custom loss function ensures the
consistency and compatibility with PyTorch's design and practices.
self). init ()

Constructor (__init method): initializes parameters or settings

. This function 1s called when you create an instance of your custom loss function

’///dEf EoxnEEd (SGLE, ] PEeel; § CENS " class. Some more complex loss functions might require initialization of parameter.
# Ensuring the predicted values are in log form probabilities

class CustomCrossEntropyLoss|nn.Module)r
def init (self):
super (CustomCrosskEnt

Loss,

Forward Method
(forward method):

computes loss

This is where the
actual computation of # Negative log likelihood loss

log probs = torch.log softmax(y pred, dim=1)
# Picking the log probabilities corresponding to true labels
relevant log probs = log probs[range (len(y true)), y true]

the loss happens. loss = -torch.mean(relevant log probs)

return loss

# Example usage This custom loss function can be used in a typical training
loss function = CustomCrossEntropyLoss () loop in PyTorch, just like built-in loss functions.
loss = loss function(y pred, y true)

print ("Custom Cross-Entropy Loss:", loss.item())
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Dice Loss Function

Dice Loss 1s derived from the Dice Coefficient, which 1s a statistical tool to measure the similarity or
overlaps between two sets.

Unlike cross entropy loss, dice loss is particularly effective when dealing with imbalanced datasets
and when the focus 1s on capturing fine details in the segmentation masks. It’s a very popular loss
function in medical image segmentation.

Dice coefficient:
2X|ANB|

|Al + |B]

Dice =

To avoid division by zero, a small constant (smooth) is added to the numerator and denominator.

, 2 X |A N B| + smooth , ,
Dicesmooth = Al = |B] + smooth and Dice Loss = 1 — Dicégpmootn
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Dice Loss Function

In the case of image segmentation, we will have A to be the predicted segmentation mask, which can
be directly obtained from the output of the network, e.g. represented as a prediction map:

(0.72 0.12 0.06 0.63

0.85 0.61 0.08 0.68 N\

0.40 0.05 0.79 0.13 . Ri
009 099 093 0.04] -Hard label: Binary label
indicates absence (0) or

1
0
(1) presence (1) of a class.

B is the true/target mask, e.g. represented as:

oo R O
_ O R

0
1
0
0
Soft dice loss: 2YN a;b; + € Why use square in the denominator?

DLsoft =1- N + ZN h2 Check this great argument:
1=1" =171 https://mediatum.ub.tum.de/doc/1395260/1395260.pdf

(page 72)
where N i1s the total number of elements in prediction map A and true mask B (pixels in the image),

a; and b; are the value of the i th element in A and B, € 1s the smooth term.
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https://mediatum.ub.tum.de/doc/1395260/1395260.pdf

Dice Loss Function in PyTorch

class Diceloss (nn.Module) :
def init (self, weight=None, size average=True):
super (DicelLoss, self). init ()

def forward(self, inputs, targets, smooth=1):
#flatten label and prediction tensors
inputs = inputs.view (-1)

targets = targets.view(-1)
intersection = (inputs * targets) .sum()
dice = (2.*intersection+smooth)/ (inputs.square () .sum() +

targets.square () .sum() + smooth)

return 1 - dice

ﬁ C GILLINGS SCHOOL OF
L8 UI J GLOBAL PUBLIC HEALTH




Dice Loss Function in PyTorch

# Example usage

y pred = torch.sigmoid(torch.randn (1, 1, 5, 5))
y true = torch.tensor((([[1l, O, O, O, 1], [O, 1, O, O,

le predicted mask

o, 1, 11, (1, 1, 1, 1, 1111]1) # Example true mask
dice loss = Diceloss ()
loss = dice loss(y pred, y true)

print ("Dice Loss:", loss.item())

)

Ensure the y pred 1s probability (0 to 1) by passing it through sigmoid function.

For coding practice, check the notebook “Chapter2 Loss Function.ipynb”.

GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH

DUNC




Imbalanced Data-LLoss Functions

¢ Consider Data Characteristics: 1. Weighted Likelihood: Modify the likelihood function to emphasize minority class
¢ Imbalanced Data: Use Weighted samples:
Cross-Entropy or Focal Loss. [ Z sl Pl
=1

¢ Outliers: Use Huber Loss or
Mean Absolute Error.

where w,, is inversely proportional to the class frequency.

2. Cost-Sensitive Likelihood: Introduce class-specific penalties:

Focal Loss for Different Values of gamma

~—— gamma=0 welghted - Z IOgP yl|$1’ )
fyi

— gamma=1
—— gamma=2
4r —— gamma=5

where f,, is the frequency of class y;.

3t 3. Focal Loss: Focuses on hard-to-classify examples:

CE(p;) = — log(p,) LosStocal = —a(1 — pt) " log(pr)
2l FL(p)) = —(1 — p)” log(pr)

Focal Loss

where o controls class weighting, and v modulates the focus on hard examples.
Class-Balanced Loss: Reweights classes based on their effective number of sam-
ples:
1 0
U,

0.0 0.2 0.4 0.6 0.8 1.0 1—fgre
p_t (predicted probability for the true class) . .
where n. is the number of samples in class ¢, and g € [0, 1).
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Outliers-L.oss Functions

Huber Loss: Combines ¢; and /5 loss to handle small and large residuals differ-

ently: 1 . : p(z,a,c)
_)sly—f@) if [y — f(2)] <4, YT TT7T1 15
LOSSHuber . 52 ] Al
Oly — f(x)| — 5 otherwise.
4t il
Tukey’s Biweight Loss: Suppresses large residuals: ‘
0.5
3 3t ] ‘
2(1-(1-%)") m<o
LosSTukey = I
2
% |T‘| > (5, 9t <1
where r =y — f(2). |
1 3
Quantile Loss: Focuses on specific quantiles: oy
0Lt— (.

LOSSquantﬂe = maX(T & (1 - T) 'e) -6¢c-bc-4c-3c-2c -c 0 ¢ 2¢c 3¢ 4c 5¢c 6¢ -6c-hec-4¢-3c-2¢c -¢c 0 ¢ 2¢ 3¢ 4c¢c 5e 6e

&r &

where 7 is the target quantile, and e =y — f(x). . . . . .
Barron, J. T. (2019). A general and adaptive robust loss function. In CVPR. Flgure 1. Our general loss function (left) and its gradlent (I‘lght)

(1 fc)? ifo =2 for different values of its shape parameter . Several values of o
log ( (@ fe)? + 1) Ffa=0 reproduce existing loss functions: L2 loss (e = 2), Charbonnier
p(z,a,¢) =41 _ exp (_ (s /6)2) foe o loss (¢ = 1), Cauchy loss (a = 0), Geman-McClure loss (o =
2 . —2), and Welsch loss (o = —00).
Ia;2l ((l(;/_);' + 1) a 1) otherwise
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Fitting DL Models

DUNC

e
©®®
\!

pe®

h1 = aﬂo —+ Q()X]
hy = a8, + Qhy]
h; = a3, + Qshy)

Design the neural network

O 3

Find a criterion/measurement of goodness

@ Get the best model for the problem

hry = alfByg_;+Qx_1thg_{]

y = B+ Qkhg.

GILLINGS SCHOOL OF
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A loss function is needed here,
to measure the difference between the output and truth

L= tGuy)

yvi = Bx + Qrhi (xi;[(80.Q20), -+, (Br—1, QK -1)])

Find the network parameters to minimize the loss

Total loss:




Loss Optimization

Goal: find the network weight that achieve the lowest loss.

Find the value of the parameters that help the loss function reach the lowestvalD

Write this goal in mathematical format: 9
4(z3)

W = argmin L(f(X; I/IV)], y)

w Prediction

The loss function is a
function of the network
weights W. w=[wbw?

9z) @
9(24)

contains all the weight Output
: 9(Zm)

vectors needed to be adjusted w®

in the neural network Hidden Layer

ﬁ C GILLINGS SCHOOL OF
L8 UI J GLOBAL PUBLIC HEALTH



Gradient Descent

W = argmin L(f(X; W), y)
A first-order iterative optimization algorithm for finding the

minimum of a function.

Step 1. Compute the derivatives of the loss w.r.t. the

parameters
0L(f(X; W),y)
ow

Step 2. Update the parameters according to the rule:
AIL(f(X; W), y)

ow
where the positive scalar a (learning rate) determines the

magnitude of the change.

Whnew = W —

ﬁ—"ﬁUNC GILLINGS SCHOOL OF
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Multi-Dimension Optimization Process

1. Randomly pick an initial, a start point

Go through the neural
network feed forward
propagation process to get a
prediction of the output, y.
Compute loss:

L@, y)
which is not satisfied.
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Multi-Dimension Optimization Process

2. Compute gradient respectto  0L(f(X; W), y)
all the interested parameters: ow

The opposite direction of the gradient is
where we can decrease the loss.
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Multi-Dimension Optimization Process

3. Take a small step in the opposite direction
of the gradient to get a new proposal of the
parameter values.

The magnitude of this
step 1s determined by
learning rate.

i,

Compute loss with the new values:
LFX;W),y)

S Check if it converges.

4. Repeat steps 2 and 3 until the loss converges.
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Gradient Descent

3. Take a small step in the opposite direction
of the gradient to get a new proposal of the
parameter values.

The magnitude of this
step 1s determined by
learning rate.

¥ A5

Compute loss with the new values:
LFX;W),y)

SR
i

Check if it converges.

4. Repeat steps 2 and 3 until the loss converges.
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Gradient Descent

Input:
Choose a starting point w (initial guess, usually from N (0, 52)).
Set the learning rate a (a small positive number).
Define a small positive number ¢ as the convergence threshold (optional).
Set a maximum number of iterations, max _iters.
Output: w*, a local minimum of the loss function f.
Begin
1. For k from 1 to max _iters:
a. Compute the gradient Vf (w), the partial derivatives of the function f at point w.
b. Update the weight w by moving in the opposite direction of the gradient: wy,, = W — a * Vf(w)
c. If the change in the function value is small enough (i.e., |f (Wpew) — f(W)| < €), then:
stop and return w,,,,, as the optimal weight. (optional step)
d. Update w to w,e,,.

2. If the maximum number of iterations is reached, return the current value of w.
End
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Review: Train a Model

model = SimpleNet ()
loss function = nn.CrossEntropyLoss ()
optimizer = torch.optim.SGD (model.parameters(), 1lr=0.01)

# Iteratively train the model on the dataset
for epoch in range (num epochs):

running loss = 0.0

optimizer.zero grad/ ()

outputs = model (input data)

loss = loss function (outputs, labels)

loss.backward ()

optimizer.step ()

# Print statistics
running loss += loss.item()
print (f"Epoch {epoch + 1}, Loss: {running loss}")
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Gradient Descent

Input:
Choose a starting point w (initial guess, usually from ' (0, 52)). # Create an instance of the network
. . =) model = SimpleNet ()
Set the learning rate a (a small positive number).

Define a small positive number € as the convergence threshold (optional);; .., 4 new instance of the network was

Set a maximum number of iterations, max _iters. created, the  init method within
Output: w*, a local minimum of the loss function f. SimpleNet class will be automatically
Begoi executed. The initialization of the weights

cgin 1s thus implemented.

1. For k from 1 to max _iters:
a. Compute the gradient Vf (w), the partial derivatives of the function f at point w.
b. Update the weight w by moving in the opposite direction of the gradient: w,,ey, = W — a * Vf (W)
c. If the change in the function value is small enough (i.e., |[f Wpew) — f(W)| < €), then:

stop and return w,,,,, as the optimal weight. (optional step)

d. Update w to w,ey, .

2. If the maximum number of iterations 1s reached, return the current value of w.

End
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Gradient Descent

Input:

. ) .o # Create an instance of the network
Choose a starting point w (initial guess, usually from V' (0,0%)).— model = simpleNet ()
Set the learning rate a (a small positive number).

. 3
Define a small positive number ¢ as the cor _,___ T (e TS

Set a maximum number of iterations, ma: def _init_ (self): _ _ _ _ _ _ _ _
N L. super (SimpleNet, self). init () \
Output: w™, a local minimum of the loss func Iself.fcl = nn.Linear (in_features=784, out features=128)
Beoi |self.relu = nn.ReLU() |
cgin \self.fc2 = nn.Linear (128, 10) )

1. For k from 1 to max _iters: = e
def forward (self, x): Parameter initialized here.

a. Compute the gradient Vf(w), the pa x = self.fcl(x) Ifyouwantto manually specify weight parameters,
. . x = self.relu(x) you can also specify within this _init method, e.g.:
b. Update the Welght w by moving in t x = self.fc2(x) nn.init.normal (weight, mean=0.0,
return x std=0.1)

c. If the change in the function value is . .
i More in Chapter 1 PyTorch Basics: Neural
stop and return w,,,,,, as the optimal \ Networks Module.
d. Update w to w, ey
2. If the maximum number of iterations is reached, return the current value of w.

End
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Gradient Descent

Input:

# Create an instance of the network
Choose a starting point w (initial guess, usually from N (0,02)).—> model = SimpleNet ()

Set the learning rate a<{a-smalipositive-number):

Define a small positive number ¢ as the convergence threshold (optional).

Set a maximum number of iterations, max _iters. optimizer = torch.optim.SGD (model.parameters(), @
Output: w*, a local minimum of the loss function f.
Begin

# Number of epochs
num_epochs = 30

1. For k from 1 to max _iters:
a. Compute the gradient Vf (w), the partial derivatives of the function f at point W.—— 1oss.backward ()
b. Update the weight w by moving in the opposite direction of the gradient: wy,, = w — a * Vf(w)
c. If the change in the function value is small enough (i.e., |[f Wpew) — f(W)| < €), then: /
stop and return w,,,,, as the optimal weight. (optional step)
d. Update w to w, ey »  optimizer.step()

2. If the maximum number of iterations is reached, return the current value of w.
End
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Gradient Descent model = SimpleNet ()

loss function = nn.CrossEntropyLoss ()

optimizer = torch.optim.SGD (model.parameters(), 1lr=0.01)
num epochs = 30

# Iteratively train the model
for epoch in ran pochs) :

ataset

Input: ng loss = 0 .0
. . L. optimizer.zero grad()
Choose a starting point w (in , usually fi outputs = model (input data)
. . . A loss = loss function (outputs, labels)
Set the learning rate  (a small positive number). loss.backward ()

Define a small positive number € as the converge optimizer.step ()

Set a maximum number of iterations, max _iters.

Output: w*, a local minimum of the loss function f
Begin

# Prings/Statistics
runp#ng loss += loss.INem ()
1int (f"Epoch {epoch +

/

Loss: {running loss}")

1. For k from 1 to max _iters:

a. Compute the gradient Vf (w), the partiat derivatives of the function f at point w.
b. Update the weight w by moving st the opposite direction of the gradient: wy,, = W — a * Vf(w)
c. If the change in the functiopalue is small enough (i.e., |[f Wpew) — f(W)| < €), then:

stop and return w,,,,,, a5 the optimal weight. (optional step)
d. Update w to w, /-

2. If the maximum number of iterations is reached, return the current value of w.
End
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Gradient Computation: Backpropagation

w
L z3 i - LG W), y)
ILFX:W)y) _ LFXW)y) 9y Chain rul
S 35 aw ain rule
0y B 0% 0z, , ,
o, = a_Zl . a—Wl Chain rule again
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Gradient Computation: Backpropagation

w

ILFX;W),y)  _ LFXW),y) 9y 0z

O—— vowmy

Backpropagation

dw, a0y 0z, dwy

Repeat this process for each layer, see the visual on the right:
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Effect of Learning Rate on Optimization

Too low Just right Too high

1(8) 1(6) 1(6)

0 0 0
A sm.all learning rEcIitE ThtE npt.}_rtrl‘lal IEET'"gh Too large of a learning rate
requires many up ates rate swiftly reaches the " causes drastic updates

before reaching the minimum point ”

which lead to divergent

minimum point “behaviors
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Adaptive Learning Rate

RGCEIH the MAE IOSS ﬁll’lCtiOIl fOI’ regression Range of predicted values: (-10,000 to 10,000} | True value: 100
task: 10000 -

. . . B0 /
Its gradient is the same throughout, which
means the gradient will be large even for o 6000 _/
small loss values, and thus the step token to g

. . . 4000

obtain a new weight will be large. |
In this case, a dynamic learning rate that can )
decrease as we move closer to the minima 1s 10000 7800 5000 2300 0 200 000 7500 10000

Predictions

more efficient.
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Adaptive Learning Rate

Adaptive learning rate methods can adjust the learning rate dynamically during training for better
performance and stability.

Benefits:

* Faster Convergence: Automatically adjusts the learning rate to take larger steps when far from the
minimum and smaller steps when closer.

* Improved Stability: Prevents overshooting the minimum, which is a common problem with a high
fixed learning rate.

* No Need for Manual Tuning: Reduces the need for extensive hyperparameter tuning of the
learning rate.
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Optimization Algorithms in PyTorch

Stochastic Gradient Descent (SGD)

optimizer = torch.optim.SGD (model.parameters(), 1lr=0.01)

Gradient Descent with Momentum

optimizer = torch.optim.SGD (model.parameters(), 1lr=0.01, momentum=0.9)

AdaGrad (Adaptive Gradient Algorithm)

optimizer = torch.optim.Adagrad (model.parameters(), 1lr=0.01)

Adam (Adaptive Moment Estimation)

optimizer = torch.optim.Adam(model.parameters(), 1lr=0.001)
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Stochastic Gradient Descent (SGD)

Characteristics:

* Basic form of gradient descent used in neural networks. Batch Size:

* Fixed learning rate. Epoch:

* In each iteration, randomly select a single data point (or a batch of data points) from the
training set to calculate the gradient of the loss function.

» Updates parameters for each training example, leading to frequent updates with high variance.

Advantages:
* Simple and easy to understand.
* (Can escape local minima due to its inherent noise.

Disadvantages:
* Slow convergence on large datasets and high variance in updates.
* Sensitive to learming rate and other hyperparameters.
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Gradient Descent with Momentum

Characteristics:
* Builds upon SGD by considering past gradients to smooth out the updates.
 Uses a momentum factor to accelerate SGD 1n the relevant direction.

Parameter update rule:

1. Update Velocity: v = yv — aVf(x).
2. Update Parameter: x = x + v

Stochastic Gradient Stochastic Gradient
Descent withhout Descent with
Momentum Momentum
Advantages: o)
N’
* Faster convergence than standard SGD. myy + Bom+(1-8)) (; g af
. . . .qe i 10— P 1M
* Reduces oscillations and improves stability. il My ﬂ'mt+(1—ﬁ)z i :

0o

O — G —a-myy, icB,

Oy & Op—0-my,
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AdaGrad (Adaptive Gradient Algorithm)

Parameter update rule:

1. Update accumulation: G = G + g#, where g is the gradient of the loss function with respect
to each parameter.

2. Adjust Learning Rate: Scale the learning rate for each parameter inversely proportional to

the square root of G.
a

\/G+e.g

where « 1s the initial learning rate, € 1s a small constant added to improve numerical stability.

3. Update Parameters: Update the parameters using the adjusted learning rate, x = x —

My < 81(,;[:?] qb qb My q
T - : — 3
oL[¢,] : - - g
Vil — ( 8¢ ) R
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AdaGrad (Adaptive Gradient Algorithm)

Characteristics:

* Adjusts the learning rate to each parameter, decreasing it for parameters with large gradients.

* Each parameter has its own learning rate, which can be beneficial for datasets with features
of varying importance or scale.

Advantages:
* The effective learning rate decreases over time for each parameter. Eliminates the need to
manually tune the learning rate.

* Well-suited for dealing with sparse features or data with different scales.

Disadvantages:
* The continuously accumulating squared gradient can lead to an excessively reduced learning
rate, causing the algorithm to stop learning too early.
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Adam (Adaptive Moment Estimation)

Parameter update algorithm:

1. Moving averages: two vectors m and v are used to store moving averages of the gradients
and squared gradients, both mitialized to zero.

2. Hyperparameters: ; and f3,, close to 1 (common defaults are 0.9 and 0.999).
3. Update Moving Averages: m = Bym + (1 — By)g and v = B,v + (1 — B,) g°.

PN . 06i|o,]
4. CorrectBias: M =——==and ¥ = Z -, pa ﬁ'm““(l_ﬁ)z o6
1_B1 1_ﬁ2 1€B;
5. Adjust parameters: x = x — —— 7l vigr & vt (=) D] i
VD+e i
where a is the initial learning rate, € is a small constant added to improve numerical stability.
N my;q
g s
1-— gt+l é M1 my
~ o, —a- . 0] — O,—«a-
t+1 t ~ t+1 t ’
Vigr I jt;lﬂ : VVig1 T € VAl
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Adam (Adaptive Moment Estimation)

Characteristics:

* Designed to combine the advantages of two other popular optimizers: the adaptive learning
rate feature of AdaGrad and the momentum feature of RMSprop.

 Different learning rates for different parameters and adjusts them throughout training.

* Corrects the bias in moving averages, especially important in the initial training phase.

Advantages:

* Combines the benefits of AdaGrad and RMSprop.

* Performs well in practice and across a wide range of non-convex optimization problems and large
dataset.

Disadvantages:
* (Can be memory-intensive due to storing moving averages for each parameter.
* Might not converge to the optimal solution in certain theoretical cases.

ﬁ C GILLINGS SCHOOL OF
L8 UI J GLOBAL PUBLIC HEALTH




Optimization

ol p,] ~ Myt
m —

mi.q; < ,8 mt"‘ ]_— Z
IGBt
Vit1

AN » Vipl
Viel ’V'Vt+(1—'7)(z a¢t) 1 —At+l

iEB¢ ‘

Piiq — Oy — d
1€ By b1 — ¢ —a myq
Viil €
> Batch SGD » Adaptive Moment Estimation (Adam)

» Momentum > Backpropagation algorithm

ol
My < 6 1My —I— ]_ — ﬁ) Z ;bt] C%z _ % 8& _ 8&
i€B 98, of, 08, ofy
Dip1 & Py — Mgy, ol; B ol; W7 ov; _ o, I
oy, of " 0 ofy "

» 5, Ol
= [|fi_ 0, —
Forward Pass Backward Passes
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Efficient Gradient Calculation

Why It’s Important:
* Neural networks often contain billions to trillions of parameters (e.g., models with ~billions+parameters).
* During training, gradients need to be computed for every parameter at each iteration of the optimization process.

Challenges:

¢ Computational Complexity: Calculating gradients for all parameters in large-scale models is computationally
1ntensive.

* Memory Constraints: Storing intermediate results for backpropagation in large models requires significant memory.

Solutions:
* Backpropagation Algorithm: Efficiently calculates gradients by applying the chain rule of differentiation.

* Automatic Differentiation Libraries: Frameworks like TensorFlow, PyTorch, and JAX automate gradient
computation.

* Distributed Training: Parallelizing computations across multiple GPUs or TPUs helps handle large models.
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Backpropagation Algorithm

2 StepS . Forward Propagation

1. Forward Propagation

* Forward propagation is how neural networks make predictions.
* Involves passing input data through the network layer by layer to the
output.

2. Backpropagation

* Backpropagation is the process of adjusting the weights of the
network by propagating through the neural network backward. Backpropagation

* Involves calculating the gradient of the loss function with respect
to each weight by the chain rule.

20000000
(0]01010]6)0)6)

C

* The weights are adjusted in the direction that reduces the loss.

oj0[0]0]0l0]0)0]0]0)

Both steps are iteratively repeated for several epochs to minimize the
loss and improve the model's accuracy.

)(0]0]0101010]0]010]0]0]0)0)0)6)

ololeo]o0l0[010]0)

(

Q000000 -+

EUNC GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH




Backpropagation Algorithm

E?l - (f[ﬂj% d)] - yz’)g f[ﬂf/',a Qb} = [33 + w3 - cos [52 + w2 - exp [51 + w1 - Sin[ﬁo + wp - ;I;H}
fp = ,60 + Qox; fl — ,81 —|- 0, h, f2 _ /@2 + Q,h, f3 — B, + Qb
Forward pass: _ _ -
Backward pass #1 _ by 0f O,
f2 Of, Oy Ofs

of1 Oho Ofa Ohs Ofs
8£ 3]"0 0.\ Ohy (00,\ Of1 [92,\ Oha (¢,\ Of2 Ohs (04,
3f0 Oh o f1 Ohga 0 f2 3h3 Afs3

Backward pass #2:
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Parameter Initialization

Proper initialization is critical because:
a) Convergence Speed: Poor initialization can slow down the training process.
b)  Gradient Stability: Ensures gradients do not vanish or explode during backpropagation.

¢) Optimization Performance: Facilitates better navigation of the loss landscape, avoiding saddle points and bad
local minima.

Challenges in Parameter Initialization:
a. Vanishing Gradients: Occurs when the gradients become excessively small during backpropagation, leading to

negligible weight updates. This is typically caused by: Small initial weight values and Activation functions like Sigmoid
or Tanh that squash outputs to a narrow range.

b. Exploding Gradients: Occurs when gradients grow exponentially during backpropagation, causing instability and
divergence in the optimization process. This is typically caused by: Large initial weight values and Improper scaling of
weights in deep layers.

c. Symmetry Breaking: Initializing all weights to the same value (e.g., zero) causes symmetry in the network, preventing
neurons in the same layer from learning distinct features.
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Initialization Techniques

Zero Initialization: All weights set to 0, leading to symmetry.

Random Initialization: Weights are initialized randomly (e.g., sampled from N(0, 1)). Issue: Without proper
scaling, it can lead to vanishing or exploding gradients.

Xavier Initialization (Glorot Initialization): Designed for Sigmoid and Tanh activation functions. Ensures

variance of activations remains consistent across layers: : :
v (_\/fan_inJrfan_out’ \/fan _in+fan_out) o fan in: Number of input connections.
He (Kaiming) Initialization: Designed for ReLU and its variants. 2 o fan_out: Number of output connections.
W ~ N(0, —)
fan_in
LeCun Initialization: Suitable for activation functions like SELU: W ~ AN/(0, F— )
an_im

Orthogonal Initialization: Ensures weights are orthogonal, maintaining variance stability across layers.
Effective for RNNs and deep networks with large dimensions.

Bias Initialization: Biases are often initialized to small positive values (e.g., 0.01).
Pretrained Initializations: Using weights from pretrained models (transfer learning).

Layer-Specific Initialization: Input layers: Focus on uniform weight distribution.
Output layers: Smaller initialization to stabilize predictions.
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Batch Normalization

* Definition: Batch Normalization (BN) is a technique used in
deep learning to normalize the inputs to each layer within a
neural network. It ensures that the inputs have a consistent
distribution, which stabilizes and accelerates training.

* Purpose: Reduce internal covariate shift: This occurs
when the distribution of inputs to a layer changes during
training.

 Benefits:

a) Improved Stability: Keeps activations in a stable range,
mitigating vanishing/exploding gradients.

b) Faster Convergence: Allows for higher learning rates and
reduces sensitivity to initialization.

c) Regularization Effect: Adds noise due to batch statistics,
reducing overfitting.

d) Enhanced Generalization: Produces better results on unseen
data.

https://kharshit.github.io/blog/2018/12/28/why-batch-normalization
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Input: Values of x over a mini-batch: B = {x; .}
Parameters to be leamed: ~, 3
Output: {y; = BN, 5(x;)}

M

1

LR — — T /f mini-batch mean
(s
i=1
l . ,
op & — Y (r; — pg)* /I mini-batch variance
(s
i=1
B ettt // normalize
ATy -I:"H + €
y; + vr; + 3 = BN, (x;) i scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.




B atCh Normaliz ation import torch.nn as nn

class CNNWithBatchNorm(nn.Module):

def init (self):
/ Batch Norm \ super(CNNWithBatchNorm, self). init ()
self.convl =nn.Conv2d(3, 16, kernel size=3, stride=1, padding=1)

Features Features

-_ .
8 S | ¢ self.bnl = nn.BatchNorm2d(16) # BatchNorm for convolutional
2 l 2 layers
5 : self.relu = nn.ReLU()

""" BN, self.fcl = nn.Linear(16 * 32 * 32, 10)

self.bn_fc =nn.BatchNorm1d(10) # BatchNorm for dense layers

def forward(self, x):
x = self.convl(x)
W —- / x =self.bnl(x) # Normalize feature maps
x = selfirelu(x)
/ Batch Norm (Inference) \ x = x.view(x.s1ze(0), -1) # Flatten

x = self.fc1(x)
x = self.bn_fc(x) # Normalize dense layer output

: Activations :

return X

\ (B) (v)
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Batch Normalization

Training Losses

1.6 s Using batchnorm
No norm
14 1
=

6 4 2 0 2 4 6 4 2 0 2 4 12 L
1.0 -
= 08 \
6 4 2 0 2 4 6 4 2 0 2 4 0.6 1
04 .y
=) 1
02 '
6 4 2 0 2 4 6 4 2 0 2 4 0.0
0 2 4 6 8
https://e2eml.school/batch_normalization https://kharshit.github.io/blog/2018/12/28/why-batch-normalization
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Regularization Methods

Four Mechanisms:
+» Make the modeled function smoother.
\ +* Increase the effective amount of data.

Make function smoother

Increase data

Data s Combine multiple models to mitigate uncertainty
augmentation _ in the fitting process.
M“'“'t_aSk s Encourages the training process to converge to
learning a wide minimum, where small errors in the
'Il'rans.fer estimated parameters are less important.
earning

a) Original b) Flip C) Rotate and crop d) Vertical stretch

f) Blur g)

Vignette h) Pincushion

Combine multiple models Find wider minima
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The Universal Approximation Theorems

BUNC

Aspect Width Version Depth Version
Definition A single-layer network with A deep network with suf-
sufficient width can approx- ficient depth can approxi-
imate any continuous func- mate any Lebesgue integral
tion on a compact set. function efficiently.
Focus Number of neurons (width) Number of layers (depth) in
in a single layer. the network.
Advantages Simple structure; can ap- More efficient; fewer param-
proximate any function. eters for the same level of
approximation.
Disadvantages Requires exponentially Requires careful tuning to
many neurons for high- avoid overfitting or vanish-
dimensional problems. ing gradients.
Practical Implica- Rarely used due to ineffi- Forms the foundation of
tions ciency. modern deep learning appli-
cations.
Efficiency Inefficient for high- Efficient at capturing com-
dimensional functions. plex hierarchical relation-
ships.
Example Single-layer perceptron. Deep networks like CNNs or
RNNs.
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Universal Approximation Theorem

Theorem 1 (Universal Approximation Theorem for Width-Bounded ReLLU Networks). For any
Lebesgue-integrable function f: R" — R and any € > 0, there exists a fully-connected RelL.U
network < with width d,, < n + 4, such that the function F . represented by this network satisfies

/n |f(x2) — For(x)|dz < €.

Theorem 2. For any Lebesgue-integrable function f: R™ — R satisfying that {x : f(x) # 0} is a
positive measure set in Lebesgue measure, and any function F'oy represented by a fully-connected
Rel.U network <7 with width d,,, < n, the following equation holds:

/n |f(x) — For(x)|dz = +00 oOr An | f(x)|dz.

Theorem 3. For any continuous function f: [—1,1]" — R which is not constant along any direction,
there exists a universal €* > 0 such that for any function F' 4 represented by a fully-connected RelLU
network with width d,, < n — 1, the L' distance between f and F 4 is at least €*:

[ 1@ - Fa@)lde = e
[—1,1]"

Then it’s a direct comparison with Theorem 1 since in Theorem 1 the L' distance can be arbitrarily
small.
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Statistical Theory of Deep Learning

Approximation theory viewpoint Training Dynamics Viewpoint
Recently, a large collection of works bridge approximation

_ g Understanding non-convex loss functions for neural network
theory of neural network models with empirical processes.

models is crucial. Key implications for generalization capabilities.

Key Empirical Findings: Overparameterized neural networks
trained by stochastic gradient descent can fit noisy data or
random noise perfectly but still generalize well.

Applications: Fast convergence rates of excess risks in
regression and classification tasks.

Perspectives: Measuring complexities of neural networks

for function approximations. Overparameterization Insights:

« The dynamics of deep neural networks with large enough
width, trained via gradient descent (GD) in £2-loss, behave
similarly to those of functions in reproducing kernel Hilbert
spaces (RKHS),where the kernel is associated with a specific
network architecture.

parameters should scale with sample size, data dimension,
and function smoothness index.

Assumptions:

> Assumes global minimizers of loss functions are * In the Mean-Field (MF) regime, the network parameters have

the flexibility to deviate significantly from their initial values,

obtainable. even though it necessitates an infinite width
» Focuses on statistical properties without optimization 9 '
concerns. « Comprehensive understanding of weight initializations and

» Recognizes non-convexity of loss functions due to non- learning rate scalings in gradient-based methods.

[
[
[
[
[
[
[
[
[
[
Scaling Parameters: Network width, depth, and active :
[
[
[
[
[
[
[
[
linear activation functions. I
[

ﬁUNC GILLINGS SCHOOL OF
L8 GLOBAL PUBLIC HEALTH




Deep learning theory

Data D = {(xi,¥;) i—1"~ p(x)p(y[x)

Model Vi :fp(Xi)+€ia 1 = 1,2,...,%,

Assumption E(€i|xz‘) = (

Ideal fo = E(y|x) = argminfeg E(f) == Exy)p [(Y - f(x))2]

n

i ~ 1
Estimate fn= argmin Ep(f):= argmin {— Z (vi — f(Xv:))Q}
feF(L.p,N) ferL.pN) LT

Complexity Measure of F n Approx. Error
n Vn

Approx Error capprx = SUp inf f—f
pp PP S I oll 1o

Complexity VCdim(F), Pdim(F) =< O(LN log(N))

+ Approx. Error?

The Risk Error  £(f.) — £(f,) <
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Functional Equivalence can reduce
stochastic and optimization errors

Theorem 3 {Covering number of shallow neural networks) Theorem 4 (Covering number of deep neural networks)

Consider the class of deep neural networks F := F(1, dy, dy,...,dy, B) parameterized by

Consider the clasg of shallow neural r?etworks F = ]:'(1, th, i, B) Rarametenzed by 9@ =B, BI". Suppose the radius of the domain & of f € F is bounded by B, for
9€0=~B.B|". Suppose the radius of the domain & of f € F is bounded by some some By >0, and the activations a1,. .., a; are locally Lipschitz. Then for any e > 0, the
B, >0, and the activation oy is continuous. Then for any ¢ > 0, the covering number covering number N'(F e, | - ||) is bounded by
) §, 8 1\$
N(F.e ) < (168(B+ 1)) x g™/, 3 (L4 1)+ 1)2B) M) Moot )
di! x dyl x oo x ! ’

where p denotes the Lipschitz constant of a1 on the range of the hidden layer (i.e,
[_\/JO B( BX) + 1)’ \/EO B(BX 1L 1)])r and S, = dydy + dy is the total number of parameters where S = ELO didioy + div1 and p; denotes the Lipschitz constant of a; on the range

in the linear transformation from input to the hidden layer, and S = dy x d; +2d; + 1 js | ©f (i ~1)-th hidden layer, especialy the range of (i~ 1)-th hidden layer is bounded by
| [-B1, B0 with B < (2B)M— pid fori=1....,L.
the total number of parameters. J ’ - ySLi Y )

| . . o A reduced complexity (by (ci!dy! - d;!)) over existing studies [25, 3, 27, 23, 17].
0 A reduced complexity (by d!) compared to existing studies [25, 3, 27, 23, 17). Fora o Inreasig desth [ does ity The ncressed hidden e [ il
. . ncreasing ae 0€es InCrease complexity. | ne Iincreased niadaen layer I wil nave a
shallow ReLU network with d; = 128, covering number reduced by & 10, oo PX !

(d!) discount on the complexity.
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Deep learning theory

* Much of the current theoretical understanding is
counterintuitive and falls short of explaining why deep
learning or reinforcement learning methods perform
effectively in real-world scenarios. There 1s a big gap between
popllllar deep learning algorithms and current theoretical
results.

* Many deep learning (DL) theoretical studies primarily focus
on fully connected neural networks (FNN) within
nonparametric  settings,  while @ making  unrealistic
assumptions.

* Key breakthroughs in algorithmic modeling often lack a solid
mathematical foundation due to the absence of powerful tools
in such complex scenarios.

* Furthermore, existing methodologies, such as traditional
harmonic ana1y51s and empirical process theory, are
insufficient for addressing heterogeneous object structures
(e.g., Lie group/algebra) commonly encountered in computer
vision (CV) and natural language processing (NLP).

IﬁUNC GILLINGS SCHOOL OF
L8 GLOBAL PUBLIC HEALTH




References

Bartlett, P. L., Montanari, A., & Rakhlin, A. (2021). Deep learning: a statistical viewpoint. Acta numerica, 30, 87-201.
Jianqing Fan, Cong Ma, and Yiqiao Zhong. A selective overview of deep learning. Statistical Science, 36(2):264-291, 2021.

Z. Lu, H. Pu, F. Wang, Z. Hu, L. Wang. The Expressive Power of Neural Networks: A View from the Width. NeurIPS. 30, 6231
6239, 2017.

Prince, S. J. D. (2023). Understanding Deep Learning.

Shen, G. (2024). Exploring the Complexity of Deep Neural Networks through Functional Equivalence. International Conference
on Machine Learning 2024.

Suh, N. and Cheng, G. (2024). A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and
Generative Models.

GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH

DUNC




How to succeed 1n this course? II
1

Visualize

Practice

Discuss

- Ask

ﬁUNC GILLINGS SCHOOL OF
L8 GLOBAL PUBLIC HEALTH



	Slide 1: Bios 740- Chapter 2. Neural Networks Fundamentals
	Slide 2: Content
	Slide 3: Content
	Slide 4: Neural Network Basics
	Slide 5: Neural Network Basics
	Slide 6: Neural Network Basics
	Slide 7: Neural Network Basics
	Slide 8: Training of a Neural Network
	Slide 9: Modern DL Model Architectures
	Slide 10: Modern DL Model Architectures
	Slide 11: Modern DL Model Architectures
	Slide 12: Modern DL Model Architectures
	Slide 13: Modern DL Model Architectures
	Slide 14: Modern DL Model Architectures
	Slide 15: Modern DL Model Architectures
	Slide 16: Modern DL Model Architectures
	Slide 17: Types of Deep Learning
	Slide 18: Content
	Slide 19: Perceptron Model
	Slide 20: Anatomy of a Perceptron
	Slide 21: Anatomy of a Perceptron
	Slide 22: Perceptron Model in PyTorch from Scratch
	Slide 23: Perceptron: Simplified
	Slide 24: Multi Output Perceptron
	Slide 25: Multi Output Perceptron
	Slide 26: Multi Output Perceptron
	Slide 27: Single-Layer Neural Network
	Slide 28: Shallow Neural Networks
	Slide 29: Multilayer Perceptrons (MLP)
	Slide 30: Deep Neural Network
	Slide 31: Multilayer Perceptrons (MLP) in PyTorch
	Slide 32: Content
	Slide 33: Activation Function - The Gateway to Non-Linearity
	Slide 34: Types of Activation Function
	Slide 35: Linear Activation Function
	Slide 36: Sigmoid Activation Function
	Slide 37: Tanh (Hyperbolic Tangent) Activation
	Slide 38: ReLU (Rectified Linear Unit) Activation
	Slide 39: Softmax Activation
	Slide 40: Activation Functions in PyTorch
	Slide 41: Activation Function Choice
	Slide 42: Other Activation Functions
	Slide 43: Content
	Slide 44: Loss Function
	Slide 45: Recipe for Constructing Loss Functions
	Slide 46: Loss Function for Regression
	Slide 47: Loss Function for Regression - MSE
	Slide 48: Loss Function for Regression - MAE
	Slide 49: MSE vs MAE
	Slide 50: MSE vs MAE
	Slide 51: Loss Function for Classification
	Slide 52: Binary Cross-Entropy Loss (BCE)
	Slide 53: nn.BCELoss in PyTorch
	Slide 54: Loss Function for Classification – Cross Entropy
	Slide 55: Cross Entropy
	Slide 56: Cross Entropy
	Slide 57: Cross Entropy
	Slide 58: nn.CrossEntropyLoss in PyTorch
	Slide 59: nn.CrossEntropyLoss in PyTorch
	Slide 60: KL Divergence
	Slide 61: KL Divergence
	Slide 62: nn.KLDivLoss in PyTorch
	Slide 63: nn.KLDivLoss in PyTorch
	Slide 64: nn.KLDivLoss in PyTorch
	Slide 65: nn.KLDivLoss in PyTorch
	Slide 66: Loss Function for Classification – NLL Loss
	Slide 67: Loss Function for Classification – NLL Loss
	Slide 68: nn.NLLLoss in PyTorch
	Slide 69: Loss Function for Classification Summary
	Slide 70: Create Custom Loss Function  
	Slide 71: Create Custom Loss Function with Class Definition
	Slide 72: Dice Loss Function
	Slide 73: Dice Loss Function
	Slide 74: Dice Loss Function in PyTorch
	Slide 75: Dice Loss Function in PyTorch
	Slide 76: Imbalanced Data-Loss Functions
	Slide 77: Outliers-Loss Functions
	Slide 78: Content
	Slide 79
	Slide 80: Loss Optimization
	Slide 81: Gradient Descent
	Slide 84: Multi-Dimension Optimization Process
	Slide 85: Multi-Dimension Optimization Process
	Slide 86: Multi-Dimension Optimization Process
	Slide 87: Gradient Descent
	Slide 88: Gradient Descent
	Slide 89: Review: Train a Model
	Slide 90: Gradient Descent
	Slide 91: Gradient Descent
	Slide 92: Gradient Descent
	Slide 93: Gradient Descent
	Slide 95: Gradient Computation: Backpropagation
	Slide 96: Gradient Computation: Backpropagation
	Slide 97: Effect of Learning Rate on Optimization
	Slide 98: Adaptive Learning Rate
	Slide 99: Adaptive Learning Rate
	Slide 100: Optimization Algorithms in PyTorch
	Slide 101: Stochastic Gradient Descent (SGD)
	Slide 102: Gradient Descent with Momentum
	Slide 103: AdaGrad (Adaptive Gradient Algorithm)
	Slide 104: AdaGrad (Adaptive Gradient Algorithm)
	Slide 105: Adam (Adaptive Moment Estimation)
	Slide 106: Adam (Adaptive Moment Estimation)
	Slide 107: Optimization
	Slide 108: Efficient Gradient Calculation 
	Slide 109: Backpropagation Algorithm
	Slide 110: Backpropagation Algorithm 
	Slide 111: Parameter Initialization
	Slide 112: Initialization Techniques 
	Slide 113: Batch Normalization
	Slide 114: Batch Normalization
	Slide 115: Batch Normalization
	Slide 116: Regularization Methods
	Slide 117: Content
	Slide 118: The Universal Approximation Theorems
	Slide 119: Universal Approximation Theorem
	Slide 120: Statistical Theory of Deep Learning 
	Slide 121: Deep learning theory
	Slide 122: Functional Equivalence can reduce stochastic and optimization errors
	Slide 123: Deep learning theory
	Slide 124: References
	Slide 125: How to succeed in this course?

