
Bios 740- Chapter 11. Spatio-temporal process
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Spatio-temporal Data
Spatial data are data derived from spatial measurements that have only one parameter: the

space and its characteristics are mainly location coordinates and constitute the mining data.

Spatiotemporal data, however, are data derived from measurements, which take into

account both the parameters of space and time.
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•Time series is a sequence of data points collected or recorded at specific time intervals,

showing how a variable changes over time

•Multivariate time series is a typical spatio-temporal data

Spatio-temporal Data – Time series



With recent advances in sensing technologies, a myriad of Time Series (TS) Data

has been collected and contributed to various disciplines

Climate Epidemiology Environment

Social Science Transportation Sports Analysis

Spatio-temporal Data – Time series



Traffic monitoring Smart cities Energy analitics

Physics Stock markets

Spatio-temporal Data – Time series



Spatio-temporal Data



Spatio-temporal Tasks

• Predictive learning:

Prediction; Forecasting

• Classification

• Estimation and Inference

• Anomaly detection



Spatio-temporal Tasks

Wang, Y., Wu, H., Dong, J., Liu, Y., Long, M. and Wang, J., 2024. Deep time series models: A comprehensive survey and 

benchmark. arXiv preprint arXiv:2407.13278.
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Problem formulations

Benidis, K., et. al., Deep learning for time series forecasting: Tutorial and literature survey. ACM Computing Surveys



A set of N correlated time series, where each i-th time series is associated with:

• an observation vector 𝒙𝑡
𝑖 ∈ 𝑅𝑑𝑥 at each time step 𝑡;

• a vector of exogenous variable 𝒖𝑡
𝑖 ∈ 𝑅𝑑𝑢 at each time step 𝑡;

• a vector of static (time-independent) attributes 𝒗𝑡
𝑖 ∈ 𝑅𝑑𝑣.

Cini, A., Marisca, I., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.

Setup of multivariate time series

Matrices denote the stacked 𝑁 observations at time 𝑡,

e.g., 𝑿𝑡 ∈ 𝑅𝑁×𝑑𝑥, 𝑼𝑡 ∈ 𝑅𝑁×𝑑𝑢.



We consider a setup where observations have been generated by a time-invariant spatiotemporal 
stochastic process such that

𝑿𝑡:𝑡+𝑇: the sequence of observations within time interval [𝑡, 𝑡 + 𝑇);

𝑿<𝑡: observations at time steps up to 𝑡 (excluded)

Note that the time series:

• can be generated by different processes,

• can depend on each other,

• are assumed homogenous, synchronous, regularly sampled.

Setup of multivariate time series

Cini, A., Marisca, I., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.



• Pairwise relationships existing among the time series at time step 𝑡

can be encoded by a adjacency matrix 𝑨𝑡 ∈ 0, 1 𝑁×𝑁 .

• 𝑨𝑡 can be asymmetric and dynamic (can vary with 𝑡).

• optional edge attributes 𝒆𝑡
𝑖𝑗
∈ ℝ𝑑𝑒 can be associated to each non-

zero entry of 𝑨𝑡.

• ℇ𝑡 ≐ : the set of attributed 

edges encoding all the available relational information

• Tuple indicates all the available information at 

time step 𝑡.

Relational information

Cini, A., Marisca, I., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.



• The term spatial refers to the dimension of size 𝑁, that spans

the time series collection; in the case of fMRI, the term spatial 

reflects the fact that each time series might correspond to a 

different physical location.

• We use the terms node and sensor to indicate the N entities

generating the time series.

• We assume the existence of functional dependencies between 

the time series.

→ e.g., forecasts for one time series can be improved by

accounting for the past values of other time series.

Relational information

Cini, A., Marisca, I., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.
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Kumar, R., Bhanu, M., Mendes-Moreira, J. and Chandra, J., 2024. Spatio-Temporal Predictive Modeling Techniques for 

Different Domains: a Survey. ACM Computing Surveys, 57(2), pp.1-42.
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Spatio-temporal Modeling
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RNN based models



the students opened their

words / one-hot vectors

word embeddings

output distribution

Note: this input sequence could be much 
longer now!

hidden states

is the initial hidden state

RNN Structure



We have a sequence of inputs 𝑥("), and we will compute a sequence of hidden states ℎ(") and cell states
𝑐(").  On timestep t:
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Forget gate: controls what is kept vs 
forgotten, from previous cell state

Input gate: controls what parts of the 
new cell content are written to cell

Output gate: controls what parts of 
cell are output to hidden state

New cell content: this is the new 
content to be written to the cell

Cell state: erase (“forget”) some 
content from last cell state, and write 
(“input”) some new cell content

Hidden state: read (“output”) some 
content from the cell

Sigmoid function: all gate 
values are between 0 and 1

LSTM Structure



• Key Idea:
Introduce dilated connections in RNNs to efficiently model long-range dependencies without deeper networks.
• Architecture:
At time 𝑡, hidden state connects to ℎ𝑡−𝑑 instead of ℎ𝑡−1
Use increasing dilations (e.g., 1, 2, 4, 8...) across layers
Analogous to dilated convolutions in CNNs
• Benefits:
Captures multi-scale temporal patterns
Reduces gradient vanishing
Enables faster & more stable training
• Applications:
Long-horizon time series forecasting
Memory-intensive tasks (e.g., permuted MNIST, copy task)

S. Chang, Y. Zhang,W. Han, M. Yu, X. Guo,W. Tan, X. Cui, M.Witbrock, M. A. Hasegawa-Johnson, and T. S. Huang,

‘‘Dilated recurrent neural networks,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst. (NIPS), Dec. 2017, pp. 76–86.
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Variant of RNN: DilatedRNN



• Key Idea:
Learn to dynamically attend to both: Important input features (variables); Relevant past time steps
• Architecture:
Encoder with Input Attention
→ Selects key features at each time step
Decoder with Temporal Attention
→ Focuses on key time steps for prediction

Y. Qin, D. Song, H. Chen,W. Cheng, G. Jiang, and G.W. Cottrell, ‘‘A dual-stage attention-based recurrent neural network for

time series prediction,’’ in Proc. 16th Int. Joint Conf. Artif. Intell., Melbourne, VIC, Australia, Aug. 2017, pp. 2627–2633.

RNN and Attention Mechanism

• Benefits:
Handles multivariate time series
Improves interpretability & accuracy
Flexible for long- and short-term forecasting



• Key Idea:
Jointly model when and which features matter in multivariate time series via spatiotemporal attention.
• Architecture:
Temporal Attention: Learns importance of time steps for each variable
Spatial Attention: Learns importance of variables at each time step
Generates a context tensor for final prediction
• Benefits:
Captures complex feature-time interactions
Produces interpretable attention maps
Outperforms separate temporal/spatial attention models

Y. Qin, D. Song, H. Chen,W. Cheng, G. Jiang, and G.W. Cottrell, ‘‘A dual-stage attention-based recurrent neural network for

time series prediction,’’ in Proc. 16th Int. Joint Conf. Artif. Intell., Melbourne, VIC, Australia, Aug. 2017, pp. 2627–2633.

RNN and Attention Mechanism



MQRNN
• Key Idea:
Forecast multiple future time steps (multi-horizon) with quantile regression using an RNN backbone.
• Architecture:
Input: Historical time series + optional covariates
Uses RNN encoder (e.g., LSTM/GRU) to extract context
At each future step, predicts multiple quantiles (e.g., 0.1, 0.5, 0.9)
Forking-sequences strategy: Makes all horizon predictions in one forward pass
• Benefits:
Handles uncertainty via quantile output
Efficient multi-step forecasting (vs. recursive methods)
Well-suited for demand forecasting, energy, finance
• Output:
Predicts a distribution range for each future step 
(e.g., 10th, 50th, 90th percentile)

S. Du, T. Li, Y. Yang, and S.-J. Horng, ‘‘Multivariate time series forecasting via attention-based encoder–decoder 

framework,’’ Neurocomputing, vol. 388, pp. 269–279, May 2020.

RNN and Seq2Seq



• Key Idea:
Use an attention-based encoder–decoder to forecast multivariate time series by capturing temporal dependencies 
and feature interactions.
• Architecture:
Encoder: GRU/LSTM to encode historical multivariate time series
Decoder: GRU/LSTM with temporal attention
Attention helps the decoder focus on relevant past time steps
Outputs forecast for multiple time steps (multi-step prediction)
• Benefits:
Captures both short- and long-term dependencies
Enhances forecasting accuracy with temporal attention
Generalizable to various MTS domains

S. Du, T. Li, Y. Yang, and S.-J. Horng, ‘‘Multivariate time series forecasting via attention-based encoder–decoder 

framework,’’ Neurocomputing, vol. 388, pp. 269–279, May 2020.

RNN and Seq2Seq



RNN based models
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CNN based models
TCN: Temporal Convolutional Network
• Key Idea:
Use 1D dilated causal convolutions instead of RNNs to model sequential data efficiently and 
effectively, with better parallelism and longer effective memory.
Key Features:
•Causal Convolutions: Ensure predictions at time ttt depend only on inputs at or before ttt.
•Dilated Convolutions: Expand receptive field exponentially without deepening the network 
(see figure: dilation factors d=1,2,4d=1, 2, 4d=1,2,4).
•Residual Connections: Improve stability and learning in deep convolutional stacks.

Benefits:
•Parallelizable: Unlike RNNs, TCNs can be fully parallelized during training.
•Flexible receptive field: Easily covers long-range dependencies with fewer layers.
•Superior performance: Outperforms RNNs/LSTMs on multiple sequence modeling tasks like 
audio synthesis, language modeling, and time series forecasting.
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CNN based models
HyDCNN (Hybrid Dilated CNN)
Key Idea:
Combine dilated convolutions and VAR models in a hybrid residual framework to effectively capture both 
nonlinear local patterns and global temporal dependencies.

Model Highlights:
•Dilated CNN Blocks:

• Capture multi-scale local temporal patterns via expanding receptive fields.
•Hop VAR Module:

• Exploits long-range linear dependencies with vector autoregression.
•Hybrid Residual Learning:

• Learns residuals from both CNN and VAR branches.
•Weighted Fusion Layer:

• Adaptively merges outputs from both CNN and VAR to form the final prediction.

Benefits:
• Effectively combines nonlinear and linear temporal modeling.
• Robust to time series with mixed patterns (e.g., sharp trends + smooth components).
• Outperforms traditional CNN, VAR, and RNN baselines on several forecasting benchmarks.
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CNN based models – CNN and Attention
DSANet: Dual Self-Attention for MTS Forecasting
Key Idea:
DSANet introduces a dual self-attention mechanism to model both global and local temporal 
dependencies in multivariate time series data, combining convolutional encoders and attention modules 
for high interpretability and accuracy.
Model Highlights:
Local Temporal Convolution:
•Captures short-term dependencies via convolution + pooling.
Global Temporal Convolution:
•Captures long-range patterns with broader receptive field.
Self-Attention Module:
•Applied in both paths to capture inter-time-step and inter-feature relationships.
Autoregressive Component (AR):
•Models linear dependencies for stability.
Fusion:
•Dense layer integrates all components; AR output is added to final result.
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CNN based models
DSANet: Dual Self-Attention for MTS Forecasting
Key Idea:
SCINet introduces a hierarchical sample-wise interaction mechanism for time series forecasting, decomposing the input sequence into 

even and odd components and modeling their sample-level interactions through convolutional structures.

Model Highlights:
SCI-Block (Left):

•Splits the input into odd and even samples.

•Learns inter-sample dependencies via a dual convolutional mechanism.

•Performs interactive learning between split branches using convolution operators

•Merges outputs via addition/subtraction to form transformed even/odd components.

Hierarchical SCI Module (Middle):

•Stacks SCI-Blocks in a tree-like structure to progressively model complex patterns.

•Outputs are concatenated and realigned for further processing.

SCINet Stacking (Right):

•Multiple SCINet modules are stacked to enhance representation depth.

•Uses intermediate concatenation and residual pathways 

to preserve information flow.



… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

Input: Feature matrix , preprocessed adjacency matrix
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GNN based models
DMSTGCN
• Key Idea:
Learn both dynamic spatial dependencies and multi-granular 
temporal patterns for accurate traffic speed forecasting.
• Architecture:
Dynamic Spatial Graph: Learns time-varying spatial connectivity 
using attention-based graph learning
Temporal Encoder: Combines:
Short-term (recent) trends
Periodic (e.g., daily/weekly) patterns
Long-term dependencies
Uses Gated Temporal Convolution + Graph Convolutional Networks
Output: Multi-step traffic speed predictions at multiple locations
• Benefits:
Captures non-stationary spatial dynamics
Models multi-scale temporal behavior
Outperforms static GCN-based methods in traffic forecasting
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GNN based models
AutoSTG
Key Idea:
Automatically discover optimal spatiotemporal graph neural network architectures for time 
series forecasting using Neural Architecture Search (NAS).
Architecture:
• Search Space: Encodes design choices for:

Spatial modules (e.g., GCN, attention-based GNN)
Temporal modules (e.g., GRU, TCN, self-attention)
Fusion strategies for combining spatiotemporal features

• Uses Differentiable NAS to efficiently search
• Produces a customized model architecture
Benefits:
Data-specific architecture without manual design
Outperforms handcrafted STGNNs 
(e.g., STGCN, DCRNN)
Scalable to large graphs and long horizons
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GNN based models
MTGNN
• Key Idea:

Learn both temporal dynamics and implicit variable dependencies using a graph neural network 
(GNN) framework for multivariate time series forecasting.

• Architecture:
1. Graph Learning Module:

Learns a dynamic graph structure between variables (no predefined adjacency matrix needed)
2. Graph Convolution:

Captures spatial (cross-variable) dependencies
3. Gated Temporal Convolution:

Captures temporal dependencies in each variable
Jointly trained for end-to-end forecasting

• Benefits:
Models hidden relationships among variables
Scalable to high-dimensional time series
State-of-the-art performance on benchmarks (traffic, energy, finance)
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GNN based models
REST
• Key Idea:
Design a reciprocal framework that couples spatial and temporal dependencies bidirectionally 
to improve spatiotemporal forecasting.
• Architecture:
1. Spatial Module:
Learns spatial relationships conditioned on temporal information
2. Temporal Module:
Learns temporal dynamics conditioned on spatial information
3. Reciprocal Learning:
Both modules refine each other iteratively
Achieves spatiotemporal mutual enhancement during training
• Benefits:
Stronger coupling between space and time features
Captures complex mutual dependencies (vs. simple stacking)
Boosts accuracy on dynamic forecasting tasks
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GNN based models
TPGNN
• Key Idea:
Model complex temporal dependencies in multivariate time series 
by introducing polynomial-based temporal graphs into GNNs.
• Architecture:
Temporal Polynomial Graph (TPG):
Each time series variable forms a graph where edges are 
weighted polynomials of time lag
Graph Convolution on TPG:
Captures both short- and long-term temporal dependencies 
explicitly
Joint Learning:
Learns graph structure and forecasting model simultaneously
• Benefits:
Models non-linear time-lag relationships naturally
Better captures long-range temporal patterns
Outperforms existing spatiotemporal GNNs on multiple MTS 
benchmarks
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Transformer based models



Understanding and Coding the Self-Attention Mechanism of Large Language Models From Scratch 16

Transformer based models
Scaled Dot-Product Attention mechanism used in Transformers:



H. Wu, J. Xu, J. Wang, and M. Long, ‘‘Autoformer: Decomposition transformers with auto-correlation for long-term series

forecasting,’’ in Proc. NIPS, vol. 34, Dec. 2021, pp. 22419–22430.
16

Transformer based models - Autoformer
Design a Transformer specialized for long-term time series forecasting by combining series decomposition and auto-correlation-based attention.
• Series Decomposition:

Decomposes input into trend and seasonality components
• Auto-Correlation Attention:

Focuses on periodic dependencies by aligning similar subseries across time
• Decoder:

Predicts trend directly and reconstructs seasonal part from autocorrelated patterns
Benefits:
• Reduces forecasting error accumulation over long horizons
• More efficient and interpretable than standard self-attention
• State-of-the-art on long-term forecasting benchmarks (ETT, Traffic, Electricity)



H. Wu, J. Xu, J. Wang, and M. Long, ‘‘Autoformer: Decomposition transformers with auto-correlation for long-term series

forecasting,’’ in Proc. NIPS, vol. 34, Dec. 2021, pp. 22419–22430.
16

Transformer based models - Pyraformer
low-complexity Transformer for long-range time series by introducing pyramidal attention to capture hierarchical temporal dependencies efficiently
➢ Architecture:
• Pyramidal Attention:

Groups time steps into a hierarchical pyramid structure
Computes attention within local groups and across pyramid levels

• Sparse Attention Mechanism:
Reduces complexity from 𝑂(𝑛2) to 𝑂(𝑛 log𝑛)
Models both short-term details and long-term trends effectively

➢ Benefits:
• Scalable to very long time series
• Efficient memory and computation usage
• Outperforms Informer and standard Transformer on long-range forecasting tasks



H. Wu, J. Xu, J. Wang, and M. Long, ‘‘Autoformer: Decomposition transformers with auto-correlation for long-term series

forecasting,’’ in Proc. NIPS, vol. 34, Dec. 2021, pp. 22419–22430.
16

Transformer based models - non-stationary Transformer

Address the challenge that real-world time series are non-stationary (i.e., changing distribution over time) by explicitly 
modeling stationary and non-stationary components in Transformers.
➢ Architecture:
• Decompose input sequences into:

Stationary part: stable trends/patterns
Non-stationary part: dynamic changes

• Two attention modules:
Stationary Attention: captures stable dependencies
Non-stationary Attention: models shifting patterns

• Combine outputs for final prediction
➢ Benefits:
• Better handles distribution shifts over time
• Improved long-term forecasting compared to 

Autoformer and Informer
• Adaptable to highly dynamic and irregular time series



H. Wu, J. Xu, J. Wang, and M. Long, ‘‘Autoformer: Decomposition transformers with auto-correlation for long-term series

forecasting,’’ in Proc. NIPS, vol. 34, Dec. 2021, pp. 22419–22430.
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Transformer based models - Informer

➢ Key Idea:
Improve Transformer efficiency for long sequence time series forecasting using ProbSparse Attention to focus only on 
the most relevant query-key pairs.
➢ Architecture:
• ProbSparse Attention:

Instead of full self-attention 𝑂(𝑛2), it selectively attends to top queries with largest impacts
Reduces complexity to 𝑂(𝑛 log 𝑛)

• Encoder-Decoder Structure:
Encoder compresses long input sequences
Decoder uses generative prediction (one forward pass for multiple steps)

➢ Benefits:
• Handles very long sequences efficiently
• Fast training and inference compared to vanilla Transformer
• Outperforms RNNs and vanilla Transformer on 

multivariate long-horizon forecasting



H. Wu, J. Xu, J. Wang, and M. Long, ‘‘Autoformer: Decomposition transformers with auto-correlation for long-term series

forecasting,’’ in Proc. NIPS, vol. 34, Dec. 2021, pp. 22419–22430.
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Transformer combined models - TFT

Temporal Fusion Transformer
➢ Key Idea:
Combine high forecasting accuracy with interpretability for multi-horizon time series prediction using a Transformer-
based architecture with feature selection.
➢ Architecture:
• Static Covariate Encoder:

Learns embeddings for time-invariant features (e.g., location, ID)
• Variable Selection Networks:

Dynamically select important features at each time step
• Gated Residual Network (GRN):

Enhances representation learning and prevents overfitting
• Multi-Head Attention:

Focuses on temporal relationships for long-term prediction
➢ Benefits:
• Interpretable: Identifies key time-varying and static features
• Flexible: Handles static/dynamic inputs, missing data, 

and known future covariates
• Strong performance on a wide range of real-world forecasting tasks



H. Wu, J. Xu, J. Wang, and M. Long, ‘‘Autoformer: Decomposition transformers with auto-correlation for long-term series

forecasting,’’ in Proc. NIPS, vol. 34, Dec. 2021, pp. 22419–22430.
16

Transformer based models - FEDformer
➢ Key Idea:
Forecast long-term time series by combining series decomposition and frequency domain attention to improve accuracy and efficiency.
➢ Architecture:
• Series Decomposition:

Separates inputs into trend and seasonality components using MOE Decomp (Mixture of Experts Decomposition)
• Frequency Enhanced Attention:

Models seasonal patterns directly in the Fourier frequency domain
• Trend Learning:

Trend component is updated separately at each layer
➢ Benefits:
• Reduces complexity by frequency-domain processing
• Better long-range forecasting than Autoformer and Informer
• Improved interpretability through decomposition structure



H. Wu, J. Xu, J. Wang, and M. Long, ‘‘Autoformer: Decomposition transformers with auto-correlation for long-term series

forecasting,’’ in Proc. NIPS, vol. 34, Dec. 2021, pp. 22419–22430.
16

Complexity analysis of transformer-based models
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Effectiveness of Transformers in TS Forecasting

➢ Key Points:
• Challenge to Transformers:

A simple linear model was shown to outperform complex Transformers on forecasting tasks.
• MTS-Mixers:

Inspired by vision mixers, replaces Transformer attention with full connections across time and 
channel dimensions.

Achieves better performance by learning on sub-sequences.
• TiDE:

A fully MLP-based model (no attention, no RNNs, no CNNs).
Reached state-of-the-art results across multiple datasets, outperforming Transformers again.

➢ Insight:
• Recent work shows simple architectures (e.g., MLPs, mixers) can match or even surpass Transformers for 

time series forecasting.
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• There is no free lunch

• Prior literature mostly concentrated on solving specific tasks

50

Limitations
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• LLMs and Foundation Models

Roadmap of LLMs



© Copyr ight National University of Singapore. All Rights Reserved.

Given the remarkable capabilities emerging in 
LLM-related recent research, we believe that 
the field of TS research is undergoing an 
exciting transformative moment!

• LLMs and Foundation Models

Roadmap of LLMs



• LLMs can be either trained or adeptly repurposed to handle TS data for a range

of general-purpose tasks and specialized domain applications.

© Copyr ight National University of Singapore. All Rights Reserved.
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M. Jin et al., Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook. arXiv 2023.

Towards General Intelligence for TS
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LLM for Time Series

Large language models for various time series tasks in diverse application domains.

Large Language Models for Time Series: A Survey



© Copyr ight National University of Singapore. All Rights Reserved.
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LLM-Centric Models

Universal Task 
Solvers

TimeLLM, UniTime, UniST 

LLMs as domain expert models 

Solve complex real-world analytical

tasks involving data

2024

Deep Neural Networks

2010s

Solve typical tasks

Task-agnostic
Pattern Machine

CNNs, RNNs, GNNs, STGNNs

Learn domain-specific but task- 
agnostic TS knowledge

Statistical or ML Models

Task-specific 
Assistant

1950 – 2000s

Assist in specific tasks

ARIMA, SVM, PGM, MF

Extract interested spatio-temporal
patterns in specific scenarios

Pre-trained Models

Domain-agnostic 
Task Solvers

TimeCLR, STGCL
Pre-training + Fine-tuning 

Learn domain- and task-agnostic

2022

TS knowledge and patterns

Solve various tasks

Roadmap of Time Series Analysis



M. Jin et al., Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook. arXiv 2023.

Taxonomy (Oct. 2023)



Y. Liang et al. Foundation Models for Time Series Analysis: A Tutorial and Survey. KDD 2024.

Taxonomy (Feb. 2024)
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LLM for Time Series

• Left: Taxonomy of LLMs for time series analysis (prompting, quantization, aligning which is further categorized into two groups as 
detailed in Figure 4, vision as bridge, tool integration). For each category, key distinctions are drawn in comparison to the standard 
LLM pipeline shown at the top of the figure. 

• Right: We present representative works for each category, sorted by their publication dates. The use of arrows indicates that later 
works build upon earlier studies. Dark(light)-colored boxes represent billion(million)-parameter models. Icons to the left of the text 
boxes represent the application domains of domain-specific models, with icons’ meanings illustrated in Figure 1.

Large Language Models for Time Series: A Survey
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LLM for Time Series - Prompting
• Number-Agnostic Tokenization: The method treats numerical time series as raw textual data and directly prompts existing LLMs.

Table 1: Examples of representative direct prompting methods.

Large Language Models for Time Series: A Survey
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LLM for Time Series - Prompting

• Number-Specific Tokenization:
Key Points:
• Problem with BPE Tokenization:

Standard Byte Pair Encoding (BPE) breaks numbers inconsistently, complicating numerical reasoning [Gruver et al., 
2023; Spathis and Kawsar, 2023].
• Solutions:

Insert spaces between digits to tokenize each digit distinctly (following LLaMA, PaLM).
Use commas to separate time steps.
Scale and fix precision (e.g., 2 decimal places) to optimize context length.

• Applications:
BloombergGPT: Digit-level chunking improves financial text and number modeling.
Mirchandani et al. (2023): Space-prefixed tokenization allows LLMs to perform sequence transformation, completion, 

and improvement tasks effectively.

Insight:
Proper number-specific tokenization significantly improves LLMs’ ability to handle time series and numerical data.

Large Language Models for Time Series: A Survey
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LLM for Time Series - Quantization

Two Types of Index-Based Quantization Methods for Time Series
(a) VQ-VAE Based Quantization:
Time Series Encoder generates embeddings.
Embeddings are mapped to the closest codebook vectors via vector 
quantization.
Indices representing the codebook entries are used for decoding.
Enables efficient reconstruction through the Time Series Decoder.
(b) K-Means Based Quantization:
Feature Extraction generates embeddings.
Embeddings are clustered using K-Means to assign cluster indices.
Indices are used for further masking encoding and downstream tasks.
Simplifies representation without full reconstruction.

Insight:
Both methods compress time series into discrete indices for efficient 
modeling, but VQ-VAE focuses on reconstruction, while K-Means targets 
feature encoding and masking for downstream learning.

Large Language Models for Time Series: A Survey
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LLM for Time Series - Aligning

Two Types of Aligning-Based Methods for Time Series and LLMs

(a) Aligning by Similarity Matching (Type 1):
Time series and text are separately encoded into embeddings.
Similarity matching is used to align time series embeddings with LLM (text) 
embeddings.
No joint decoding; mainly used for retrieval or classification tasks.
(b) Aligning with LLMs as Backbones (Type 2):
Time series and text embeddings are both fed into a shared LLM encoder-
decoder.
The model can generate either time series outputs (e.g., forecasting) or 
text outputs (e.g., EEG-to-text) depending on the task.
Enables flexible sequence-to-sequence generation.

Insight:
Type 1: Independent encoding + similarity alignment.
Type 2: Joint encoding + versatile output generation using LLMs.

Large Language Models for Time Series: A Survey
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Aligning Time Series with Language Models

Key Idea:
• Train a separate encoder for time series, then align it with the semantic space of language models using various strategies.

Two Main Approaches:
1. Similarity Matching
• Contrastive Loss: Align time series and text embeddings via similarity (e.g., ECG reports, sensor clinical notes).

Examples: ETP, TEST, TENT, JoLT, Q-Former
• Other Losses: Use Optimal Transport, Canonical Correlation, Wasserstein distance for alignment.

Examples: ECG-LLM, MTAM
2. LLMs as Backbones
• Feed time series embeddings into pre-trained LLMs (e.g., GPT, BART, LLaMA).

Examples:
EEG-to-Text
GPT4TS, LLM4TS, GATGPT, Time-LLM
Lag-LLaMA for probabilistic forecasting
WavPrompt, Speech LLaMA, MU-LLAMA, SALMONN for audio/music

LLM for Time Series - Aligning

Large Language Models for Time Series: A Survey
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Vision as a Bridge: Linking Time Series with LLMs

Key Idea:
• Visual representations of time series (e.g., plots, IMU motion, paired images) act as an intermediate modality to align time 

series with large language models (LLMs).

Three Main Approaches:
1. Paired Data & Joint Embedding
• ImageBind, PandaGPT: Align multiple modalities (image, text, IMU, etc.) via paired data
• IMU2CLIP, AnyMAL: Project IMU time series into CLIP or LLaMA embedding space
2. Physics-Based Alignment
• IMUGPT: Generates human motion from text and derives IMU signals based on motion physics
3. Time Series Plots as Images
• CLIP-LSTM: Converts price charts into images and uses CLIP for forecasting
• Insight Miner: Feeds line plots of time series into LLaVA for generating textual trend descriptions

LLM for Time Series - Vision as a Bridge

Large Language Models for Time Series: A Survey
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Tool: Using LLMs Indirectly for Time Series Tasks

Key Idea:
• Instead of processing time series directly, LLMs are used to generate indirect tools—like code, APIs, or feature selectors—to 

assist downstream time series applications.

Three Main Tool Types:
1. Code Generation
• CTG++: Uses GPT-4 to turn text instructions into differentiable loss functions for traffic diffusion modeling.
2. API Frameworks
• ToolLLM: Provides a tool-based pipeline (data → model → evaluation) using LLM-generated API calls for tasks like weather 

and stock prediction.
3. Text Domain Knowledge
• SHARE: Augments human activity labels via GPT-4 to maintain semantic structure.
• GG-LLM: Encodes commonsense patterns (e.g., human actions) using LLaMA-2.
• SCRL-LG: Uses LLaMA-7B to extract features from news headlines for reinforcement learning in financial forecasting.

LLM for Time Series - Tools
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LLM for Time Series - Summary

Table: Summary of five major categories of applying LLMs for time series analysis

Large Language Models for Time Series: A Survey
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Internet of Things (IoT):

• Ego4D, Ego-Exo4D, DeepSQA
• Paired IMU time series + textual activity descriptions
• Used for human activity recognition and instruction following

Finance:

• PIXIU, MoAT
• Align time series (e.g., stock, fuel) with financial news
• Used for forecasting and financial NLP tasks

Healthcare:

• Zuco, PTB-XL, ECG-QA
• Eye-tracking, EEG, and ECG paired with reports, labels, or questions
• Supports clinical NLP and diagnostics

Audio / Music / Speech:

• AudioSet, OpenAQA-5M, MusicCaps, Libri-Light, Voice
• Rich collections of speech/music time series with text or labels
• Enables captioning, translation, QA

LLM for Time Series - Multimodal Datasets
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LLM for Time Series - Multimodal Datasets
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1. Theoretical Understanding

• Current research is empirically successful, but lacks theoretical grounding.
• Works like LIFT and GPT4TS suggest links between LLM representations and PCA, and hint at universal function 

approximation by Transformers.
• Future need: clarify how LLMs interpret numerical time series.
2. Multimodal & Multitask Analysis

• Most current LLM models focus on single task + modality.
• Inspired by UnifiedIO and UniAudio, more work is needed to build multitask, multimodal time series foundation models.
3. Efficient Algorithms

• Long and multivariate time series → high complexity for LLMs.
• While patching helps, it may hurt interpretability.
• Future work: efficient designs for scalable and user-friendly LLM-based time series systems.
4. Combining Domain Knowledge

• Infusing domain-specific methods (e.g., decomposition, wavelet, autocorrelation) into LLM pipelines (e.g., TEMPO, FreqTST) 
improves performance.

• Future potential in hybrid modeling.
5. Customization & Privacy

• Global models ≠ optimal for personalized or private clinical/home data.
• FedAlign uses federated learning + natural language anchors for privacy-preserving alignment.
• Future direction: custom LLMs for individuals and secure learning frameworks.

LLM for Time Series - Challenges



• Our standpoint is that LLMs can serve as the central hub for understanding and

advancing time series analysis in three principal ways

• LLM-as-Enhancers: augmenting TS data and existing approaches with enhanced 

external knowledge and analytical prowess

• LLM-as-Predictors: utilizing their extensive internal knowledge and emerging reasoning

abilities to benefit a range of downstream tasks, e.g., forecasting

• LLM-as-Agents: transcending conventional roles to actively engage in and transform 

time series analysis

© Copyr ight National University of Singapore. All Rights Reserved.M. Jin et al., Position: What Can Large Language Models Tell Us about Time Series Analysis. ICML 2024.

LLM for TS Typical Applications
What Can Large Language Models Tell Us about Time Series Analysis?



• Our standpoint is that LLMs can serve as the central hub for understanding and

advancing time series analysis in three principal ways

• LLM-as-Enhancers: augmenting TS data and existing approaches with enhanced 

external knowledge and analytical prowess

© Copyr ight National University of Singapore. All Rights Reserved.
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• LLM-as-Predictors: utilizing their extensive internal knowledge and emerging reasoning

abilities to benefit a range of downstream tasks, e.g., forecasting

• LLM-as-Agents: transcending conventional roles to actively engage in and transform 

time series analysis

LLM-as-Enhancer

M. Jin et al., Position: What Can Large Language Models Tell Us about Time Series Analysis. ICML 2024.
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• Data-centric enhancer • Model-centric enhancer

TS

ModelData

External 

Knowledge

LLM

TS

ModelData

External

Knowledge

LLM
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LLM-as-Enhancer
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• It enhances data interpretability or provide supplementary improvements, 

facilitating a more thorough understanding and effective use of TS data

• Examples

• LLM for finance

• LLM-MPE for human mobility

TS

ModelData

External 

Knowledge

LLM
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Data-Centric Enhancer



• This study focuses on NASDAQ-100 stock price prediction, supplemented by

metadata about the stock company and relevant financial news data

An example of a stock’s company profile
consisting of the company description

© Copyr ight National University of Singapore. All Rights Reserved.
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X. Xu et al., Temporal Data Meets LLM -Explainable Financial Time Series Forecasting. arXiv 2023.

Example: LLM for Finance



• While rich textual descriptions about public events are commonly available from

online sources, it is challenging to encode such information in ML models

• They introduce LLM-MPE for human mobility

prediction under public events based on LLMs

• leveraging their unprecedented ability to process 

textual data, learn from minimal examples, and 

generate human-readable explanations

© Copyr ight National University of Singapore. All Rights Reserved.
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Y. Liang et al., Exploring Large Language Models for Human Mobility Prediction under Public Events. arXiv 2023.

Example: LLM-MPE for Human Mobility
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• Model-based enhancers aim to augment TS models by addressing their 

limitations in external knowledge and domain-specific contexts.

• Transferring knowledge from LLMs boosts the performance of domain 

models in handling complex tasks

• Examples

• STLLM: LLM for spatio-temporal forecasting

• UrbanCLIP: LLM for urban region profiling

76

Model-Centric Enhancer



• Using a spatio-temporal knowledge alignment paradigm to maximize mutual information 

between LLM-based knowledge representations and GNN-based structural embeddings, 

ensuring effective alignment and information preservation across different views

© Copyr ight National University of Singapore. All Rights Reserved.
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Q. Zhang et al., Spatio-Temporal Graph Learning with Large Language Model. Openreview 2023.

Example: STLLM



• Urban Contrastive Language-Image Pre-training (UrbanCLIP) is the first framework that 

integrates the knowledge of text modality into urban region profiling

Definition

© Copyr ight National University of Singapore. All Rights Reserved.
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Y. Yan, Y. Liang* et al., UrbanCLIP: Learning Text-enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web. WWW 2024.

Example: UrbanCLIP



• Our standpoint is that LLMs can serve as the central hub for understanding and

advancing time series analysis in three principal ways

M. Jin et al., Position: What Can Large Language Models Tell Us about Time Series Analysis. ICML 2024.

• LLM-as-Enhancers: augmenting TS data and existing approaches with enhanced 

external knowledge and analytical prowess

• LLM-as-Predictors: utilizing their extensive internal knowledge and emerging reasoning

abilities to benefit a range of downstream tasks, e.g., forecasting

• LLM-as-Agents: transcending conventional roles to actively engage in and transform 

time series analysis

33

LLM-as-Predictor
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LLM-as-Predictor



• Tuning-based predictors use accessible LLM parameters, typically 

involving patching and tokenizing numerical signals and related text 

data, followed by fine-tuning for TS data

• Examples

• GPT4TS for time series analysis

• Time-LLM for time series analysis

81

Tuning-based LLM Predictors
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Zhou et al., One Fits All: Power General Time Series Analysis by Pretrained LM. NeurIPS 2023.

GPT4TS for Time Series Analysis



• Key question: How to enable LLMs to understand time series?

83

Jin et al., Time-LLM: Time Series Forecasting by Reprogramming Large Language Models. ICLR 2024.

Time-LLM for Time Series Analysis



• This module aims to reprogram time series features using pre-trained 

word embeddings in the backbone

84

Contribution 1: Patch Reprogramming



• Dataset context furnishes LLM with essential background information concerning the input time series

• Task instruction serves as a crucial guide in the transformation of patch embeddings for specific tasks

• We also enrich with additional crucial statistics, such as trends and lags, to facilitate pattern recognition

and reasoning

Contribution 2: Prompt-as-Prefix
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Results on Long-Term Forecasting
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Results on Few-Shot Learning
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Results on Zero-Shot Learning
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Ablation Study
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Visualization on Reprogramming



• Non-tuning-based predictors, suitable for closed-source models, involve

preprocessing TS data to fit LLM input spaces

• Examples

• LLMTime for time series analysis

• LLM-Mob for human mobility

91

Non-Tuning-based LLM Predictors
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N. Gruver et al., Large Language Models Are Zero-Shot Time Series Forecasters . NeurIPS 2023.

Example: LLMTime



• LLM-Mob leverages the language understanding and reasoning capabilities of

LLMs for analyzing human mobility data

93

X. Wang et al., Where Would I Go Next? Large Language Models as Human Mobility Predictors. arXiv 2024.

Example: LLM-Mob



• Beyond the previously discussed methods, 

another significant approach in TS analysis 

involves building foundation models from scratch

A major challenge:

Large-scale datasets!

94

Other LLM-as-Predictors



• We crawled, processed, and released a large-scale traffic dataset

• Scalability, Generalizability, Robustness, etc.

95

X. Liu, Y. Liang* et al., LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting. NeurIPS 2023.

LargeST: A Large-Scale Traffic Dataset



• We crawled, processed, and released a large-scale parking dataset

96

H. Zhang, Y. Liang* et al., Predicting Carpark Availability in Singapore with Cross-Domain Data: A New Dataset and A Data-Driven Approach. IJCAI 2024.

SINPA: A Large-Scale Carpark Dataset



• We released The First Last-Mile

Delivery Dataset from Industry

• Large scale

• Comprehensity

• Diversity

97

L. Wu, H. Wen, Y. Liang* et al., LaDe: The First Comprehensive Last-mile Delivery Dataset from Industry. KDD 2024.

LaDe: The First Last-Mile Delivery Dataset



• The prerequisite of training a Foundation Model for time series is training a

model on cross-domain time series all at once

98

X. Liu , Y. Liang* et al., UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting. WWW 2024.

UniTime: Building Time Series Foundation Models



• What if the input data come from difference sources?

99

Q. Liu , Y. Liang* et al., Time-FFM: Towards LM-Empowered Federated Foundation Model for Time Series Forecasting. arXiv 2024.

Time-FFM: Federated TS Learning



• Our standpoint is that LLMs can serve as the central hub for understanding and

advancing time series analysis in three principal ways

10
0

M. Jin et al., Position: What Can Large Language Models Tell Us about Time Series Analysis. ICML 2024.

• LLM-as-Enhancers: augmenting TS data and existing approaches with enhanced 

external knowledge and analytical prowess

• LLM-as-Predictors: utilizing their extensive internal knowledge and emerging reasoning

abilities to benefit a range of downstream tasks, e.g., forecasting

• LLM-as-Agents: transcending conventional roles to actively engage in and transform 

time series analysis

LLM-as-Agent



• Tuning-based LLM-as-Predictors utilize LLMs as robust model checkpoints, attempting to 

adjust certain parameters for specific domain applications.

• However, this approach often sacrifices the interactive capabilities of LLMs and may not fully exploit 

the benefits offered by LLMs, such as in-context learning or chain-of-thought.

• Non-tuning-based LLM-as-Predictors, integrating TS data into textual formats or

developing specialized tokenizers

• Facing limitations due to LLMs’ primary training on linguistic data, hindering their comprehension of 

complex temporal knowledge and patterns not easily captured in language

A new promising paradigm rises:

LLM-as-Agents!

Background of LLM-as-Agent



• Different directions for incorporating time series knowledge to LLMs

M. Jin et al., Position: What Can Large Language Models Tell Us about Time Series Analysis. ICML 2024.

LLM-as-Agent for Time Series Analysis



• We empirically verify that LLM can serve as Effective Analytical Agent

10
3

LLM-as-Agent for Time Series Analysis



• LLM agent can provide interpretability and truthfulness

10
4

LLM-as-Agent for Time Series Analysis



• Difficulty in Understanding Complex Patterns

• Bias and Task Preferences

• Hallucination

10
5

Limitations of LLM Agent for Time Series
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S. Lai et al., LLMLight: Large Language Models as Traffic Signal Control Agents. arXiv 2024.

LLM Agents for Traffic Light Control
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Z. Zhou et al., Large language model empowered participatory urban planning. arXiv 2024.

LLM Agents for Urban Planning



• Deep learning for time series analysis

• When spatio-temporal data meet LLMs

• LLM-as-Enhancer

• LLM-as-Predictor

• LLM-as-Agent

10
8
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Applications



Understanding and Coding the Self-Attention Mechanism of Large Language Models From Scratch 16

Application - Transportation

With the rapid growth of transportation data from sensors (e.g., loop detectors, cameras, GPS), there is an urgent need to use 
deep learning to model the complex spatiotemporal correlations for tasks like:
• Traffic flow prediction
• Traffic incident detection
• Traffic congestion prediction
Transportation data can appear in various spatiotemporal forms:
• ST Raster: Traffic flow matrices (sensor × time)
• Graphs: Sensor networks modeled by road connections
• Time Series: Single-road traffic histories
Modeling Approaches:
• GraphCNNs for sensor network graphs
• RNN/LSTM for single-road time series
Additionally, transportation data is influenced by external factors (e.g., weather, holidays, events), so models must effectively 
fuse external features with traffic data for better prediction accuracy.



Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting 16

Application - Transportation

Introduce a novel framework that decouples traffic data into diffusion and inherent components to better model complex 
spatial-temporal dependencies in traffic forecasting.
• Decoupled Spatial-Temporal Framework (DSTF): Separates traffic data into diffusion signals (capturing spatial dependencies) 

and inherent signals (capturing temporal patterns).
• Dynamic Graph Learning Module: Learns dynamic characteristics of traffic networks over time.
• Residual Decomposition Mechanism: Enhances the model's ability to capture complex patterns by decomposing residuals.
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Application - On-Demand Service

With the rise of on-demand service platforms (e.g., Uber, DiDi, Mobike, GoGoVan), a large volume of spatiotemporal (ST) data 
is generated, involving customer locations and service times.
To better meet real-time demand and optimize services, accurate demand-supply prediction across locations and times is 
crucial.

Deep Learning Approaches:
• Dockless bike-sharing: Deep learning methods predict demand-supply distributions.
• Bike-sharing systems: Graph CNN models forecast hourly bike demand at stations by modeling bike flow as a graph.
• Taxi services: LSTM models predict area-specific taxi demand.
• Ride-hailing platforms: ResNet models predict supply-demand patterns.

Modeling Strategy:
• Represent demand-supply across city regions as spatial maps or raster tensors.
• Apply CNNs, RNNs, or hybrid deep models for feature extraction and future prediction.



ST-MGCN: Spatiotemporal Multi-Graph Convolution Network:

Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting

Application - On-Demand Service
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ST-MGCN: Spatiotemporal Multi-Graph Convolution Network:

Key Idea:
Model non-Euclidean spatial dependencies and global temporal dynamics simultaneously for 
accurate region-level ride-hailing demand forecasting.
Model Architecture:
• Multi-Graph Construction:

Build three graphs to capture different spatial relationships:
Neighborhood Graph (adjacent regions)
Functional Similarity Graph (similar POI surroundings)
Transportation Connectivity Graph (road network links)

• Multi-Graph Convolution:
Perform graph convolutions over multiple graphs to aggregate information 
from spatially correlated regions (both near and distant).

• Contextual Gated RNN (CGRNN):
Augments RNN with global context-aware gating.
Dynamically reweights different time steps based on global demand patterns.

• Prediction Head:
Outputs future region-level ride-hailing demand after spatial and temporal aggregation.

Application - On-Demand Service

Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting



ST-MGCN: Spatiotemporal Multi-Graph Convolution Network:

Application - On-Demand Service

Graph Generation

Neighborhood

𝐴𝑁,𝑖𝑗 = ቊ
0,
1,

𝑣𝑖 and 𝑣𝑗 are adjacent

otherwise

POI similarity
𝐴𝑆,𝑖𝑗 = sim(P𝑣𝑖 , P𝑣𝑗)

Road connectivity

𝐴𝐶,𝑖𝑗 = max(0, conn 𝑣𝑖 , 𝑣𝑗 − 𝐴𝑁,𝑖𝑗)

Temporal modeling

CGRNN

• Use 1-layer GCN to invoke 
context information

• Use spatial global pooling to 

get temporal gate

• Apply gate to input signal

• Aggregate gated signal by 
share-weight RNN

Spatial modeling

MGCN

• Use stacked GCN layer to 
extract spatial information

• The locality is determined by 

graph Laplacian and 
convolution degree

• A proper way to extract spatial 
information under arbitrary 

relationship

Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting



ST-MGCN: Experiments

Application - On-Demand Service

Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting



OD-CED: Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing

Application - On-Demand Service

Challenges:

1. Scalability – OD matrices grow

exponentially with more spatial divisions.

2. Data Sparsity – Over 90% of fine-grained

OD flows have zero demand.

3. Semantic & Geographical

Dependencies – Travel demand is

influenced by both regional function (e.g.,

residential vs. commercial) and spatial

proximity.

Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing



OD-CED: Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing

Application - On-Demand Service

OD-CED Model: A Novel OD Prediction 
Framework

● Space Coarsening Module: Merges fine-

grained cells into super-cells to mitigate 

sparsity.

● Encoder-Decoder Architecture: Captures 

semantic and geographical dependencies 

effectively.

● Permutation-Invariant OD Embedding:

Learns robust representations of OD flows.

Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing



Application - On-Demand Service

OD-CED: Experiments

Dataset Performance Comparison (City-C & City-S):

● City-C:

○ RMSE reduced from 1.255 (GEML) → 0.905 (OD-CED) 

(~28% improvement).

○ wMAPE reduced from 0.667 (GEML) → 0.411 (OD-CED) 

(~39% improvement).

● City-S:

○ RMSE reduced from 1.146 (GEML) → 0.740 (OD-CED) 

(~35% improvement).

○ wMAPE reduced from 0.605 (GEML) → 0.323 (OD-CED) 

(~47% improvement).

Training Time Comparison (per epoch on V100 GPU):

● OD-CED: 22.12s

● STGCN: 28.81s

● GEML (state-of-the-art): 39.63s

● CSTN & MRSTN: 1200+ seconds

● OD-CED is 2x faster than GEML and over 50x faster than 

CNN-based methods.

Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing



Application - Meso Level Supply-Demand Forecasting 

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided Ride-Hailing Markets

Goal: Predicting supply and demand in ride-hailing platforms using a causal, interpretable, and scalable

forecasting framework

Algorithm 3:, A collaborative causal spatio-temporal fusion transformer (CausalTrans).

Authors: Wang et al., 

Journal: ACM Transactions on Spatial Algorithms and Systems, 2024

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided Ride-Hailing Markets



Application - Meso Level Supply-Demand Forecasting 

Collaborative Problem

𝑃 𝑥𝑣 𝑡 + 1: 𝑡 + 𝜏max 𝑥𝑣(: 𝑡), 𝑧𝑣(: 𝑡 + 𝜏max))
𝑃 𝑦𝑣 𝑡 + 1: 𝑡 + 𝜏max 𝑦𝑣(: 𝑡), 𝑥𝑣(: 𝑡 + 𝜏max), 𝑧𝑣(: 𝑡 + 𝜏max))

Where:

𝑥𝑣(𝑡): demand at time t in grid v;

𝑦𝑣(𝑡): supply at time t in grid v;

𝑧𝑣(𝑡): external covariates (e.g., weather, holiday) at time 

t in grid v;

𝜏max : pre-specified time length

𝑣 ∈ 𝑉.

Probabilistic Forecasting

• Given 𝑞 ∈ 𝑄 = {10%, 50%, 90%}, then quantile loss 𝑄𝐿𝑞
at each point q is:

𝑄𝐿𝑞 𝑥𝑡, ො𝑥𝑡−𝜏
𝑞

= {𝑞 − 𝐼 𝑥𝑡 ≤ ො𝑥𝑡
𝑞
} ∗ (𝑥𝑡 − ො𝑥𝑡

𝑞
)

• Then final quantile loss is:

𝐿𝑜𝑠𝑠𝑄 = Σ𝑥𝑡∈Ω Σ𝑞∈𝑄Σ𝜏=1
𝜏max 𝑄𝐿𝑞 𝑥𝑡, ො𝑥𝑡−𝜏

𝑞

𝑀 ∗ 𝜏max

• We introduce quantile risk as a key metric:

Risk𝑞 =
2 σ

𝑥𝑡∈෩Ω
σ𝜏=1
𝜏𝑚𝑎𝑥 𝑄𝐿𝑞 𝑥𝑡, ො𝑥𝑡−𝜏

𝑞

σ
𝑥𝑡∈෩Ω

σ𝜏=1
𝜏𝑚𝑎𝑥 |𝑥𝑡|

where ෩Ω is the best dataset.

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided Ride-Hailing Markets



Application - Meso Level Supply-Demand Forecasting 

The overview of CausalTrans framework:

(a). The framework consists of three essential 
components: Fast S.F. (fast graph spatial fusion), 
C.A. (causal attention), and T.A. (temporal 
attention). Demand and supply are trained 
separately in sequence.

(b). The Fast S.F. consists of self-clustering with GAT 
and fast attention.

(c). The C.A. applies offline trained causal weights 𝜽
to online treatments evaluations.

(d). The T.A. aims to keep ordering self-attentions.

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided Ride-Hailing Markets



Application - Meso Level Supply-Demand Forecasting 

CausalTrans - Causal Attention Mechanism

We transfer the weights of external covariates to  causal weights by HTE methods (e.g. double machine learning).

(a) causal attention algorithm

step 1: external covariates: weather, holidays and subsidy;

step 2: build various of control groups and treat groups;

step 3: do DML and get causal attention or weights.

(b) how to work in ConvTrans

step 1: offline training causal attention;

step 2: add above weights in multi-head attention

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided Ride-Hailing Markets



Application - Meso Level Supply-Demand Forecasting 

CausalTrans - Causal Attention Visualization

•“AA group 1” and “AA group 2” are regarded as comparable contexts;

•“AB group 1” and “AB group 2” is control group and treatment group;

•Do DML and get causal attention weights.

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided Ride-Hailing Markets



Application - Meso Level Supply-Demand Forecasting 

CausalTrans - Experiment

(a) Risk_(50%) losses on the retail and ride-hailing datasets.

(b) Risk_(90%) losses on the retail and ride-hailing datasets.

•Use grid search to optimize hyperparameters;

•DeepAR outperforms Seq2Seq and MQRNN

because of Poisson and weather covariates;

•CausalTrans outperforms other methods 

primarily due to causal estimator DML;

•CausalTrans achieves lower losses on supply 

than demand based on both causal 

relationship;

•Long-term prediction focuses on unbiased 

distribution estimation.

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided Ride-Hailing Markets



Understanding and Coding the Self-Attention Mechanism of Large Language Models From Scratch 16

Application - Climate & Weather

Weather and climate data capture atmospheric and oceanic conditions (e.g., temperature, wind, pressure, precipitation, air 
quality) via sensors at fixed or mobile locations.
Due to strong spatiotemporal correlations in climate data, spatiotemporal deep modeling (STDM) techniques are widely used 
for short-term and long-term forecasting.

Deep Learning Approaches:
• Air quality inference: Predict urban air pollution.
• Precipitation prediction: Forecast rain using remote sensing.
• Wind speed prediction: Model anemometer readings.
• Extreme weather detection: Identify severe weather events.
Data Types:
• Spatial maps: e.g., radar reflectivity images
• Time series: e.g., wind speed readings
• Event data: e.g., extreme weather occurrences
Example Models:
•Attention models for air quality prediction
•CNNs for detecting extreme weather and precipitation forecasting



Understanding and Coding the Self-Attention Mechanism of Large Language Models From Scratch 16

Application - Neuroscience

Various brain imaging technologies — such as fMRI, EEG, MEG, and fNIRS — are widely used in neuroscience research.
These technologies differ significantly in spatial and temporal resolution:
• fMRI: Millions of spatial locations, lower temporal resolution (~2 seconds per measurement)
• EEG: Tens of locations, very high temporal resolution (~1 millisecond)

Data Representation:
• Brain imaging data (fMRI, EEG) are naturally represented as spatial maps or rasters, making them suitable for DL analysis.

Deep Learning Applications:
• Disease classification and diagnosis: e.g., Autism Spectrum Disorder, amnestic Mild Cognitive Impairment, Schizophrenia
• Brain function network classification
• Brain activation pattern classification

Example Models:
• LSTM for Autism Spectrum Disorder detection
• CNN for diagnosing amnestic Mild Cognitive Impairment
• FNN for classifying Schizophrenia



BrainGNN is a graph neural network (GNN) specifically designed for analyzing functional MRI (fMRI) brain data.
It predicts cognitive states or disease status while providing interpretability by identifying important brain regions and 
connections.

Model Highlights:
Node-Level Pooling:

• Groups similar brain regions (ROIs) into clusters based on learned features.
ROI Selection Layer:

• Automatically selects important brain regions contributing to the prediction.
Attention Mechanism:

• Highlights key functional connections between selected ROIs.

Dynamic Graph Transformer for Brain Disorder Diagnosis

16

Application 1: BrainGNN



Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis

Application

Introduce a model that jointly learns spatial and temporal features from resting-state fMRI (rs-fMRI) using a combination of 
graph convolution and recurrent neural networks (RNNs).

Model Highlights:
Spatial Graph Convolution:

• Models functional connectivity between brain regions at each time step, treating brain ROIs as graph nodes.
Temporal RNN:

• Captures the evolution of brain connectivity over time by applying an RNN (such as GRU) on node embeddings.
End-to-End Training:

• Learns both spatial (graph structure) and temporal (dynamic activity) representations directly from raw fMRI sequences.



Total activation: fMRI deconvolution through spatio-temporal regularization

16

Application

Total Activation (TA) is a method that deconvolves fMRI signals to recover the underlying neural activity-inducing signals by 
applying spatio-temporal regularization.

Model Highlights:
•Temporal Regularization:

• Promotes piecewise constant activation patterns over time (temporal sparsity).
•Spatial Regularization:

• Enforces spatial smoothness across neighboring voxels (nearby brain regions).
•Solves an optimization problem balancing data fidelity with spatio-temporal priors.
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• Latent graph learning

What to do when the underlying graph is not known?

• Learning in non-stationary environments

What to do when the environment changes?

• Scalability

How to deal with large collections of time series?

• Dealing with missing data

How to deal with missing observations within the time series?

Challenges

A. Cini et al., “Sparse graph learning from spatiotemporal time series”, JMLR 2023.



Latent graph learning

Learning and adjacency matrix
× Relational information is not always available

× or might be ineffective in capturing spatial dynamics.

✓ Relational architectural biases can nonetheless be exploited

→ extract a graph from the time series or node attributes

Graph extraction

• It can be interpreted as regularizing a spatial attention operator.

A. Cini et al., “Sparse graph learning from spatiotemporal time series”, JMLR 2023.
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Latent graph learning

Time-series similarities

Probably, the simplest approach to extract a graph from the time series 

is by computing time series similarity scores.

• Pearson correlation

• Correntropy

• Granger causality

• Kernels for time series

• . . .

→  Thresholding might be necessary to obtain binary and sparse graphs.

13
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Latent graph learning
An integrated approach: learn the relations end-to-end with the downstream task

• as a function of the input data,

• as trainable parameters of the model,

• or both.

This problem is known as latent graph learning (or latent graph inference). 

13
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Latent graph learning

Direct approach

A direct approach consists in learning ෨𝐴 as function 𝜉(⋅) of edge

ሚ𝐴 = 𝜉(Φ)

scores Φ ∈ 𝑅𝑁×𝑁 as

Edge scoresΦ

→  can be a table of learnable model parameters,

→  obtained as a function of the inputs and/or other parameters.

Function 𝜉(⋅) is a nonlinear activation

→  it can be exploited to make ෨𝐴 sparse.

13
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Learning in Non-Stationary Environments

Inductive learning

In real-world applications, one often needs to

• operate under changes in the network connectivity

• make predictions for newly added nodes

• transfer the model to different sensor networks (collections of 

time series)

Useful in several tasks, like, forecasting, missing data imputation, and virtual sensing.

Attention: Performance can easily degrade if the data distribution of target nodes

• deviates from that at training nodes

• changes over time.

G. Ditzler et al., “Learning in Nonstationary Environments: A Survey”, IEEE CIM 2015.

A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, To appear in NeurIPS 2023.



Learning in Non-Stationary Environments

Transferability of STGNNs
Global STGNNs are inductive and can directly be used in the above 

settings, provided that the training and target data are similar enough.

• MP operates on generic neighborhoods

• MP parameters are shared across nodes

Otherwise, STGNNs need to be adjusted

• fine-tuning (a subset of) the weights of the model on the new data

• exploiting transfer learning strategies
Enc STMP Dec

Attention: Global-local STGNNs reduce the cost of transfer learning

• sharing most of the parameters and finetuning node-specific parameters only

• node embeddings can be regularized to facilitate the learning further.

13
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G. Panagopoulos et al., “Transfer graph neural networks for pandemic forecasting”, AAAI 2021.

T. Mallick et al., “Transfer learning with graph neural networks for short-term highway traffic forecasting”, ICPR 2021.

A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, To appear in NeurIPS 2023.



Scalability

The scalability feature

• Graph-based processing allows us to 

learn a single model...

• ...able to deal with a large collection of 

time series...

• ...while accounting for the most relevant

• relational information.



Scalability

The scalability issue

Spatiotemporal data span – as the name suggests – two dimensions:

• the spatial dimension, corresponding to the number of time series (sensors).

• the time dimension, corresponding to the number of time steps (number of observations 

acquired per sensor).

In the real world, dealing with thousands of sensors acquiring data at high sampling rates is 

quite common (e.g., smart cities).

➢ A large amount of data needs to be processed at once.

➢ In particular, to account for long-range spatiotemporal dependencies.



Scalability

Graph subsampling

Computations can be reduced by training on subgraphs of the full network, 

e.g., by

• sampling the K -th order neighborhood of a subset of nodes;

• rewiring the graph to reduce the total number of edges.

Mostly adapted from methods developed in static graph processing (e.g., 2 references below).

• Subsampling might break long-range spatiotemporal dependencies.

• The learning signal may be noisy.

W. Hamilton et al., “Inductive representation learning on large graphs”, NeurIPS 2017.

Y. Rong et al., “DropEdge: Towards Deep Graph Convolutional Networks on Node Classification”, ICLR 2020.



Scalability

SGP: Scalable Graph Predictor 
Extracted representations can be sampled uniformly across time and space during training.

C
O

N
C

A
T

E
N

A
T

E

Echo State Network

sp
ac

e

time

. . .

. . .

. . .

M
LP

✓ The cost of a training step is independent of W, N and |Et|.

✓ Performance matches state of the art.

× More storage space is required, as the number of extracted features is much higher than dx.

× More reliant on hyperparameter selection than end-to-end approaches.

14
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A. Cini et al., “Scalable Spatiotemporal Graph Neural Networks”, AAAI 2023.



Dealing with missing data

The problem of missing data

So far, we assumed to deal with complete sequences, i.e., to have valid observations associated 

with each node (sensor) and time step.

However, time series collected by real-world sensor networks often have missing data, due to:

• faults, of either transient or permanent nature;

• asynchronicity among the time series;

• communication errors...

Most forecasting methods operate on complete sequences.

→  We need a way to impute, i.e., reconstruct, missing data.



Dealing with missing data

Time series imputation

TSI Method

The problem of reconstructing missing values in a sequence of data is often referred to as time
series imputation (TSI).

𝑿𝑡:𝑡+𝑇 𝑿𝑡:𝑡+𝑇



Dealing with missing data

Time series imputation



Dealing with missing data

Deep learning for TSI
Besides standard statistical methods, deep learning approaches have become a popular 

alternative, in particular, autoregressive models (e.g., RNNs).

⌣  Effective in exploiting past (and future, with bidirectional models) node observations...

⌢  ...but struggle in capturing nonlinear space-time dependencies.



Dealing with missing data

Forecasting from Partial Observations

A more direct approach to the problem is to avoid the reconstruction step and consider 

forecasting architecture that can directly deal with irregular observations.

The mechanisms used in imputation models 

can be adapted to build forecasting 

architectures.

⌣  Such models can be used to jointly impute 

missing observations and forecast future 

values.
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