Bios 740- Chapter 11. Spatio-temporal process

Acknowledgement: Many thanks to Mr. Shuai Huang for preparing some of these slides, and to
Yuxuan Liang for sharing their slides. I also drew on material from the ECML/PKDD 2023 tutorial
by Cesare Alippi, Daniele Zambon, Andrea Cini, and Ivan Marisca., as well as content generated by
ChatGPT.
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1 Spatio-temporal Data and Tasks
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Spatio-temporal Data

Spatial data are data derived from spatial measurements that have only one parameter: the
space and its characteristics are mainly location coordinates and constitute the mining data.

Spatiotemporal data, however, are data derived from measurements, which take into
account both the parameters of space and time.
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Spatio-temporal Data

ST data types ST data instances Data formats
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Spatio-temporal Data — Time series

 Time series 1s a sequence of data points collected or recorded at specific time intervals,
showing how a variable changes over time
*Multivariate time series 1s a typical spatio-temporal data

Sunspots
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Spatio-temporal Data — Time series

With recent advances 1n sensing technologies, a myriad of Time Series (TS) Data
has been collected and contributed to various disciplines
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Spatio-temporal Data — Time series

Physics Stock markets

ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




Spatio-temporal Data

Model Name™ Dataset Names Used in Experiments Applications

HyDCNN [13] Traffic, Solar-Energy, Electricity Traffic,Energy

SCINet [14] Traffic, Solar-Energy, Electricity, ETT, Exchange-Rate, PEMS Traffic,Energy,Finance

DA-RNN [15] SML 2010, NASDAQ 100 Stock Finance

MQRNN [16] GEFCom2014 Energy

MTGNN [17] Traffic, Solar-Energy, Electricity, Exchange-Rate, PEMS-BAY, METR-LA | Traffic,Energy,Finance

AutoSTG [18] PEMS-BAY, METR-LA Traffic

DMSTGCN [19] PeMSD4, PeMSD8 Traffic

TPGNN [20] Traffic, Solar-Energy, Electricity, Exchange-Rate Traffic,Energy,Finance

MAGNN [21] Traffic, Solar-Energy, Electricity, Exchange-Rate, Nasdaq Traffic,Energy,Finance

TFT [22] Electricity, Traffic, Retail Traffic,Energy

Informer [23] ECL, Weather, ETT Weather,Energy

Autoformer [24] ILI, Weather, ETT, Traffic, Exchange-Rate, Electricity Medical,Weather,Energy, Traffic,Finance
Pyraformer [25] ETT, Electricity Energy

FEDformer [26] ILI, Weather, ETT, Traffic, Exchange-Rate, Electricity Medical, Weather,Energy, Traffic,Finance
Non-stationary Transformer [27] | ILI, Weather, ETT, Traffic, Exchange-Rate, Electricity Medical,Weather,Energy, Traffic,Finance

ﬂ—’ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




Spatio-temporal Tasks

e Predictive learning: recommendation  others
Prediction; Forecasting

e Classification

e Estimation and Inference

e Anomaly detection

infer ence/estimationi

classification

detection

prediction
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Spatio-temporal Tasks

[Forecasting]

° PredICtlve Iearnlng: : Weather forecasting, Energy/Traffic planning
Prediction; Forecasting

e Classification
e Estimation and Inference i [ 2 ]«,M(

. | 9 [Imputation]
e Anomaly detection f’ﬂ“ ' _ Data mining l 2 I“:

Time

Past Observations Future Time Series

[Anomaly Detection]

Industrial Maintenance

Time

[Classification]

Action recognition, Heartbeat diagnosis

—
Time

Wang, Y., Wu, H., Dong, J., Liu, Y., Long, M. and Wang, J., 2024. Deep time series models: A comprehensive survey and
benchmark. arXiv preprint arXiv:2407.13278.
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2 Problem Definitions and Evaluation Metrics
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Problem formulations

Table 1. Summary of deep Forecasting Models based on Forecast and Model Type

Forecast type Model type Formulation
Local univariate Zi t+1:0+h = Y(Zi 16, Xi1:04h)
Point Global univariate Zi t+1:0+h = Y(Zi 1.6 Xi1:+h> D)
Multivariate ZHl:Hh = VY(Z1.t, Xi.p41, D)

Local unival‘late P(Zi,t+l:t+hlzi,l:taXi,l:t+h; 95)9 Qi — qj(zi,l:taxi,l:t+h)
Probabilistic | Global univariate | P(z; t+1:t+h|Z1:t X1:04030i)s  0i = ¥(Zi 1.5 Xi,1:0 40> D)
Multivariate P(Zt+1:t+h|Zl:taXl:t+h; 9)5 0 = LP(Zl:taxl:t+ha (I))

For one-step and multi-step forecasting models h = 1 and h > 1, respectively.
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Setup of multivariate time series

A set of N correlated time series, where each 1-th time series is associated with:

e an observation vector xt € R% at each time step t;
e a vector of exogenous variable u; € R% at each time step t;
e a vector of static (time-independent) attributes vy € R%

~- Exogenous variables -------------- :
1

: : L ;‘“:-Ut ;"'zUt+T g A
' 1o - l 0 e
: ; ! L : — — -
. ; . 1 » | e -V s Er = 00
| g 10 g T 5 o _I__gg
§ ' ® ! _ y
| ¢ trT  tme | ¢ frT time

Matrices denote the stacked N observations at time ¢,

e.g., X; € RV*% U, € RN*%

Cini, A., Marisca, |., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.
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Setup of multivariate time series

We consider a setup where observations have been generated by a time-invariant spatiotemporal
stochastic process such that

wiwpz (SBHX<7§,U§“V) v — 1,...,N;

X;..+7: the sequence of observations within time interval [t,t + T);

X.;: observations at time steps up to t (excluded)

Note that the time series:

e can be generated by different processes,

e can depend on each other,

e are assumed homogenous, synchronous, regularly sampled.

Cini, A., Marisca, |., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.
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* Pairwise relationships existing among the time series at time step t

Relational information

* A, can be asymmetric and dynamic (can vary with t).

* optional edge attributes eij € R% can be associated to each non-

e Pairwise relationships existing among the time series at time step t ero ety af A
. . v & = : the set of attributed
Can be enCOded by a adJacency matrlx At E {O, 1 }NXN . edges encoding all the available relational information
* Tuple indicates all the available information at

r- Nodes (sensors) --=-----=-=-=------- '

* A, can be asymmetric and dynamic (can vary with t). : y={00000}

- : L] : -- Edges (functional dependencies) --
e optional edge attributes et] € R% can be associated to each non- | g (functional dependencies)

00000

zero entry of A;.

e g, ={((i,5),€7) | Vi,j: Asfi, §] # 0}:the set of attributed

edges encoding all the available relational information

e Tuple G: = (X, U, &, V) indicates all the available information at v =1l e & =1

time step t. 5 |

Cini, A., Marisca, I., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.
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Relational information

* The term spatial refers to the dimension of size N, that spans — Time series collection + Relational info
the time series collection; in the case of fMRI, the term spatial G, — (X, Uy, £, V)
reflects the fact that each time series might correspond to a
different physical location.
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e We use the terms node and sensor to indicate the IN entities )
generating the time series.

* We assume the existence of functional dependencies between | oo
the time series. Gtrty = {Gtrs -, Gt -+, Gn}

— e.g., forecasts for one time series can be improved by
accounting for the past values of other time series.

Cini, A., Marisca, I., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.
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3 Spatio-temporal Modeling
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Spatio-temporal Modeling

Spatial Temporal Forecasting Techniques

Statistical

or Low-rank-based Machine Learning Deep Learning

Regression Models

Time series Models Models Models
Models
e R 'Y w e — s W
i : rincipa
Irﬁ:t::?e%rﬁ:\ll‘i’: > Linear > Compozent 5| Support Vector
9 9 ”|  Regression : Machine(SVM)
Average(ARIMA) Analysis(PCA)
\ > S J - \ Y,
(- W ~N

(SVD) Network

( Seasonal ) ) [ sinaularValie e Convolution- Graph-Recurrent Graph Recurrent Attention-based Others
.| Autoregressive Ridge . Degomposion | Shailow Neural Recurrent Models Models Models Models
Integrated Moving Regression

\Average(SARIMA)/ \_ g L y
7 @
w w —
»| Vector Auto LASSO -
Regression "l Regression Random Forest 'z Graph Graph Neural i
\ J L ) Convolution Networks(GNN)- Attention-based Auto Encoders
d ~ J Conv-LSTM  |—> Networks(GCN)- Temporal — STGNNs
Intergated Moving L LSTM ) onvolution(TCN ¥
tverage(STARlMA Bayesian K-Nearest p 4
Regression Neighbors ( w Diffusion Feed Forward
Conv-GRU —>| Convolutional Graph-Wavenet Transformers 5 Neural Network
4{ r Recurrent
Bayesian Models W & V) . J
Decision Trees ) _ (Graph Attention ) .| Deep Belief
Gaussian GeeRU GL':.?a Ii:leNi Networks(GATs) il Networks (DBNs)
- Regression \ J With
Logistic - ) _ LSTM/RNNs P
Regression W N Stacked Auto
»  XGBoost Encoder(SAE)
CNN-LSTM Self Attention e )
\ / GANs -
J Generative T
> Adversial
&Networks(GANs)J

Kumar, R., Bhanu, M., Mendes-Moreira, J. and Chandra, J., 2024. Spatio-Temporal Predictive Modeling Techniques for
Different Domains: a Survey. ACM Computing Surveys, 57(2), pp.1-42.
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RINN based models
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Dynamic Graph Transformer for Brain Disorder Diagnosis

ﬁ l l P I GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




RNN Structure

output distribution

g = softmax (Uh(t) 4 b2> c RIVI g4 = P(2®) |the students opened their)

h®) h(1) h(2) h(3) h(él)iU
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>
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hidden states >
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word embeddings
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LSTM Structure

We have a sequence of inputs x(), and we will compute a sequence of hidden states h(") and cell states
c(). On timestep t:

Sigmoid function: all gate

Cell state: erase (“forget”) some

content from last cell state, and write \ é(t) = tanh (Wch(t_l) a5 Ucm(t) I bc)

(“input”) some new cell content

Forget gate: controls what is kept vs values are between 0 and 1
forgotten, from previous cell state \ —
(1) — (¢—1) (¢)
Input gate: controls what parts of the .f W h [Jfm bf <
new cell content are written to cell \ . %D
«ﬂ_g( Mt>+Um®+b) 2
Output gate: controls what parts of GEJ
cell are output to hidden state T~ o(t) —\o ( h(t 1) + U, w(t) + b ) ©
o
New cell content: this is the new > £
content to be written to the cell *g
>
D
q)
Q
V)
()
=
<

c® — £ 5 ot=D) 4 ;® 5 &)

Hidden state: read (“output”) some | | h(t) _ O(t) o tanh c(t)
content from the cell
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Variant of RNN: DilatedRNN

* Key ldea:

Introduce dilated connections in RNNs to efficiently model long-range dependencies without deeper networks.
* Architecture:

At time t, hidden state connects to h;_, instead of h;_4

Use increasing dilations (e.g., 1, 2, 4, 8...) across layers oupt O O O O O O O O 9
Analogous to dilated convolutions in CNNs < - |
* Benefits: ;id?tc?n I__ai/er O O\O‘g O 0O O\‘?
Captures multi-scale temporal patterns )

. L Hidden L
Reduces gradient vanishing D;'la;{;n fyzer Q O 0 O 9O O "¢
Enables faster & more stable training Hidden Layer oY OO
* Applications: Dilation = 1
Long-horizon time series forecasting Input

Memory-intensive tasks (e.g., permuted MNIST, copy task)

S. Chang, Y. Zhang,W. Han, M. Yu, X. Guo,W. Tan, X. Cui, M.Witbrock, M. A. Hasegawa-Johnson, and T. S. Huang,
“Dilated recurrent neural networks,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst. (NIPS), Dec. 2017, pp. 76-86.
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RNN and Attention Mechanism

* Key ldea:
Learn to dynamically attend to both: Important input features (variables); Relevant past time steps
* Architecture:

Encoder with Input Attention * Benefits:

— Selects key features at each time step Handles multivariate time series

Decoder with Temporal Attention mproves interpretability & accuracy

— Focuses on key time steps for prediction ~lexible for long- and short-term forecasting

!
J

ik ol
. - .

J\/ R s els| a2t ®— ol >‘<1—>—“L> ol [ | p! c,_.._%
E"\/\/\/i X——> —>ei—> —>(fti%>®—> G%-xs ' ”‘ . E : \ : "
o A | % Te—s(LsTM] Poe(Temporall |5y | |y b, B — ¢, —.<_ .
: ; : : : : e . . v
E E ~ :h—m : e id_m
A X e o g— i (™) = e | | s
Yt
onnI\(;IrTgtr?e’{'leS attenl’zgrl1J tLayer Softmax l;ltet\i/vmlg F.)tUt Encoder Temporal Softmax Decoder

attention Layer
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RNN and Attention Mechanism

* Key ldea:

Jointly model when and which features matter in multivariate time series via spatiotemporal attention.
* Architecture:

Temporal Attention: Learns importance of time steps for each variable

Spatial Attention: Learns importance of variables at each time step i - 7 A
Generates a context tensor for final prediction -~ LSTM - LST™ )
* Benefits: S HIE -
. . . VAR YJ
Captures complex feature-time interactions S
i - STAM %, 0 —
Produces interpretable attention maps E
Outperforms separate temporal/spatial attention models i sTAM |
- Spatial & Temporal Embeddings )
a ) / )
Spatial Embeddings Temporal Embeddings
; 5 J i h2 hTx
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RNN and Seq2Seq

MQRNN

* Key ldea:
Forecast multiple future time steps (multi-horizon) with quantile regression using an RNN backbone.

* Architecture:

Input: Historical time series + optional covariates

Uses RNN encoder (e.g., LSTM/GRU) to extract context

At each future step, predicts multiple quantiles (e.g., 0.1, 0.5, 0.9)

Forking-sequences strategy: Makes all horizon predictions in one forward pass

* Benefits: @ @ @
Handles uncertainty via quantile output

Efficient multi-step forecasting (vs. recursive methods)
Well-suited for demand forecasting, energy, finance

* Output:

Predicts a distribution range for each future step

(e.g., 10th, 50th, 90th percentile)

Encoder LSTM
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RNN and Seq2Seq

* Key ldea:

Use an attention-based encoder—decoder to forecast multivariate time series by capturing temporal dependencies
and feature interactions.

 Architecture:

Encoder: GRU/LSTM to encode historical multivariate time series ; ¢ h
Decoder: GRU/LSTM with temporal attenton
Attention helps the decoder focus on relevant past time steps Dscade

Outputs forecast for multiple time steps (multi-step prediction) W

* Benefits:  Atention|

Captures both short- and long-term dependencies |

Enhances forecasting accuracy with temporal attention |
Generalizable to various MTS domains JPivtal . S . B ? """"""""" P A Uy

LSTM Cell ——{ LSTMCell i —{ LSTMCell | : | ! Input Gate (it Output Gate (0, )

R — \\/\/\_/1,_/%-"\,/1 AN & Forget Gate

Multivariate A~ AN~~~ —~]-]! tLsTMCellBlock X
gTime Series|— :
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RINN based models

QUNC

MLP

an encoder-decoder architec-
ture can be used for cold- start-
ing Single Target Forecasting
(STF) tasks.

Model Year | Models Applied Notes Contributions

DA-RNN [15] [ 2017 | Attention + LSTM Select the most relevant feature | 1. DA-RNN model was proposed based on a dual-stage attention
variables and hidden states in | mechanism.
the LSTM for both stages of the | 2. Captured long-term dependencies in sequences and select relevant
Attention network. input feature sequences for prediction.

MQRNN [16] [2017 | LSTM + Encoder-Decoder + | A multi-horizon LSTM with | 1. An efficient training approach combined sequence neural net-

works with multi-view prediction.
2. A network substructure was designed to address a previously
overlooked problem: how to interpret known future information.

Dilated RNN
[64]

2017

Dilated connections + RNN

Dilations skip connections by:
1. capturing long-term and
complicated dependencies; 2.
addressing the gradient disap-
pearance and explosion issue.

1. Introduced a new dilated recurrent skip connection as the core
component of the architecture.

2. By incorporating multiple dilated recurrent layers with hier-
archical dilations, the DilatedRNN effectively captured temporal
dependencies across various dimensions and layers.

and wide search capacity).

MTSMEFF [69] | 2020 | LSTM + Encoder-Decoder + | The Attention network selected | 1. A novel time attention-based encoder-decoder model was applied
Attention CNN the hidden states of BILSTM. | to multi-step prediction tasks for multivariate time series.
2. A time attention mechanism was introduced between the encoder
and decoder networks.
STAM [67] 2021 | LSTM + Attention STAM captured relevant vari- | 1. A new STAM architecture introduced a unique method for multi-
ables at each time step. step prediction in the realm of interpretability for multivariate time
series issues.
2. By combining spatial and temporal attention mechanisms in a
unified structure, it enabled an understanding of the impacts of both
time and space.
3. Analysis of STAM complexity offered additional insights to
enrich understanding.
PSO-Bi-LSTM | 2023 | PSO+BI-LSTM Bi-LSTM prediction model | 1. Employed nonlinear change weights to enhance the convergence
[65] was fine-tuned with PSO |speed of the particle swarm algorithm.
(known  for its  quick | 2. Integrated the particle swarm algorithm with the Bi-LSTM algo-
convergence, resilience, | rithm, addressing the limitations of manual parameter selection in

Bi-LSTM.
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CNN based models

LeNet i - : Squeeze and Channel Residual
eiNe Highway Ncts Highway Nets WideResNet Saen Boosted CNN Attention
AlexNet ResNet ResNet Pyramidal Net Competitive HEInglE oLira)
Network
. Squeeze and :
ZfNet |nceptlon- DenseNet Xception Excitation Convolutional
V3.v4 Block Attention
NCE Inception- Inception Eorcurort
ResNet Family Squeeze and
GoogleNet ResNext Excitation

Dynamic Graph Transformer for Brain Disorder Diagnosis
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CNN based models

TCN: Temporal Convolutional Network

* Key ldea:

Use 1D dilated causal convolutions instead of RNNs to model sequential data efficiently and
effectively, with better parallelism and longer effective memory.

Key Features:

*Causal Convolutions: Ensure predictions at time ttt depend only on inputs at or before ttt.

*Dilated Convolutions: Expand receptive field exponentially without deepening the network
(see figure: dilation factors d=1,2,4d=1, 2, 4d=1,2,4).

*Residual Connections: Improve stability and learning in deep convolutional stacks(;0 G G Gy Gy G
Output
Benefits: -4
*Parallelizable: Unlike RNNs, TCNs can be fully parallelized during training. .
. . . : : . Hidden
*Flexible receptive field: Easily covers long-range dependencies with fewer layers.
*Superior performance: Outperforms RNNs/LSTMs on multiple sequence modeW/ =2
audio synthesis, language modeling, and time series forecasting. Hidden
VAVAVAVAVAY/ IR
Input

Xo X1 X2 AXT2XT 1 XT
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CNN based models

HyDCNN (Hybrid Dilated CNN)

Key Idea:

Combine dilated convolutions and VAR models in a hybrid residual framework to effectively capture both
nonlinear local patterns and global temporal dependencies.

Model Highlights:
*Dilated CNN Blocks:
e Capture multi-scale local temporal patterns via expanding receptive fields.

Time Series t-| t t-h
*Hop VAR Module: Ot TP
* Exploits long-range linear dependencies with vector autoregression. | VA | .
*Hybrid Residual Learning: e e Dilated CNN
e Learns residuals from both CNN and VAR branches.
*Weighted Fusion Layer: [ ff:lﬂ?ﬂ] [CNNXG.S ,,,,,, N } AR
. . . . Hybrid _
e Adaptively merges outputs from both CNN and VAR to form the final prediction. module l\/ Sllzis Sl
Wighted |, [ R::riﬁi‘:]a' \.
Benefits: [ - oali ——_——
e Effectively combines nonlinear and linear temporal modeling. ! Loss >

 Robust to time series with mixed patterns (e.g., sharp trends + smooth components).
 OQutperforms traditional CNN, VAR, and RNN baselines on several forecasting benchmarks.
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CNN based models — CNN and Attention

DSANet: Dual Self-Attention for MTS Forecasting

Key Idea:

DSANet introduces a dual self-attention mechanism to model both global and local temporal
dependencies in multivariate time series data, combining convolutional encoders and attention modules
for high interpretability and accuracy.

Model Highlights:

Local Temporal Convolution:

*Captures short-term dependencies via convolution + pooling.

Global Temporal Convolution:

*Captures long-range patterns with broader receptive field.

Self-Attention Module:

*Applied in both paths to capture inter-time-step and inter-feature relationships.
Autoregressive Component (AR):

*Models linear dependencies for stability.

Stack N times

Fusion: l ---------------------
| ) . I | — . Feed l
*Dense layer integrates all components; AR output is added to final result. > Comaution|—— {5 Atenton [ £y Fect
(1, _m 0 Global Temporal Convolution
—> X =X, . )
X by X ) R LSRN e e e .
: P : Output
(M @ o, 2L 2 @2 ) oot N l e l utpu
K—<)< X, X > X >(1'\>(2.. T 1 Convolution Pooling > Attention > Forrard
O OO ® " Local Temporal Gonvolution SeiAnention Modae T
X =(X1’7<2,...,)<T > » AR

Univariate Series
Autoregressive Component
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CNN based models

DSANet: Dual Self-Attention for MTS Forecasting

Key Idea:

SCINet introduces a hierarchical sample-wise interaction mechanism for time series forecasting, decomposing the input sequence into
even and odd components and modeling their sample-level interactions through convolutional structures.

Model Highlights:

SCI-Block (Left):

*Splits the input into odd and even samples.

Learns inter-sample dependencies via a dual convolutional mechanism.

Performs interactive learning between split branches using convolution operators
*Merges outputs via addition/subtraction to form transformed even/odd components.
Hierarchical SCI Module (Middle):

Stacks SCI-Blocks in a tree-like structure to progressively model complex patterns.
*Outputs are concatenated and realigned for further processing.

SCINet Stacking (Right): g
*Multiple SCINet modules are stacked to enhance representation depth. g O el |
‘Uses intermediate concatenation and residual pathways ﬁ\‘ .
to preserve information flow. /\ %

SCI- Block % lsve=r

Concat & Realign

D

Input: X" (X if k=1 )

\__J

. B A
Onput: X Output: X~
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GNN based models

Input: Feature matrix X & RNVXE preprocessed adjacency matrix A
Hidden layer Hidden layer
( ) ( )
o o
o ¢ o ¢
Input ‘o ‘e Output

(" ) - N
° X .
. J ReLU J ReLU
®

o..._’.\\..o_’_’.\'\,.o ’___+o. .

H+D — ( AHa)W(o)
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GNN based models

Dynamic Graph
DMSTGCN - [ Contructor ]
* Key Idea: e -
Learn both dynamic spatial dependencies and multi-granular ------ ;/-’--;/-/;/-’ --------------------- s 1
temporal patterns for accurate traffic speed forecasting. . """"""""" N,
* Architecture: AP f P,‘Mum p—
Dynamic Spatial Graph: Learns time-varying spatial connectivity {[ /" i
using attention-based graph learning i {%{;} - @Utput '—ayeﬂ
Temporal Encoder: Combines: I Q ) O e
Short-term (recent) trends | i e oo Frmaysea) | | pik
Periodic (e.g., daily/weekly) patterns | o feph Gom D{;‘;?&W I
Long-term dependencies @%39“ j [ j 11 comedion
Uses Gated Temporal Convolution + Graph Convolutional Networks T'%R;&JIE?%M&} F'%e;;o:a.ao:gat.‘o;’.
Output: Multi-step traffic speed predictions at multiple locations || . A e |
. Benefits: [P ISR |11 DAY i
Captures non-stationary spatial dynamics K[_[C‘i"vj [CAJJ K&&_][CTJJ .
Models multi-scale temporal behavior e N S— -
Outperforms static GCN-based methods in traffic forecasting - F ef
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GNN based models

AutoSTG
Key Idea:
Automatically discover optimal spatiotemporal graph neural network architectures for time
series forecasting using Neural Architecture Search (NAS).
Architecture:
* Search Space: Encodes design choices for:
Spatial modules (e.g., GCN, attention-based GNN)
Temporal modules (e.g., GRU, TCN, self-attention)
Fusion strategies for combining spatiotemporal features
e Uses Differentiable NAS to efficiently search
* Produces a customized model architecture e )
Benefits: L A Edge meta

Cell ¥ o e knowledge

Data-specific architecture without manual design i/ Moo dlEe]i] | [SCmeml—/® 200 I
Polling| /, | \-— 7} Y — | Adjacency learner
Outperforms handcrafted STGNNs T ‘ il dontiy §| matrioss EIEph
Cell \‘,// Lsc #” Node meta  |knowled
(e.g., STGCN, DCRNN) f v i = ‘I\ wl_ec;ggts knowledgte r}g\;vrﬁe?e
Scalable to large graphs and long horizons | kemeis | (TESe /T O

operations

Cell search sapce

[ "71 T q”out ]
Prediction network
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GNN based models

MTGNN
* Key ldea:

Learn both temporal dynamics and implicit variable dependencies using a graph neural network
(GNN) framework for multivariate time series forecasting.

* Architecture:
1. Graph Learning Module:

Learns a dynamic graph structure between variables (no predefined adjacency matrix needed)

2. Graph Convolution:
Captures spatial (cross-variable) dependencies

3. Gated Temporal Convolution:
Captures temporal dependencies in each variable
Jointly trained for end-to-end forecasting

* Benefits:
Models hidden relationships among variables
Scalable to high-dimensional time series

Noide embeddings

/static features

Residual Connections

Graph Learning Layer

Residual Connections

Residual Connections

A
\ 4

1x1
Conv

Inputs:

TC

Module
(d=a%)

GC
Module

:

TC

Module
(d=al)

GC
Module

L v
.. —b TC

T

GC
Module

Module

:

h J

xeRT

in XN XD

Skip Connections

i

Output Module

Skip Connections

A Tout X
—» Outputs: VER

Skip Connections

N

State-of-the-art performance on benchmarks (traffic, energy, finance)

GILLINGS SCHOOL OF

QUNC

GLOBAL PUBLIC HEALTH




GNN based models

REST

* Key ldea:
Design a reciprocal framework that couples spatial and temporal dependencies bidirectionally

to improve spatiotemporal forecasting.

* Architecture:

1. Spatial Module:

Learns spatial relationships conditioned on temporal information

2. Temporal Module: |
Learns temporal dynamics conditioned on spatial information - S AL GC{'S
3. Reciprocal Learning: : o BTN g @
Both modules refine each other iteratively oo

Reciprocal Spatiotemproal

*

- : : . : FC
Achieves spatiotemporal mutual enhancement during training ; .
. . Freq
* Benefits: | ¥
| MFCC

L 006

@0 ©&

inputs

. . 4
Stronger coupling between space and.tlme fez.;\tures | T e o 0. 0. O,
Captures complex mutual dependencies (vs. simple stacking)  patdlside ——
Boosts accuracy on dynamic forecasting tasks
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GNN based models

TPGNN

* Key ldea:
Model complex temporal dependencies in multivariate time series
by introducing polynomial-based temporal graphs into GNNs.
* Architecture:

Temporal Polynomial Graph (TPG):

. . . @ 1. Polynomial Coefficients Genecrating R e TRGNN Framework )
Each time series variable forms a graph where edges are T _ — o
weighted polynomials of timelag | 7 ] """ ) - —
Graph Convolution on TPG: e E ] Difdefp N

N e e = — empora ention L
Captures both short- and long-term temporal dependencies e e T e || :
exp|ICIt|y L Cyclic Timestamp Embedding Polynomial Coefficientsj E {—B:Cj)é——:;
JOint Lea rn ing: & 2. Propagation with K-order Matrix Polynomial ) \}:\‘ % @) ’_-_Ti(tﬂ'lrk—ﬂ
. . Powers of the Adjacency Matrix
Learns graph structure and forecasting model simultaneously | _————— ] .. —
* BenefitS: ; z.z i ; i ; :'.: i = TPGTModu|e -
Models non-linear time-lag relationships naturally e T PO b e B e
Better captures long-range temporal patterns Jimm i i ; - &
« L. . . L ! e ! ' ' Hidden Feat

Outperforms existing spatiotemporal GNNs on multiple MTS | ‘- S ooopo-- TEESRTORER
b en Ch ma rk S KRepresentations Generated by Multiple Tranformation Matricesj _ X )(('“T")
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Transformer based models

QUNC
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Transformer based models

Scaled Dot-Product Attention mechanism used in Transformers:

d
q
o,
— | W] - Q
d n
CID
Embedding
size
d dq n
«—> dk — dq o B +—>
«—>
b T
sumeer | x [ wi ;;| K ;l QK™ |+
Cd
; —r
d, -
—_— n A
_I WI > vV
D "
dv v
—>
Z
n

ﬂ-’ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




Transformer based models - Autoformer

Design a Transformer specialized for long-term time series forecasting by combining series decomposition and auto-correlation-based attention.
* Series Decomposition:

Decomposes input into trend and seasonality components
 Auto-Correlation Attention:

Focuses on periodic dependencies by aligning similar subseries across time

 Decoder:
Predicts trend directly and reconstructs seasonal part from autocorrelated patterns
Benefits:

* Reduces forecasting error accumulation over long horizons
 More efficient and interpretable than standard self-attention
e State-of-the-art on long-term forecasting benchmarks (ETT, Traffic, Electricity)

( Autoformer Encoder N )?
Time
Encoder Input Series MWV
. ke ) . .
/)| To Prodict Vil cohutor Series | | || Feed Seres Seasonal[ , /.,
alp. Decomp Forward Decomp Part NV TAAS T
4 zero
\_ J
Trend N
-cyclical M ¥ Data
Part Mean
Seasonal Init (- )
N K i i ki Auto- i i
i e s st o ey ur: Auto- Series | v uto- Series Feed Series
vV : Zero QL, Correlation ?b Decpmp dp Correlation ?’ Decpmp g Eotaar % Decpmp
Trend-cyclical Init l (+— Prediction
D M + >t > I
\ Autoformer Decoder M'x
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Transformer based models - Pyraformer

low-complexity Transformer for long-range time series by introducing pyramidal attention to capture hierarchical temporal dependencies efficiently
» Architecture:
 Pyramidal Attention:
Groups time steps into a hierarchical pyramid structure
Computes attention within local groups and across pyramid levels
* Sparse Attention Mechanism:
Reduces complexity from 0 (n?) to O(nlogn)
Models both short-term details and long-term trends effectively
> Benefits:
* Scalable to very long time series
* Efficient memory and computation usage
 OQutperforms Informer and standard Transformer on long-range forecasting tasks

N x Prediction Strategy 1
Positional > '?\Idd - . r7-» Gather — Linear ™ Sutg_u’i_
Enioding Tm .| Features redictions
Observations —» Observation %, Feed :
Embedding I Forward I
A |
—»(+)—» - i
© SEIC N : Prediction Strategy 2
Covariates —» Covariates Rle :_+ Attention — Linear ™™ SUtdpui
Embedding l Decoder redictions
» PAM
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Transformer based models - non-stationary Transformer

Address the challenge that real-world time series are non-stationary (i.e., changing distribution over time) by explicitly
modeling stationary and non-stationary components in Transformers.
» Architecture:

* Decompose input sequences into:
Stationary part: stable trends/patterns

A
Non-stationary part: dynamic changes 4 T‘/
: 4 N\ 4 e De-normalization /%%
* Two attention modules: i A E N e | e £y
Stationary Attention: captures stable dependencies - It | FT : )
. . . oftmax \ e i, ) !
Non-stationary Attention: models shifting patterns $ Forward ; é” 3 L To 8.
. . . . T4 8 I Q : @
 Combine outputs for final prediction - Re;"a'e 3 el e 2
. M Add & Norm % O A =
» Benefits: MatMul _ A JF N — B
C L. : : : T T TAl ) De-stati :
e Better handles distribution shifts over time 5 y " atention | [Embedding] 4
] [ K: ' ,/', i 3 .
 Improved long-term forecasting compared to £ 4 4 &K a X X M. G
P N x e Normalization —
Autoformer and Informer % e e J b
* Adaptable to highly dynamic and irregular time series
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Transformer based models - Informer

> Key ldea:
Improve Transformer efficiency for long sequence time series forecasting using ProbSparse Attention to focus only on
the most relevant query-key pairs.
» Architecture:
* ProbSparse Attention:
Instead of full self-attention O (n?), it selectively attends to top queries with largest impacts
Reduces complexity to O(nlogn)
* Encoder-Decoder Structure:

Encoder compresses long input sequences ‘ Output
Decoder uses generative prediction (one forward pass for multiple steps) 'Concatenated Feature Map' II/I/'/I/l ]' I\I \I\I {]\]\l\'\l\I
> Benefits: = Encoder Fully Connected Layer

 Handles very long sequences efficiently

; y
i i
: :
o . : : | Multi-head ' § \
Fast training and inference c.:ompared to vanilla Transformer | Probsparse E i Nacoder :
* Outperforms RNNs and vanilla Transformer on ' | Self-attention / ! : —— :
] [} L] . ' ¥ '
multivariate long-horizon forecasting : ‘ ! : »I Attention :
: Multi-head | : _ :
: ProbSparse : : I\P/Iasbksed Multi-head :
' Self-attention ‘ ' roReparss :
‘ | ‘ Self-attention |
B = o o o e o e == Mg oo = o= o = = o = P e WP
5 G e e P jojojojojojo]o
inputs: Xen inputs: Xde ={Xoken , Xo }
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Transformer combined models - TFT

Temporal Fusion Transformer

» Key ldea:

Combine high forecasting accuracy with interpretability for multi-horizon time series prediction using a Transformer-
based architecture with feature selection.

» Architecture:

Quantile Forecats { ‘7t+1(0'1) 9t+1(0'5)l7t+1(0'9)“‘ qt+p(0'1) 1:+r(0‘5) ?t+p(0‘9)}

e Static Covariate Encoder:

Learns embeddings for time-invariant features (e.g., location, ID) :;‘iﬁ:fgglon ' prore
* Variable Selection Networks: ——

Dynamically select important features at each time step Temporal Fusion Decoder g ; Extoml
»  Gated Residual Network (GRN): e e el e i B m‘a " Opters)

Enhances representation learning and prevents overfitting 7 Gated Residual Network(GRN)
* Multi-Head Attention: Tempotal = Gt = |

Focuses on temporal relationships for long-term prediction S | E oW
> Benefits: - = e e i ........... S \?\Z'%Crfi@n
* Interpretable: Identifies key time-varying and static features b | 5 Hé
* Flexible: Handles static/dynamic inputs, missing data, siatc

and known future covariates Sncoders Iy LSTM LSTV Sy LSTV gy LSTM

I I
Encoder Encoder v Decoder Decoder

LSTM
Encoder

* Strong performance on a wide range of real-world forecasting tasks

Xt Xt X 4T ax l T l
l ] I J Transformed Inputs Flattened External

static
Metadata

Linear/Embeddin Context
Past Inputs Known Future Inputs ( 9) Inputs (Optional)

Variable Selection Network
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Transformer based models - FEDformer

> Key Ildea:
Forecast long-term time series by combining series decomposition and frequency domain attention to improve accuracy and efficiency.
» Architecture:
* Series Decomposition:
Separates inputs into trend and seasonality components using MOE Decomp (Mixture of Experts Decomposition)
* Frequency Enhanced Attention:
Models seasonal patterns directly in the Fourier frequency domain
* Trend Learning:
Trend component is updated separately at each layer
> Benefits:
 Reduces complexity by frequency-domain processing
 Better long-range forecasting than Autoformer and Informer
* Improved interpretability through decomposition structure :

| !
Encoder | Frequency MOE Feed MOE :
Ly > l i eed [ %)—» :

Input : xl; Enhanced : S!(;f(or Xin )
| |
| |

><o RIXD Block Decomp SE;L Forward Decomp
en €
. FEDformer Encoder J_' ______________________________ i _____
|
1' M X
Seasoal }. F - <h3 (or%xj )
In|t ; > Ere'?uencg MOE V | Ere}?uencg MOE > Feed MOE e : e
iy nhance D 1 Ki’ nhance D 12 - q D J
0 R(I/2+o)xb 1 Xole Block ecomp | s, » Attention ecomp | g2 orwar ecomp :
)(a! & ' |
: 1' L % 12 13 ! Output
| Tde Tde. Toie \
! I
I i ! \
1 I '1J Tal |
Trend Init | de i ) i e
(I/2+0)XD |
XJe € R |

| FEDformer Decoder 1
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Complexity analysis of transformer-based models

Training Testing
Model Time Memory | (steps needed)
Transformer [40]| O(L?) O(L?) L

Informer [23] | O(Llog L) | O(Llog L)
Autoformer [24] | O(Llog L) | O(L log L)
Pyraformer [25] O(L) O(L)
Fedformer [26)] O(L) O(L)
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Effectiveness of Transformers in TS Forecasting

» Key Points:
* Challenge to Transformers:
A simple linear model was shown to outperform complex Transformers on forecasting tasks.
* MTS-Mixers:
Inspired by vision mixers, replaces Transformer attention with full connections across time and
channel dimensions.
Achieves better performance by learning on sub-sequences.
 TiDE:
A fully MLP-based model (no attention, no RNNs, no CNNs).
Reached state-of-the-art results across multiple datasets, outperforming Transformers again.
> Insight:
 Recent work shows simple architectures (e.g., MLPs, mixers) can match or even surpass Transformers for
time series forecasting.
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Limitations

* Thereis no free lunch

e Prior literature mostly concentrated on solving specific tasks

ST Dataset

Feature Engineering + ML
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Roadmap of L1LMs

e | LMs and Foundation Models
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Roadmap of LLMs

e | LMs and Foundation Models
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BiRARR
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" InstructGPT the field of TS research is undergoing an
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Towards General Intelligence for TS

 LLMs can be either trained or adeptly repurposed to handle TS data for a range
of general-purpose tasks and specialized domain applications.

——————————————————————————

General Purposes

A
1 £
\ o ' | ] l"

Forecasting  Classification

Time Series Data

jz \ - :
) >< te : % .
" | h].u_ll >

i ! : Anomaly

Spatio-Temporal Data Training R~ ' Imputation Setection
/ ... !
& & ©O0 XY | T & @ ceeeesmeeee-- R
ts Repurposing Language & Other Domam-Spec{uF ¢ Applications
f.’f - '”;\ Foundation Models

=

Ei:

Pt péhy : Urban Video
i | Computing Reasoning
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LLI.LM for Time Series

________ Mulnple laskee = =~ = = DivoiseDomaine. =

’/ \\ {/ \\

L X ($) Em— i

| =5 127 l

1l ] :

3_. ' Forecasting Classification Interpolation, | EEG Finance Table ECC |

| | | |

1’ : : : oIe i

R W 0 SIR |

M | Y omoll
|

\_’: Anomaly Text Time Series| , -

. Detection Generation Generation , | Audio loT RObOt'CS/'

Large language models for various time series tasks in diverse application domains.
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Roadmap of Time Series Analysis

A Universal Task
Domain-agnostic Solvers
Task-agnostic Task Solvers TimeLLM, UniTime, UniST
Task-specific Pattern Machine TimeCLR, STGCL LLMs as domain expert models

Acsi Pre-training + Fine-tuning Solve complex real-world analytical
ssistant CNNs, RNNs, GNNs, STGNNs Learn domain- and task-agnostic tasks involving data

ARIMA, SVM, PGM, MF Learn domain-specific but task- TS knowledge and patterns

Extract interested spatio-temporal agnostic TS knowledge Solve various tasks LLM-Centric Models

patterns in specific scenarios Solve typical tasks .
Pre-trained Models

Assist in specific tasks

Deep Neural Networks

Task-solving Ability

1950 — 2000s 2010s 2022 2024
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Forecasting: Time-LLM [49], OFA [48],

PromptCast [57], TEMPO [104], TEST [105],
Taxonomy (Oct. 2023) Emmm|iin b
[

—(Other Tasks: OFA [48], TEST [105]}

Series Data

LLMs for Time ]_ —(Transportation: AuxMobLCast [108]}

Instruct-FinGPT [111], Lopez-Lira et al. [68]

Finance: Yu et al. [109], Xie et al. [110], ]

—[Domain-Speciﬁc J—

—[Event Prediction: LAMP [112]}

Large Models for _rHealthcare: Liu ef al. [113], NYUTron [58],
Time Series Data GatorTron [59], METS [114]
(Sec. 4) =

[Forecasting: MTSMAE [115], STEP [39], PatchTST [116],
TSMixer [117], TS2Vec [118], SImMTM [38]

—[General-Purpose }_Elassiﬁcation: Voice2Series [56], TE-C [37],
CLUDA [119], TS2Vec [118], SimMTM [38]

PFMs for Time ]_

Series Data —[Other Tasks: TS2Vec [118], SimMTM [38]]

—{Domain—Speciﬁc }—[Event Prediction: PromptTPP [120] )

Large Models for : =
Time Series and e —(Achon Recognition: LA-GCN [121] }
Spatio-Temporal Data Graphs

A —(Finance: Chen et al. [122]]

rTemporal ) —(Complehon: PPT [123], Chen et al. [124]}

LLMs for Spatio- | ["|Knowledge Graphs |
Temporal Data " :

— Forecasting: Lee ef al. [125]]

JrCaptioning: Vid2Seq [126]]

: Video Q&A: FrozenBiLM [127], R2A [128],
—{Vldeo Data }“ VideoChat [129], MovieChat [130], CaKE-LM [131],

Large Models for

Spatio-Temporal | [Other Tasks: VidIL [132], VideoLLM [133], Valley [53],
Data (Sec. 5) Video-LLaMA [134], LAVILA [54], LAVENDER [135]

rClimate: FourCastNet [136], MetePFL [137], FedWing [138],
Spatio-Temporal ClimaX [51], FengWu [139], Pangu-Weather [140], W-MAE [141]

Graphs
_[PFMs for Spatio- E Transportation: CPPBTR [142], TrafficBERT [143], TFEM [52] )

Temporal Data

Video Data mPLUG-video [145], PAXION [146]

Multiple tasks: mPLUG-2 [55], OmniVL [144], ]

ﬂ—’ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH



General: Time-LLM [46], OFA [110], LLM4TS [12], PromptCast [95],
TEMPO [11], LLMTime [35], Voice2Series [98], AutoTimes [59]

/ I ! : ! : ! Pre-trained
aX O n O my (F e b O 4) LLM, AM, VLM Finance: Yu et al. [102], Chen et al. [18], Xie et al. [94], Wimmer et al. [90]]
®

Healthcare: Liu et al. [58] ]

General: PatchTST [65], Moirai [91], Lag-Llama [73],
—[Generative TimeSiam [24], Timer [60], Das et al. [22], UniTS [33],
TimeGPT-1 [34], Chronos [1], MTSMAE [81]

"

—(Tmnsformer-based }

: General: TEST [80], TimeCLR [101] ]
-{Self-sup Ehved ]— -[Contrastive z
Healthcare: METS [50]
-[Hybrid ]—{General: SimMTM [25] ]
-&’ully-supervised ]—[General: TimeXer [86], UniTS [33] ]
Standard Time Series
—( } Generative HGeneral: TSMixer [30] ]
Self-supervised
non-Transformer-based Contrastive }—[General: TF-C [108] , TS2Vec [104] , CLUDA [66] ]
(MLP RNN CNN)
Fully-supervised ]—[General: TTMs [31], TimesNet [92], RWKV-TS [39] ]
General: TimeGrad [74] , D*VAE [52] , TransFusion [79] , ScoreGrad [97] ,
Bilo$ et al. [6] , Crabbé et al. [21] , TimeDiff [77] , Wang et al. [85] , Diff Time [20]
{Diffusion-based I
-[Finance: FTS-Diffusion [42] ]
—(Pre—trained LLM H‘I‘ransportation: ST-LLM [55] ]
Transportation: STEP [76] ]
-{Self-supervised HGenerative
—{Tmnsformer—based ]J Climate: W-MAE [61], MetePFL [14], ]
[Foun dation Model s]- FengWu [13], ClimaX (randomize forecast) [64]
for Time Series Transportation: CPPBTR [29] , TFM [84] ]
e : —{Fully-supervised
—(Spahal Time Series } Climate: FourCastNet [67] , FedWing [15] , Pangu-Weather [4] ]
non-Transformer-based 3
(MLP RNN CNN) }—[Self-supervxsed ]—[General. SPGCL [51] , STGCL [57] ]
—{Ditfusion-based HGeneral: DiffSTG [88] , DSTPP [103] , DYffusion [10] , Yun et al. [105] , USTD [41] , PriSTI [56] ]
Mobility: AuxMobLCast [96] , LLM-Mob [83] ]
Pre-trained LLM
Event: LAMP [78] , Gunjal & Durrett et al. [37] ]
—(Tmnsformer-based 5
Mobility: GTM [53]
Self-supervised ]—[Generative =
Event: NYUTron [44] , GatorTron [99]
_(0 e } Generative HMoblhty: Trembr [32]
non-Transformer-based - = =
_[(MLP RNN CNN) }—(Self-supervxsed Contrastive ]—[Moblhty. MMTEC [54] |
Hybrid }—{Mobility: START [43] i
-{Diﬁ'usion-based HMobility: TrajGDM [19] , Diff Traj [112] )
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LLI.LM for Time Series

2022 2023 2024
Typical LLM Pipeline | | Text — Token ID — Embedding — LLM — Outputs
Prompting | | ®e — Token ID — Embedding — LLM — Outputs ;i GromptCasD 2 BIoomBergGPb Q (LLM-Mob LLMTime
| (Billion
Quantization TS — Token ID — Embedding — LLM — Outputgl \\"a_r:'—:l_“,: G Auto-TTE g@ \ AudioPaL@ GreqTS'D TOTEM @2 \

o e —owd] Gm)  S(ew) (@@ @) @)
\

Aligning Text — LLM*~ ! I !

N TS - Embedding — LLM — Outputs @Gext-to-EEG) GPT4TS Qa@ (LLM4TS) Gime-LL@ (TEMPCD Lag-LLaMA ) O(SALMOON
| ! |

Vision TS - Embedding — VLM — Outputs IMU2CLIP )&} (CLIP-LSTM @UGPDGmageBin@GandaGPD GnyMAD@Sight MineD

Tool Text — Token ID — Embedding — LLM — Tool ~— Ts Q (CTG++) (ToolLLM) 12 (SCRL-LG GG-LLM

LLM for Time Series

* Left: Taxonomy of LLMs for time series analysis (prompting, quantization, aligning which is further categorized into two groups as
detailed in Figure 4, vision as bridge, tool integration). For each category, key distinctions are drawn in comparison to the standard
LLM pipeline shown at the top of the figure.

* Right: We present representative works for each category, sorted by their publication dates. The use of arrows indicates that later
works build upon earlier studies. Dark(light)-colored boxes represent billion(million)-parameter models. Icons to the left of the text
boxes represent the application domains of domain-specific models, with icons” meanings illustrated in Figure 1.
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LLM for Time Series - Prompting

* Number-Agnostic Tokenization: The method treats numerical time series as raw textual data and directly prompts existing LLMs.

Table 1: Examples of representative direct prompting methods.

Method Example

“From {t1} to {tobs +, the average temperature of region {U,,, } was {z}"*} degree on each day. What is the
PromptCast [Xue and Salim, 2022] {1} 10 {tobs 8 P gion {Un } "} deg y

temperature going to be on {tobs }?”

“Classify the following accelerometer data in meters per second squared as either walking or running:
0.052,0.052,0.052,0.051,0.052,0.055,0.051,0.056,0.06,0.064™

“The person is 42 years old and has a Master’s degree. She gained $594. Does this person earn more than

50000 dollars? Yes or no? Answer:”

LLMTime [Gruver et al., 2023] | “0.123,1.23,12.3, 123.0" =+ *“12,123,1230,12300”

Liu et al. [2023d]

TabLLM [Hegselmann et al., 2023]
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LLM for Time Series - Prompting

 Number-Specific Tokenization:
Key Points:
* Problem with BPE Tokenization:
Standard Byte Pair Encoding (BPE) breaks numbers inconsistently, complicating numerical reasoning [Gruver et al.,
2023; Spathis and Kawsar, 2023].
e Solutions:
Insert spaces between digits to tokenize each digit distinctly (following LLaMA, PaLM).
Use commas to separate time steps.
Scale and fix precision (e.g., 2 decimal places) to optimize context length.
* Applications:
BloombergGPT: Digit-level chunking improves financial text and number modeling.
Mirchandani et al. (2023): Space-prefixed tokenization allows LLMs to perform sequence transformation, completion,
and improvement tasks effectively.

Insight:
Proper number-specific tokenization significantly improves LLMs’ ability to handle time series and numerical data.
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LLM for Time Series - Quantization

Two Types of Index-Based Quantization Methods for Time Series
(a) VOQ-VAE Based Quantization:
Time Series Encoder generates embeddings.

Embeddings are mapped to the closest codebook vectors via vector \ o 1 D - g, A
. . = o o N R e s 4l = @
quantization. p > %g e — g o é e %g _,,P
. . . . T
Indices representing the codebook entries are used for decoding. E 0 K EQ
V V [E K~ - J V

Enables efficient reconstruction through the Time Series Decoder. Embedding L oK
(b) K-Means Based Quantization:

Feature Extraction generates embeddings.

Embeddings are clustered using K-Means to assign cluster indices.
Indices are used for further masking encoding and downstream tasks.
Simplifies representation without full reconstruction.

(a) VQ-VAE based quantization method.

1——D——p-

I
I
I
I
+ /J\\ *

Feature
Extraction

= W=N
jh-
?
Masking
Encoding

Embedding  K-Means

—

Insight: (b) K-Means based quantization method.
Both methods compress time series into discrete indices for efficient

modeling, but VQ-VAE focuses on reconstruction, while K-Means targets
feature encoding and masking for downstream learning.
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LLM for Time Series - Aligning

Two Types of Aligning-Based Methods for Time Series and LLMs

(a) Aligning by Similarity Matching (Type 1): @
Time series and text are separately encoded into embeddings. R Similarity e

C e . . . . . . . —> o —> —> - g b -
Similarity matching is used to align time series embeddings with LLM (text) / E 5 Matching Q =
embeddings. < {E]é‘LuvD

No joint decoding; mainly used for retrieval or classification tasks.

(b) Aligning with LLMs as Backbones (Type 2): (a) Aligning by similarity matching (Type one).

Time series and text embeddings are both fed into a shared LLM encoder- [\[L_» 3§ . Serios

decoder. g o % % Pl oLﬁLi f\[\

The model can generate either time series outputs (e.g., forecasting) or £ o = ~ ~

text outputs (e.g., EEG-to-text) depending on the task. — ( . vt
Prompts = @:SLLM

Enables flexible sequence-to-sequence generation.
| In sight: (b) Aligning with large language models as backbones (Type
two), where the output could be time series (e.g., forecasting)
or text (e.g., EEG-to-text) depending on the downstream tasks.

Type 1: Independent encoding + similarity alighment.
Type 2: Joint encoding + versatile output generation using LLMs.
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LLM for Time Series - Aligning

Aligning Time Series with Language Models
Key Idea:

 Train a separate encoder for time series, then align it with the semantic space of language models using various strategies.

Two Main Approaches:
1. Similarity Matching
* Contrastive Loss: Align time series and text embeddings via similarity (e.g., ECG €<= reports, sensor <> clinical notes).
Examples: ETP, TEST, TENT, JoLT, Q-Former
 Other Losses: Use Optimal Transport, Canonical Correlation, Wasserstein distance for alignment.
Examples: ECG-LLM, MTAM
2. LLMs as Backbones
 Feed time series embeddings into pre-trained LLMs (e.g., GPT, BART, LLaMA).
Examples:
EEG-to-Text
GPTATS, LLMATS, GATGPT, Time-LLM
Lag-LLaMA for probabilistic forecasting
WavPrompt, Speech LLaMA, MU-LLAMA, SALMONN for audio/music
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LLM for Time Series - Vision as a Bridge

Vision as a Bridge: Linking Time Series with LLMs
Key Idea:

* Visual representations of time series (e.g., plots, IMU motion, paired images) act as an intermediate modality to align time
series with large language models (LLMs).

Three Main Approaches:

1. Paired Data & Joint Embedding

* ImageBind, PandaGPT: Align multiple modalities (image, text, IMU, etc.) via paired data
IMU2CLIP, AnyMAL: Project IMU time series into CLIP or LLaMA embedding space
Physics-Based Alignment

IMUGPT: Generates human motion from text and derives IMU signals based on motion physics
Time Series Plots as Images

CLIP-LSTM: Converts price charts into images and uses CLIP for forecasting

Insight Miner: Feeds line plots of time series into LLaVA for generating textual trend descriptions

[ w [ ND [
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LLILM for Time Series - Tools

Tool: Using LLMs Indirectly for Time Series Tasks
Key Idea:

* |nstead of processing time series directly, LLMs are used to generate indirect tools—like code, APls, or feature selectors—to
assist downstream time series applications.

Three Main Tool Types:

1. Code Generation

e CTG++: Uses GPT-4 to turn text instructions into differentiable loss functions for traffic diffusion modeling.

2. APl Frameworks

* ToolLLM: Provides a tool-based pipeline (data - model - evaluation) using LLM-generated API calls for tasks like weather
and stock prediction.

3. Text Domain Knowledge

« SHARE: Augments human activity labels via GPT-4 to maintain semantic structure.

e GG-LLM: Encodes commonsense patterns (e.g., human actions) using LLaMA-2.

 SCRL-LG: Uses LLaMA-7B to extract features from news headlines for reinforcement learning in financial forecasting.
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LILM for Time Series - Summary

Table: Summary of five major categories of applying LLMs for time series analysis

Method Subcategory Representative Works Equations Advantages Limitations
, Number-Agnostic | PromptCast [ Xue and Salim, 2022] easy to implement; |lose semantics;
Prompting y = fo(Xs,%¢)
Number-Specific LLMTime [Gruver et al., 2023] zero-shot capability | not efficient
VQ-VAE DeWave [Duan et al., 2023] ki = argmin; ||gs(xs): — ¢jl|2 flexibility of may require
o T
Quantization K-Means AudiolLM [Borsos et al., 2023] k = k]2, y = fo(k,x¢) index and time two-stage
Text Categories TDML [Yu et al., 2023] y = fo(q(xs),x¢t) series conversion training
L ETP [Liu et al., 2023a] Y = go(Xs) align semantics of | complicated
o Similarity Match
Aligning MATM [Han et al., 2022] L = sim(gs(Xs), fo(x¢)) different modalities; | design and
LLM Backbone GPT4TS [Zhou et al., 2023a] v = fo(ges(Xs), Xt) end-to-end training | fine-tuning
Vision as Paired Data ImageBind [Girdhar ef al., 2023] L = sim(ge(Xs), hqy(Xv)) additional visual not hold
Bridge | TS Plots as Images | Wimmer and Rekabsaz [2023] y = hqy(Xs) knowledge for all data
Tool Code CTG++ [Zhong et al., 2023] 2 = fo(x+) empower LLM optimization
00
API ToolLLM [Qin et al., 2023] y = 2(Xs) with more abilities | not end-to-end
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LIM for Time Series - Multimodal Datasets

\ Internet of Things (IoT):

* EgodD, Ego-Exo4D, DeepSQA

* Paired IMU time series + textual activity descriptions

* Used for human activity recognition and instruction following
@ Finance:

* PIXIU, MoAT

* Align time series (e.g., stock, fuel) with financial news

 Used for forecasting and financial NLP tasks

% Healthcare:

e Zuco, PTB-XL, ECG-QA

* Eye-tracking, EEG, and ECG paired with reports, labels, or questions
e Supports clinical NLP and diagnostics

u Audio / Music / Speech:

* AudioSet, OpenAQA-5M, MusicCaps, Libri-Light, Voice

* Rich collections of speech/music time series with text or labels
* Enables captioning, translation, QA
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LIM for Time Series - Multimodal Datasets

Domain Dataset Size Major Modalities Task
Internet of Things Eg()ﬁlD2 [Grauman et al., 2022] 3, 670h data, 3.85M narrations text, IMU, video, audio, 3D classification, forecasting
DeepSQA’ [Xing ef al., 2021] 25h data, 91K questions text, imu classification, question answering
Finance PIX1U? | Xie et al., 2023b] 136K 1nstruction data text, tables 5 NLP tasks, forecasting
MoAT? [Lee et al., 2023] 6 datasets, 2K timesteps in total text, time series forecasting
Zuco 2.0° |Hollenstein et al., 2019] 739 sentences text, eye-tracking, EEG classification, text generation
Healthcare PTB-XL' [Wagner et al., 2020] 60h data, 71 unique statements text, ECG classification
ECG-QA® [Oh et al., 2023] 70 question templates text, ECG classification, question answering
Audio OpenAQA-5M° [Gong et al., 2023] | 5.6M (audio, question, answer) tuples text, audio tagging, classification
Music MusicCaps' [Agostinelli ef al., 2023] 5.5K music clips text, music captioning, generation
Speech CommonVoice'' [Ardila ez al., 2019] | 7,335 speech hours in 60 languages text, speech ASR, translation
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LLM for Time Series - Challenges

1. Theoretical Understanding

* Current research is empirically successful, but lacks theoretical grounding.

 Works like LIFT and GPTA4TS suggest links between LLM representations and PCA, and hint at universal function
approximation by Transformers.

* Future need: clarify how LLMs interpret numerical time series.

2. Multimodal & Multitask Analysis

 Most current LLM models focus on single task + modality.

* Inspired by UnifiedlO and UniAudio, more work is needed to build multitask, multimodal time series foundation models.

3. Efficient Algorithms

* Long and multivariate time series = high complexity for LLMs.

 While patching helps, it may hurt interpretability.

 Future work: efficient designs for scalable and user-friendly LLM-based time series systemes.

4. Combining Domain Knowledge

* Infusing domain-specific methods (e.g., decomposition, wavelet, autocorrelation) into LLM pipelines (e.g., TEMPO, FreqTST)
improves performance.
Future potential in hybrid modeling.

5. Customization & Privacy

* Global models # optimal for personalized or private clinical/home data.

 FedAlign uses federated learning + natural language anchors for privacy-preserving alignment.

* Future direction: custom LLMs for individuals and secure learning frameworks.
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LLM for TS Typical Applications

What Can Large Language Models Tell Us about Time Series Analysis?

* Our standpoint is that LLMs can serve as the central hub for understanding and
advancing time series analysis in three principal ways

e LLM-as-Enhancers: augmenting TS data and existing approaches with enhanced
external knowledge and analytical prowess

e L[LM-as-Predictors: utilizing their extensive internal knowledge and emerging reasoning
abilities to benefit a range of downstream tasks, e.g., forecasting

e L[LM-as-Agents: transcending conventional roles to actively engage in and transform
time series analysis
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LLI1.M-as-Enhancer

» Our standpoint is that LLMs can serve as the central hub for understanding and
advancing time series analysis in three principal ways

* LLM-as-Enhancers: augmenting TS data and existing approaches with enhanced
external knowledge and analytical prowess

« LLM-as-Predictors: utilizing their extensive internal knowledge and emerging reasoning
abilities to benefit a range of downstream tasks, e.g., forecasting

- LLM-as-Agents: transcending conventional roles to actively engage in and transform
time series analysis
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LLI1.M-as-Enhancer

 Data-centric enhancer * Model-centric enhancer
R 4 N N 4 N
~_ > TS ~_ M » TS
Data Model ) Data Model

/ ~ @~ o )

External
Knowledge

External
Knowledge

{LLM J {LLMJ

ﬂ—’ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




Data-Centric Enhancer

e [t enhances data interpretability or provide supplementary improvements,
facilitating a more thorough understanding and effective use of TS data

e Examples > (g
e LLM for finance 73 Data Model

e LLM-MPE for human mobility

External
Knowledge
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Example: LLM for Finance

* This study focuses on NASDAQ-100 stock price prediction, supplemented by
metadata about the stock company and relevant financial news data

Prompt: Generate a short description for stock AAPL’ s company. Also list general positive and negative factors that might
impact the stock price; be brief and use keywords. Consider diverse general factors, such as macro economic situation (e.g.
inflation, CPI growth), business factors (e.g. sales, investment, products), technology factors (e.g. innovation), and others. Use
format Description: ..., Positive Factors: ..., Negatiye factors: ...

GPT-4 Response:

Description:

AAPL (Apple Inc.) is a world-renowned technology company based in Cupertino, California. Known for its sleek designs and innovative
technologies, the company produces a wide range of products including the iPhone, iPad, Mac, Apple Watch, and services like iCloud, App Store,
and more.

Positive Factors:

Macroeconomic: Economic growth, increased consumer spending

Business: Strong sales, expansion into new markets, positive earnings reports, strategic acquisitions
Technology: Innovation, new product launches, advancements in artificial intelligence and augmented reality
Brand: Strong global brand, loyal customer base

Legal/Regulatory: Favorable policy changes, successful patent applications

Negative Factors: ) .
Macroeconomic: Inflation, economic downturn, trade restrictions A N exam p I e Of a stoc k Scom pa ny p rOfI Ie
Business: Decreased sales, poor earnings reports, lack of new investments o 4 . .
Technology: Slow pace of innovation, delays in product launches consl St N g Of t h e com pa ny d eScCri pt| on

Brand: Damage to brand reputation, loss of customer loyalty
Legal/Regulatory: Antitrust investigations, unfavorable policy changes, patent disputes
Environmental: Failure to meet sustainability goals, negative environmental impact
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Example: LLM-MPE for Human Mobility

» While rich textual descriptions about public events are commonly available from
online sources, it is challenging to encode such information in ML models

e Th ey introduce LLM-MPE for human mobil |ty [ EvewFewcFormang i "~ Mobility Feature

e D = N Decomposition

i Website Data Website Data Website Data i e A

: . ey 2 ¢ s oo N S 1 [ Historical Demand Data
JT!(IC] xxx [Description] xxx [Tatle] xxx [Description] xxx \[Txllc] xxx [Description] xxx ) : T /

Demand Decomposition | |
i

<

' Daily Commutes

i | Historical Average (HA)
i

prediction under public events based on LLMs | — j

- : : g N
! | Prompt: Summarize event information given the | /|
1 "D . '
i | original messy information extracted from web page... \L/

* leveraging their unprecedented ability to process | @ o = e e ||

vas ]
i | [Summary] xxx [Summary] xxx [Summary] xxx Change compared to HA i
. . - R

textual data, learn from minimal examples, and e

Large Language Model

i Human Mobility Prediction i
| ]
' E t=T=1 =T =2 t t+1 ;
generale numan-readanlie explanalions : [ | | N | i
! Event Summary Event Summary Event Summary Event Summary i
i || Event 1: [Time] xxx Event 1: [Time] xxx Event 1: [Time] xxx Event 1: [Time] xxx -
i [Category] xxx [Summary] xxx [Category] xxx [Summary] xxx [Category] xxx [Summary] xxx [Category] xxx [Summary] xxx ||}
1

Al Xee ]
i Event k: [Time] xxx Event k: [Time] xxx || Event k: [Time] xxx Event k: [Time] xxx i
' \[Calcgory] XXX [Summary] xxx ) iCalcgor_v] XXX [Summary] xxx ) \[Category] XXX [Summary] xxx ) iCatcgory] Xxx [Summary] xxx > E
| ]
s alila Bl |6 N | 1
i Demand Pattern Demand Pattern Demand Pattern Demand Pattern i
! || HA demand: xxx HA demand: xxx HA demand: xxx ) ) i
11| Change compared to HA: xxx Change compared to HA: xxx Change compared to HA: xxx SHIAnC. KX '
E \Actual demand: xxx ) \Actual demand: xxx ) kAcmal demand: xxx vl . ) E
i T T T T i
] 1
i . ; . T N\ '
1 | Prompt: Predict the next day’s pickup and dropoff demand in the vicinity of an Jan i
i _event venue. To make this prediction, utilize the following information... L/ Largelanguspe Mod:t E
i T -
:‘\l Answer: [Predicted Pickup] xxx [Predicted Dropoff] xxx [Reasons] xxx ] ,:

------------------------------------------------------------------------------------------------------------
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Model-Centric Enhancer

* Model-based enhancers aim to augment TS models by addressing their
limitations in external knowledge and domain-specific contexts.

 Transferring knowledge from LLMs boosts the performance of domain
models in handling complex tasks

Y 4 N
* Examples Data [ | Model

 STLLM: LLM for spatio-temporal forecasting
» UrbanCLIP: LLM for urban region profiling
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Example: STLLM

Using a spatio-temporal knowledge alignment paradigm to maximize mutual information
between LLM-based knowledge representations and GNN-based structural embeddings,
ensuring effective alignment and information preservation across different views

Spatio-temporal Prompts Summarizations of ChatGPT-3.5

< r_10_11_s is an important centric region with various facilities such as social facilities, schools, theaters,

< Regionr_10_11 . 3 ; v S
glonr_"0_"._s post offices, places of worship, bicycle parking, drinking water points, banks, ATMs, fast food restaurants,

q x:;e ik e cafes, restaurants, pharmacies, post boxes, ice cream shops, waste baskets, community centers, bars,
: 2 The r.éj a;;'2364;195 dentists, benches, libraries, shelters, public bookcases, and bicycle rental and charging stations.
i e T i | N S R o A e e e
cAdd 42 = T % It is located at a distance of approximately 2364.20 units from r_144_12 s. It is also connected to
- T - r_10_14_s, which shares similar facilities.
- % r_147_12 is a centric region that has traffic flows to multiple connected regions, including r_9_13,r_8_13,
¢ Region r_147_12 & r_120_13,and r_119_13.
% Toilets, school, social E R i O e i rete e v e e s L T R e e e Ve e e e e R e sy
r —
i facility,... - O« It has the highest traffic flow to r_9_13 on Tuesday with 5 flows. On Wednesday, it has 5 traffic flows to
% There are 5 traffic flow from r_9_13, 14 traffic flows to r_8_13, 2 traffic flows to r_120_13, and 2 traffic flows tor_119_13.
e s el el e S A S el S e e R S e e
Tuesday 4- This suggests that r_147_12 is an important region in terms of traffic connections to other regions.

" ’ »,— Linfonce e L z l“o_

- [O@00 00®0, £ 0 i %"

Temporal text »@ /T\ m ‘ .\‘O< E :O

' I ERNGY L. O
O

/ _‘— )O_ )O / Lw Temporal l I l
Spatial text ~ The set of POls .

Spatial-Temporal Graph G Spatial-Temporal Prompt LLM Vectors  Spatial-Temporal Alignment via CL loss Graph Neural Networks
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Example: UrbanCLIP

Urban Contrastive Language-Image Pre-training (UrbanCLIP) is the first framework that
integrates the knowledge of text modality into urban region profiling

(d) Our UrbanCLIP Framework
(Spatial Modality + Textual Modality)

Model | B

Definition 7

This region is featured by a park
surrounded by a mix of residential

[ Mc:del }—' Outputs

& Economlcs L e E

Input: location coordinates | Mode 2 | E E Y " S I E
é(51 4767,7.2166) —_— = E E OM E

] Model N Demographics ! ! [ Fine-tuning J :

l _— Indicators | | : i
JCJO Task-Specific Data Sources L - Prompt :

[ Rasterizer ] ____________________________________ : : - ﬂ !
____________________________________ : - 1 [ Contrastive Pre-trained :

(b) Self-supervised Learning E E Enviromnent‘ﬁ @ | _Pre training LIME) E

' ' Indicators R :

(W1th only Spatial Modality) o g dditional data : :

— : - i 0 ' |Refine |

‘; g Lo R - ﬁ_ NP | |

o o oo Sy Traffic v |

E . Climate

Mobili POIs Road Net Indicators ! E High-Quality Description
obility S oad Ne =1 ’.. E : Q 1 P

Output: Semantic embeddi and commercial buildings, and 1is
' " Step 1: Step 2: Step 3: Indicators \ bustling with activity, as numerous
1.38 | 7.58 |-0.13|-0.11/0.22 | .. |037 235 0.23|047 0.3 Pre-training ~ Fine-tuning  Evaluation cars are driving on the streets.
____________________________________ ! P e s e e e T A e M A L g e |
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LLI1.M-as-Predictor

» Our standpoint is that LLMs can serve as the central hub for understanding and
advancing time series analysis in three principal ways

» LLM-as-Enhancers: augmenting TS data and existing approaches with enhanced
external knowledge and analytical prowess

- LLM-as-Predictors: utilizing their extensive internal knowledge and emerging reasoning
abilities to benefit a range of downstream tasks, e.g., forecasting

» LLM-as-Agents: transcending conventional roles to actively engage in and transform
time series analysis
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LLI1.M-as-Predictor

0 E

@ Language

- m
;g; White-box LLMSs % Black-box LLMs

Optlonf
Customized Prompt
M M Tokenizer Engineering
Transform 1 1
s i @ g — fF
Time Series Related Text Time Series Instruction Text
(a) Tuning-Based (b) Non-Tuning-Based
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Tuning-based LLLM Predictors

* Tuning-based predictors use accessible LLM parameters, typically
iInvolving patching and tokenizing numerical signals and related text

data, followed by fine-tuning for TS data A
» Examples “

 GPT4TS for time series analysis

9 White-box LLMs

* Time-LLM for time series analysis Yotion 1

Transform

S ?r . lh_'h,
u emen —
uppiement (Bl

Time Series Related Text
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GPT4TS for Time Series Analysis
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Time-LLM for Time Series Analysis

» Key question: How to enable LLMs to understand time series?

____________ e | . |
¥ [Py g
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! A . @W‘\ Output Projection ] | A |
| : 11 | Feed Forward |
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| Output Patch | | A }
| Embeddings | ?'% Pre-trained LLM : Multi-Head :
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| 1 |
,_______________________t_l _____________________ e Jl Input Embeddings |
' ~ el s e s s J
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Contribution 1: Patch Reprogramming

* This module aims to reprogram time series features using pre-trained
word embeddings in the backbone

———— —————— —— — ————— — —
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Contribution 2: Prompt-as-Prefix

e Dataset context furnishes LLM with essential background information concerning the input time series
e Taskinstruction serves as a crucial guide in the transformation of patch embeddings for specific tasks

e We also enrich with additional crucial statistics, such as trends and lags, to facilitate pattern recognition
and reasoning

s — v — — — — ——— — — — —— — — — — —

Ii= P i
1 Forecasts P Output Embeddings

|
ﬁ' he Electricity Transformer Temperature (ETT) indicates the \ i /\f'\'/\ 5
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i i

| |

@[A Output Projection ]
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|
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Results on Long-Term Forecasting

Table 1: Long-term forecasting results. We use forecasting horizons H € {96, 192, 336, 720}. A lower value
indicates better performance. Red: the best, Blue: the second best.

GPT4TS
MSE MAE
0.376 0.397

Reformer
MSE MAE
0.837 0.728

Informer
MSE MAE
0.865 0.713

ETSformer
MSE MAE
0.494 0479

TIME-LLM
MSE MAE
0.362 0.392

PatchTST
MSE MAE
0.370 0.399

FEDformer
MSE MAE
0.376 0419

Autoformer
MSE MAE
0.449 0.459

TimesNet
MSE MAE
0.384 0.402

Stationary
MSE MAE
0.513 0.491

DLinear
MSE MAE
0.375 0.399

Methods
Metric
96

LightTS
MSE MAE
0.424 0.432

192
336
720
Avg

ETTh]

0.398

0.418

0.430 0.427
0.442 0.457

0.408

0.423

0.416
0.442
0.477
0.465

0.418
0.433
0.456
0.455

0.405
0.439
0.472
0.422

0.416
0.443
0.490
0.437

0.413
0.422
0.447

0.421
0.436
0.466

0.436 0.429

0.420 0.448

0413

0.430

0.491
0.521
0.458

0.469
0.500
0.450

0.459
0.506

0.465
0.507

0.440 0.460

0.500
0.521
0.514
0.496

0.482
0.496
0.512
0.487

0.534
0.588
0.643

0.504
0.535
0.616

0.570 0.537

0.538
0.574
0.562
0.542

0.504
0.521
0.535
0.510

0.475
0.518
0.547
0.491

0.462
0.488
0.533
0.479

1.008
1.107
1.181
1.040

0.792
0.809
0.865
0.795

0.923
1.097
1.257
1.029

0.766
0.835
0.889
0.805

96
192
336
720
Avg

ETTh?2

0.268
0.329
0.368

0.328
0.375
0.409

0.372
0.334

0.420
0.383

0.285
0.354
0.373
0.406
0.381

0.342
0.389
0.407
0.441
0.412

0.289 0.353

0.383
0.448
0.605
0.431

0.418
0.465
0.551
0.446

0.274

0.336

0.339

0.379

0.340 0.374

0.329
0.379

0.380
0.422

0.330

0.379

0.402
0.452
0.462
0.414

0.414
0.452
0.468
0.427

0.358
0.429
0.496
0.463
0.437

0.397
0.439
0.487
0.474
0.449

0.346
0.456
0.482
0.515
0.450

0.388
0.452
0.486
0.511
0.459

0.476
0.512
0.552
0.562
0.526

0.458
0.493
0.551
0.560
0.516

0.340
0.430
0.485
0.500
0.439

0.391
0.439
0.479
0.497
0.452

0.397

0.437

0.520 0.504
0.626 0.559
0.863 0.672
0.602 0.543

3.755
5.602
4.721
3.647
4431

1.525
1.931
1.835
1.625
1.729

2.626
11.12
9.323
3.874
6.736

1.317
2979
2.769
1.697
2.191

96
192
336

0.272
0.310
0.352

0.334
0.358
0.384

0.292
0.332
0.366

0.346
0.372
0.394

0.299 0.343

0.335

0.365

0.369 0.386

0.290

0.342

0.332

0.369

0.366

0.392

0.338
0.374

0.375
0.387

0.410 0411

0.379
0.426
0.445

0.419
0.441
0.459

0.505
0.553
0.621

0.475
0.496
0.537

0.386
0.459
0.495

0.398
0.444
0.464

0.375
0.408
0.435

0.398
0.410
0.428

0.374 0.400
0.400 0.407

0.438

0.438

0.672
0.795
1.212

0.571
0.669
0.871

0.538
0.658
0.898

0.528
0.592
0.721

1.102
0.799

0.658
1.078
1.549

0.462
0.425

0.280
0.319
0.357
0.413
0.342

0.502
0.437

0.308
0.382
0.466
0.587
0.436

1.166
0.961

0.365
0.533
1.363
3.379
1.410

0.823
0.734

0.453
0.563
0.887
1.338
0.810

0.841
0.671

0.619
0.827
0.972
2.631 1.242
1.479 0915

0

0.420
0.380

0.255
0.292
0.329
0.385
0.315

0.478 0.450
0.400 0.406

0.187 0.267
0.249 0.309
0.321 0.351
0.408 0.403
0.291 0.333

0

0.543
0.448

0.203
0.269
0.325

0.671
0.588

0.255
0.281
0.339
0.433
0.327

0.561
0.517

0.339
0.340
0.372
0.432
0.371

0.585
0.481

0.192
0.280
0.334 0.361
0417 0413
0.306 0.347

0

0.516
0.456

0.274
0.339

0.527
0.435

0.209
0.311
0.442
0.675
0.409

0

0.383
0.329

0.161
0.219
0.271

0.411
0.372

0.253
0.293
0.329
0.352 0.379
0.251 0.313

18

0.417
0.388

0.173
0.229

0.286
0.378
0.284

0.421
0.403

0.262
0.301

0.341

0416
0.351

0.165
0.220
0.274
0.362
0.255

0.490
0.452

0.287
0.328
0.366
0.421 0415
0.305 0.349

0

0.499
0.429

0.189
0.253
0.314
0.414
0.293

720
Avg

96
192
336
720
Avg

1*Count

0.425 0.421
0.357 0.378

0.167 0.269
0.224 0.303
0.281 0.342
0.401 | 0.397 0.421
0.33910.267 0.333

0 1

ETTml

ETTm?2

e
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Results on Few-Shot Learning

Table 3: Few-shot learning on 10% training data. We use the same protocol and notations as in[! a: b. 1|

Methods

TIME-LLM

GPTA4TS

DLinear

PatchTST

TimesNet

FEDformer

Autoformer

Stationary

ETS5former

LightTS

Informer

Reformer

Metric

MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE

MAE

96
192
336
720

Avg,

ETThl

0.448 0.460

0.458 0.456

0.484 0.483
0.589 0.540

0.570 0.516

0.492 0.495
0.565 0.538

0.608 0.535

0.700 0.604
0.556 0.522

0.725 0.591
0.590 0.525

0.721 0.622
0.986 0.743
0.691 0.600

0.516 0.485
0.598 0.524
0.657 0.550
0.762 0.610
0.633 0.542

0.861 0.628
0.797 0.593
0.941 0.648
0.877 0.641
0.869 (.628

0.512 0.499
0.624 0.555
0.691 0.574
0.728 0.614
0.639 0.561

0.613 0.552
0.722 0.598
0.750 0.619
0.721 0.616
0.702 0.596

0.918 0.639
0.915 0.629
0.939 0.644
0.887 0.645
0.915 0.639

1.112 0.806
1.155 0.823
1.179 0.832
1.273 0.874
1.180 0.834

1.298 0.838
1.322 0.854
1.347 0.870
1.534 0.947
1.375 0.877

1.179 0.792
1.199 0.806
1.202 0.811
1.217 0.825
1.199 0.809

1.184
1.295
1.294
1.223
1.249

0.790
0.850
0.854
0.838
0.833

96
192
336
720

Avg,

ETTh2

0.275 0.326
0.374 0.373
0.406 0.429
0.427 0.449
0.370 0.394

0.331 0.374
0402 0411
0.406 0.433
0.449 0.464
0.397 0.421

0.357 0411
0.569 0.519
0.671 0.572
0.824 0.648
0.538

0.353 0.389
0.403 0414
0.426 0.441
0.477 0.480
0.415 0431

0.378 0.409
0.490 0.467
0.537 0.494
0.510 0.491
0.479 0.465

0.382 0416
0.478 0474
0.504 0.501
0.499 0.509
0.466 0475

0.413 0.451
0.474 0477
0.547 0.543
0.516 0.523
0.488 0.499

0.389 0411
0.473 0455
0.507 0.480
0.477 0472
0.462 0.455

0.678 0.619
0.785 0.666
0.839 0.694
1.273 0.874
0.894 0.713

2.022 1.006
2.329 1.104
2453 1.122
3.816 1.407
2.655 1.160

3.837 1.508
3.856 1.513
3.952 1.526
3.842 1.503
3.872 1.513

3.788
3.552
3.395
3.205
3.485

1.533
1.483
1.526
1.401
1.486

96
192
336
720

Avg,

ETTml

0.346 0.388
0.373 0.416
0.413 0.426
0.485 0476
0.404 0.427

0.390 0.404
0.429 0.423
0.469 0.439
0.569 0.498
0.464 0.441

0.605
0.352
0.382

0.392
0.412
0.434
0.477
0.429

iz
o 'S
=i

0.411

0.410 0419
0.437 0434
0.476 0.454
0.681 0.556
0.501 0.466

0.583 0.501
0.630 0.528
0.725 0.568
0.769 0.549
0.677 0.537

0.578 0.518
0.617 0.546
0.998 0.775
0.693 0.579
0.722 0.605

0.774 0.614
0.754 0.592
0.869 0.677
0.810 0.630
0.802 0.628

0.761 0.568
0.781 0.574
0.803 0.587
0.844 0.581
0.797 0.578

0911 0.688
0.955 0.703
0.991 0.719
1.062 0.747
0.980 0.714

0.921 0.682
0.957 0.701
0.998 0.716
1.007 0.719
0.971 0.705

1.162 0.785
1.172 0.793
1.227 0.908
1.207 0.797
1.192 0.821

1.442
1444
1.450
1.366
1.426

0.847
0.862
0.866
0.850
0.856

96
192
336
720

Avg,

ETTm?2

0.177 0.261
0.241 0.314
0.274 0.327
0.417 0.390
0.277 0.323

0.188 0.269
0.251 0.309
0.307 0.346
0.426 0417
0.293 0.335

0.213
0.278
0.338
0.436
0.316

0.303
0.345
0.385
0.440
0.368

0.191 0.274
0.252 0.317
0.306 0.353
0.433 0427
0.296 0.343

0.212 0.285
0.270 0.323
0.323 0.353
0.474 0.449
0.320 0.353

0.291 0.399
0.307 0.379
0.543 0.559
0.712 0.614
0.463 0488

0.352 0.454
0.694 0.691
2,408 1.407
1.913 1.166
1.342 0.930

0.229 0.308
0.291 0.343
0.348 0.376
0.461 0438
0.332 0.366

0.331 0.430
0.400 0.464
0.469 0.498
0.589 0.557
0.447 0.487

0.813 0.688
1.OO8 0.768
1.031 0.775
1.096 0.791
0.987 0.756

3.203 1.407
3.112 1.387
3.255 1.421
3.909 1.543
3.370 1.440

4.195
4.042
3.963
3.711
3.978

1.628
1.601
1.585
1.532
1.587

1*Count

20

3

2

0

0

0

0

0
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Results on Zero-Shot Learning

Table 5: Zero-shot learning results. Red: the best, Blue: the second best. |Appendix D|shows complete results.

QUNC

Methods

TIME-LLM

GPT4TS

DLinear

PatchTST

TimesNet

Autoformer

Metric

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

ETThl — ETTh2

0.353

0.387

0.406

0.422

0.493

0.488

0.380

0.405

0.421

0.431

0.582

0.548

ETThl — ETT'm?2

0.273

0.340

0.325

0.363

0.415

0.452

0.314

0.360

0.327

0.361

0.457

0.483

ETTh2 —- ETTh]

0.479

0.474

0.757

0.578

0.703

0.574

0.565

0.513

0.865

0.621

0.757

0.608

ETTh2 — ETT'm?2

0.272

0.341

0.335

0.370

0.328

0.386

0.325

0.365

0.342

0.376

0.366

0.411

ETTml — ETTh?2

0.381

0.412

0.433

0.439

0.464

0.475

0.439

0.438

0.457

0.454

0.470

0.479

ETTml — ETTm?2

0.268

0.320

0.313

0.348

0.335

0.389

0.296

0.334

0.322

0.354

0.469

0.484

ETTm2 — ETTh?2

0.354

0.400

0.435

0.443

0.455

0.471

0.409

0.425

0.435

0.443

0.423

0.439

ETTm2 — ETTm]1
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0.414

0.438

0.769

0.567

0.649

0.537

0.568

0.492

0.769

0.567

0.755

0.591



Ablation Study

Variant

Long-term Forecasting

Few-shot Forecasting

ETTh1-96 ETTh1-192 ETTm1-96 ETThml-192

ETTh1-96 ETTh1-192 ETTml1-96 ETThml-192

A.1 Llama (Default; 32) 0.362 0.398 0.272 0.310 0.448 0.484 0.346 0.373
A.2 Llama (8) 0.389 0412 . 0.297 0.329 0.567 0.632 0.451 0.490
A3 GPT-2 (12) (0.385 0.419 0.306 0.332 (0.548 0.617 0.447 0.509
A4 GPT-2 (6) 0.394 0.427 0.311 0.342 0.571 0.640 (0.468 0.512
B.1 w/o Patch Reprogramming 0.410 0412 0.310 0.342 0.498 0.570 0.445 0.487
B.2 w/o Prompt-as-Prefix (0.398 0.423 (0.298 0.339 0.521 0.617 (0.432 0.481
C.1 w/o Dataset Context 0.402 0.417 (0.298 0.331 0.491 (0.538 (0.392 0.447
C.2 w/o Task Instruction (0.388 0.420 0.285 0.327 0.476 0.529 (0.387 0.439
C.3 w/o Statistical Context 0.391 0.419 0.279 0.347 0.483 0.547 0.421 0.461
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Visualization on Reprogramming

(a) Epoch O (b) Epoch 1 (c) Epoch 5 (d) Epoch 10
B I m.t{»m ity o 71 (TR 7

el 48

’_(e) lllustration of a WeII-optimized Reprogramming Space in (d)

. A significant
text prototype

Less
significant
prototypes

00 02 a4 L 8 ) 10
f
I
I
I
I
I
— — — — — ——— —

-
-

(f) Visualization of 10 different learned
text prototypes

Word Set 1: {‘periodic’, ‘seasonal’, ‘increase’ ...}
Word Set 2: {‘quantile’, ‘average’, ‘short’ ...}
Word Set 3: {‘outspoken’, ‘galiee’, ‘analogue’...}

Prototype

Word Set1 " WordSet2 " "WordSet3
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Non-Tuning-based LLLM Predictors

 Non-tuning-based predictors, suitable for closed-source models, involve
preprocessing TS data to fit LLM input spaces

e Examples
e LLMTime for time series analysis

e LLM-Mob for human mobility

t
Customized Prompt
Tokenizer Engineering
| : 6 —

Time Series Instruction Text
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Example: LLMTime

5 - . _—
&
/ Prompt Samples \ [ NseATS : N

{ | SM-GP =
| , ] "and fell asleep” - - |
| The dog jumped up on the bed [ "and bit my leg" . ARIMA —

GPT-3 N ——
0.00 0.05 0.10 0.15 0.20
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Example: LLM-Mob

» LLM-Mob leverages the language understanding and reasoning capabilities of
LLMs for analyzing human mobility data

[Instruction | Specify the task| Your task is to predict a user's next location based
on his/her activity pattern.

(Data | Describe the data] You will be provided with <history> which is a list

» Hi ical 1 containing this user's historical stays, then <context> which provide
(a) Human mobility data Istorica Stast contextual information about where and when this user has been to recently.
Stays in both <history> (and <context> are in chronological order. Eac)h stay
Mobili takes on such form as (start_time, day_of_week, duration, place_id). The
Real world examp|e Tabular format L d ty —» Context stays detailed explanation of each element is as follows:
Nie 2 ‘ 3 ata > / start_time: the start time of the stay in 12h clock format.
. ke R . Start time | Day of week | Duration - ~ day_of_week: indicating the day of the week.
. i E _ - Target stay time dur‘atior}: an integer inc.iicating the dur‘ation.(in minute) of each stay. Note
K3y 23:04 Tuesday 432 min —> Information that this will be None in the <target_stay> introduced later.

2 %) place_id: an integer representing the unique place ID, which indicates where

. Tues min the stay is.
:> 10:23 = day 52 ¢ Then you need to do next location prediction on <target_stay> which is the
X Prompt: Your task is to predict prediction target with unknown place ID denoted as <next_place_id> and
14:55 TueSday 35 min 3 g use’es rext location ba,.)se dion unknown duration denoted as None, while time information is provided.
16:43 Tuesda 20 min 2 p . . (Instruction | Specify the number of output places| Please infer what the <next_place_id>
y hl§/her aCt_IWty Rattern' You might be (the {k} most likely places which are ranked in descending order
. 19:50 Tuesday - ? will be provided with ... in terms of probability).
- |
................................................................................................ (Instruction | Guide the model to “think™] Please consider the following aspects:
X |‘ 1. the activity pattern of this user that you learned from <history>, e.g.,
(b) Large 'anguage mOdel based [ Large Language Model repeated visits to certain places during certain times;
prediction + 2. the context stays in <context>, which provide more recent activities of
Mobility data Prediction this user;
- 3. the temporal information (i.e., start_time an ay_of_wee of target
nswer: \ h 1 inf i (i i d d f k) of
\ SR stay, which is important because people's activity varies during different
L L Model @ prediction: [89, 36, ...], time (e.g., nighttime versus daytime) and on different days (e.g., weekday
arge Language ivioae ’ @ reason: Based on the user’s versus weekend).
"""" ' historical stays, we can know ... (Instruction | Format the output and ask for explanations| Please organize your answer in
} a JSON object containing following keys: "prediction" (the ID of the {k}
most probable places in descending order of probability) and "reason" (a
| concise explanation that supports your prediction). Do not include 1line
+ + breaks in your output.

(Data | Provide the data) The data are as follows:
<history>: {historical_stays}

<context>: {context_stays}

<target_stay>: {target_stay}

Prediction Reason
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Other L1L.M-as-Predictors

* Beyond the previously discussed methods,
another significant approach in TS analysis
involves building foundation models from scratch

& Task Layer

1
Pretext
A major challenge: & Foundation Model

Large-scale datasets!

b- '/1

Cl mate ereless
-

ng g

Traffic Financial

= &
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LargeST: A Large-Scale Traffic Dataset

» We crawled, processed, and released a large-scale traffic dataset

» Scalability, Generalizabillity, . etc.
‘ _ Dataset |Nodes Edges Degree Meta Time Range Frames Data Points
if:;if;% \:‘_01500 O, . PeMSD7(M)[ 228 1,664 73 6 05/01/2012 -06/30/2012 12,672  2.89M
ool o PeMSD7(L) | 1,026 14,534 142 0 05/01/2012 - 06/30/2012 12,672 13.00M
Tm\FW‘*MwA jﬂw..wé\ j’“\ METR-LA | 207 1,515 73 3 03/01/2012-06/27/2012 34,272 7.09M
: z;{s' 77 6 o '1123134'1 s > f PEMS-BAY | 325 2369 7.3 3 01/01/2017 = 06/30/2017 52,116 16.94M
i Gl st Mol PEMSO03 | 358 546 15 1 09/01/2018 — 11/30/2018 26,208  9.38M
Number of Lanes: 3 | PEMS04 | 307 338 1.1 0 01/01/2018 — 02/28/2018 16,992  5.22M
— » PEMS07 | 883 865 1.0 0 05/01/2017 - 08/06/2017 28,224  24.92M
PEMSO08 170 276 1.6 0 07/01/2016 —08/31/2016 17,856  3.04M
CA 8,600 201,363 234 9 01/01/2017 — 12/31/2021 525,888  4.52B
GLA 3,834 98,703 25.7 9 01/01/2017 — 12/31/2021 525,888  2.02B
GBA 2,352 61,246 260 9 01/01/2017 — 12/31/2021 525,888 1.24B
SD 716 17,319 242 9 01/01/2017 — 12/31/2021 525,888  0.38B
Sensors in California (CA)
S ANUS = ieoncone
S heeeley) @ National University ulw UNIVERSITY OF SCIENCE AND
of Singapore TECHNOLOGY (GUANGZHOU)
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SINPA: A Large-Scale Carpark Dataset

» We crawled, processed, and released a large-scale parking dataset

Data Attributes Values
Time Spans 2020/07/01 - 2021/06/30
Time Granularity 15 minutes

Parking
Availability

# Parking lots
# Samples
Missing Rate

1,687
14,600
1.59%

96

Meteorology

Temperature (mean)
Humidity (mean)
Windspeed (mean)

2.7.12
81.18
4.62

Time of Day

24

Time-related Day of the Week 7
Holiday 2
Geolocation # Pln_Area Categories 36

Utilization Type

# Categories

10

Road Networks

# Segments

15,291

& EERBAL(M)
11 ¥ THE HONG KONG
llAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

QUNC
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LaDe: The First Last-Mile Delivery Dataset

W W - W - W W W = W e W W S - W W W - W - T

* We released The First Last-Mile S—— D T — —
. i { 2 @ unpicked-up T e
Delivery Dataset from Industry = e [ il .

S

» Large scale

Applications

-
3
'
'
5 Notify recipient
'!
\
\
\
i o
\

« Comprehensity . T e uows, Lo =

)
e, gy e Foyaye 4. gt
. . g’i effective | open problem model
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—¥ efficiency R 1
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- |
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UniTime: Building Time Series Foundation Models

* The prerequisite of training a Foundation Model for time series is fraining a
model on cross-domain time series all at once

(a) Domain-Specific Learning : (b) Cross-Domain Learning
I

W S 2 Bl — () — ek

!
Unified | _, \, /"

Model

P M - EX=T 5 s Pretext
| ¢ Weather 77| Economics 4. ) Disease ! TaSk

b8

Gl  (wosl] [ wwoserc )

Domain Instructions
+

| @
Exchange rate data with e 7 .
; : — O ————
[ daily Sampling rate, ] ' 8 \ R O Foundation Model
: : =i A t
B it S [ N | R |
==3 ! - @ | £ o : W = ‘,
/ 010100...001110 ;£ ! el o € | ! ‘go £ - ﬂf T P <
—» G I — o 5 - R /
: Binary Indicator : E : : : | g '-g _*—>I e E 1% - e : RN Reseiotue lon 'é?/é
| il | ! o0 : e = | . .
: Sy mE | 2 E K Climate =~ Wireless
| \ y,
[ ) _ : : ! : : Future Predictions — -
Y f‘ | oo ——— I ll.l__ =
¥ £ | I \ Padded - =
: W —>, S =" : Coffeat — /Y Token 4 ..'-¥ '.'.I
\ £ . | © -=!1  © Ve e - ® 4
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Time Series Tokenizer
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Time-FFM: Federated TS Learning

* \What if the input data come from difference sources?

_______________ J \ ,
[ Modality Alignment /. s i fre=s
: & pmpf Mapﬂm E Pr ompi"t‘Tokens — Patch Tokens
______ S-p---- ' A
E Linear T
® // E Top-M-Scot:E Prototypes
h’ﬂ Economics / !
L — - / ! Multi-Head Attention [«
Disease | // E - 1 Normalize
@Weather \] \ / E Lineay s i ______
/ ' * 1 '/\/'\/\r"\»\,
y ' ! Pre-trained : ;
r' M“a“fy A“gﬂm ent N v Word Embeddmgs ____________ l
LA & Prompf Adapﬂon [ .\_‘.\ @ Prompt Adaption @ Modality Alignment /,
‘ . A
MG Prediction 3 {
| Backbone | | Head | |
N g

\
R b
Frozen A Training . Server\\
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Flatten & Linear

v

De-Normalize

B T e L

Type | TY1 | TY2 | TY3

Method |TlME-FFM| FedIT |FedAdap(cr"|chAdapter"| UniTime | GPT4TS |Pa|chTST| TimesNet | DLinear |FEDformer|Auloformcr| Informer

Metric |MSE MAE|MSE MAE|MSE MAE |MSE MAE | MSE MAE|MSE MAE|MSE MAE|MSE MAE | MSE MAE|MSE MAE|MSE MAE|MSE MAE

ETThl |0.442 0.434 [OESINOEEI) 0.458 0.467 [0.503 0.479 |0.442 0.448(0.502 0.461]0.472 0.451|0.458 0.450|0.456 0.452(0.440 0.460|0.496 0.487|1.040 0.795

ETTh2 |0.382 0.406 [0i3740.396 |0.373 (059810350 0.403 [0.378 0.403]0.386 0.406/0.398 0.416/0.414 0.427|0.559 0.515|0.437 0.449|0.450 0.459|4.431 1.729

ETTm! [0.399 0.402 |0.644 0.517|0.643 [JOSERJOIBH0) 0.516 |0.385 0.399 |0.551 0.483]0.971 0.629]0.383 0.406|0.403 0.4070.448 0.452(0.588 0.517|0.961 0.734

ETTm2 [0.286 0.332]0.297 0.341 [EOSN0EE0]0.208 0.342 [0.293 0.3340.321 0.356/0.340 0.373/0.291 0.322 |0.350 0.401]0.305 0.349(0.327 0.371]1.410 0.810

Electricity [0.216 0.299 | 0.390 0.478|0.408 0.439 [S3N0E20N 0.216 0305 |0.251 0.338/0.221 0.311{0.193 0.295 |0.212 0.300|0.214 0.327(0.227 0.338/0.311 0.397

Weather [0.270 0.288 [0I282) 0.310 [B282N08080.287 0.309 |0.253 0.276 [0.293 0.3090.304 0.323/0.259 0.287 |0.265 0.317|0.309 0.360(0.338 0.3820.634 0.548

Exchange [0.338 0391 |0.389 0.423]0.382 0.419 [GESONOEIT 0.364 0.404 |0.421 0.446]0.411 0,444/ 0.416 0.4430.354 0.414]0.519 0.500[0.613 0.539]1.550 0.998

I [2.107 0.924 [HASINIEEE] 5.247 1.621 [5.251 1.600 |2.137 0929 [3.678 1.372]4.210 1.480[2.139 0.931|2.616 1.090|2.847 1.144[3.006 1.161|5.137 1.544

Average [0.555 0.434 |0DI0NOSET] 1.015 0.569 |1.009 0.561 [0.559 0.437 [0.800 0.521[0.916 0.553|0.569 0.445|0.652 0.487|0.690 0.505]0.756 0.532|1.934 0.944
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LLM-as-Agent

» Our standpoint is that LLMs can serve as the central hub for understanding and
advancing time series analysis in three principal ways

» LLM-as-Enhancers: augmenting TS data and existing approaches with enhanced
external knowledge and analytical prowess

» LLM-as-Predictors: utilizing their extensive internal knowledge and emerging reasoning
abilities to benefit a range of downstream tasks, e.g., forecasting

» LLM-as-Agents: transcending conventional roles to actively engage in and transform
time series analysis
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Background of LLLM-as-Agent

 Tuning-based LLM-as-Predictors utilize LLMs as robust model checkpoints, attempting to
adjust certain parameters for specific domain applications.

* However, this approach often sacrifices the interactive capabilities of LLMs and may not fully exploit
the benefits offered by LLMs, such as in-context learning or chain-of-thought.

 Non-tuning-based LLM-as-Predictors, integrating TS data into textual formats or
developing specialized tokenizers

* Facing limitations due to LLMs’ primary training on linguistic data, hindering their comprehension of
complex temporal knowledge and patterns not easily captured in language

A new promising paradigm rises:

LLM-as-Agents!
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LLILM-as-Agent for Time Series Analysis

* Different directions for incorporating time series knowledge to LLMs

A Tool Manager

‘ White-box LLMs < }'ﬁ' White-box LLMs ’

B [ | Fusion-former

Iterative
prm—— TR L
niil
Time Series r;Tlme Series Learnable Query -{{«Prompt Manager :
- El”c“’e;” o lE"”d” L [ s \
Imputers
% % % Detectors

Time Series Related Text Time SCI‘ICS Related Text Time Series Related Text Time Series Model Hub

212 Y e

N\

. \a®
.

(a) Aligning (b) Fusion (c) Using External Tools
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LLILM-as-Agent for Time Series Analysis

* We empirically verify that LLM can serve as Effective Analytical Agent

Data format description: \
The Human Activity Recognition database was built from the recordings of 30 study participants performing activities of
daily living (ADL) while carrying a waist-mounted smartphone with embedded inertial sensors. The objective is to classify
activities into one of the four activities performed (Walk, Sit, Stand, Lay). For each record in the dataset the following is
provided:
1. Triaxial acceleration from the accelerometer (total:acceleration) and the estimated body acceleration.
2.Triaxial Angular velocity from the gyroscope.
Few shot data instances:

Here are some classification examples:

tBodyAcc-mean()-X tBodyAcc-mean()-Y tBodyAcc-mean()-Z angle(X,gravityMean) angle(Y,gravityMean) angle(Z,gravityMean) Activity
0.257178 -0.02329 -0.01465 -0.72001 0.276801 -0.05798 STANDING

0.277235 -0.02568 -0.11843 -0.8159 0.166483 -0.09444 SITTING

0.300905 -0.02361 -0.09689 0.774053 -0.47774 -0.50714 LAYING

Task description:
Now we have the following data instances, please justify their Activity:
0.269066 -0.02769 -0.11018 -0.6805 0.302289 -0.06727
0.278291 -0.01454 -0.10524 -0.81653 0.170525 -0.09102
272059 -0.02127 -0.10064 0.767363 -0.4718 -0.51501 (op

b

Certainly, based on a general understanding of the patterns in the provided Human Activity Recognition dataset, here are N
hypothetical guesses for the activities corresponding to the given instances:

1.The activity for the first instance (0.269066, -0.02769, -0.11018, -0.6805, 0.302289, -0.06727) might be Wallk.

2.The activity for the second instance (0.278291, -0.01454, -0.10524, -0.81653, 0.170525, -0.09102) could be Sit.

3.The activity for the third instance (0.272059, -0.02127, -0.10064,0.767363, -0.4718,-0.51501) may be Lay.

& i T E ~
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LLILM-as-Agent for Time Series Analysis

» LLM agent can provide interpretability and truthfulness

{ Please tell me the reason. L

@ important to note that these are speculative guesses based on general patterns observed in accelerometer and gyroscopn
data for common human activities. The reasoning behind these guesses is influenced by typical characteristics associated with
certain activities:

Instance 1 The relatively consistent accelération values along with angular velocity may suggest a pattern associated with
walking. Walking often involves rhythmic and repetitive motion.

Instance 2 The lower acceleration values and certain angular velocity characteristics might resemble the patterns seen during
sitting. Sitting typically involves less movement compared to other activities.

Instance 3 The specific combination of acceleration and angular velocity features could resemble the patterns observed during
lying down or laying. Laying down is associated with lower acceleration and distinct angular velocity patterns. J

ehe

&

Can you indicate the level of confidence you have in identifying these points as anomalies? Please provide a value on a scale (=)
from O to 1, where 1 signifies the highest level of confidence. ‘@'

mnust emphasize that the guesses I provided earlier are purely speculative and based on general patterns observed in \
accelerometer and gyroscope data. Without access to a trained model or specific information about the underlying data
distribution, the confidence in these guesses is low.

If I were to assign a confidence level on a scale from O to 1, where 1 signifies the highest confidence, it would be
approximately 0.3. This low confidence level reflects the speculative nature of the guesses and the lack of a precise
understanding of the data distribution and model specifics. For accurate predictions, a trained model with associated
confidence scores would be necessary. /

"N
s
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Limitations of LLLM Agent for Time Series

 Difficulty in Understanding Complex Patterns

 Bias and Task Preferences

 Hallucination

Data format description:

The Electric Transformer Temperature (ETT) Serves as a vital indicator for long-term electric power management. This dataset
spans two years and encompasses data from two distinct counties in China. To delve into the intricacies of Long Sequence
Time-Series Forecasting (LSTF) problems, various subsets have been curated: {ETTh1, ETTh2} for 1-hour intervals and
ETTml for 15-minute intervals. Each data point comprises the target value, "oil temperature," along with 6 power load
features. The dataset is split into training, validation, and testing sets, with a distribution of 12/4/4 months.

Task description:

Now, I would like to provide you with some instances from the dataset. Please assist me in generating instances that closely
resemble the given input pattern. The instances are as follows:

Few shot data instances:

date, HUFL, HULL, MUFL, MULL, LUFL, LULL, OT

2016-07-01 00:00:00,5.827000141143799,2.009000062942505.1.5989999771 1 1 8164,0.4620000123977661,4.203000068664552,1.3400000333786009.30.53 10001373291
2016-07-01 01:00:00,5.692999839782715,2.075999975204468.1.4919999837875366,0.4259999990463257.4. 142000 1983642591 37100005 14984 1 3.27. 787000656 12793
2016-07-01 00:00:00,5.827000141143799.2.009000062942505.1.5989999771118164.,0.4620000123977661.4.203000068664552,1.3400000333786009.20.53 10001373291
2016-07-01 01:00:00.5.692999839782715,2.075999975204468.,1.4919999837875366,0.4259999990463257.4. 142000 198364259,1.37 100005 14984 13,27.78 7000656 12793
2016-07-01 02:00:00,5.1570000648498535,1.74 1000056266785,1.2790000438690 1 86,0.35499998927116394,3.776999950408936,1.2 180000543594 36,27.78 700065612793

2016-07-01 03:00:00,5.090000 1 525878915,1.94200003 14712524, 1.2790000438690 1 86,0.3910000026226044,3.806999921 798706,1.2790000438690186.25.0440006256 1 035
2016-07-01 04:00:00,5.357999801635742,1.9420000314712524,1.4919999837875366.,0.4620000123977661,3.8680000305 17578, 1.2790000438690186,21.947999954223643
2016-07-01 05:00:00,5.625999927520752,2.1429998874664307,1.5279999971 389768,0.5329999923 706055 ,4.05 100011825561 5.1.371000051498413.21.17399978637695

Certainly, here are instances from the dataset that closely resemble the given input pattern: \
2016-07-01 01:00:00,5.692999839782715,2.075999975204468,1.4919999837875366,0.4259999990463257,4.142000198364259,1.371000051498413,27.78 700065612793
2016-07-01 02:00:00.5.1570000648498535,1.741000056266785,1.2790000438690186,0.35499998927116394,3.776999950408936,1.218000054359436,27. 787000656 12793
2016-07-01 03:00:00,5.0900001 525878915.1.94200003 14712524,1.2790000438690186,0.3910000026226044,3 80699992 1798706, 1. 2790000438690186,25.04400062561035
2016-07-01 04:00:00,5.357999801635742,1.9420000314712524,1.4919999837875366,0.4620000123977661,3.868000030517578,1.2790000438690186,21.947999954223643
These instances continue the hourly trend of oil temperature and power load features, maintaining the structure and

characteristics of the provided dataset.
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LLM Agents for Traffic Light Control

LLMLight (LightGPT)

Number of vehicles 63

Current step 181

Start

Info Box
Step 1: Analysis

To identify the optimal traffic signal, we need to consider the
number of early queued vehicles and approaching vehicles in
each lane. The early queued vehicles have the most
significant impact on traffic congestion, so we should
prioritize the lanes with the most early queued vehicles.

Looking at the data, we can see that the signal NTST
(Northern and Southern through lanes) has the highest
number of early queued vehicles, with a total of 10. This is
followed by the signal ELWL (Eastern and Western left-turn
lanes) with a total of 6 early queued vehicles. The signals
ETWT (Eastern and Western through lanes) and NLSL
(Northern and Southern left-turn lanes) have fewer early
queued vehicles, with totals of 7 and 0 respectively.

In terms of approaching vehicles, the signal ETWT has the
highest total number of vehicles in segments 2 and 3, with a
total of 6. However, as the task description states, it is not
urgent to consider vehicles in distant segments since they are
unlikely to reach the intersection soon. Therefore, the number
of approaching vehicles should not be the primary factor in
our decision.

Step 2: Answer
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LLM Agents for Urban Planning

QUNC

(A) Role-playing

A

Chief planner

000
Alh AlA Al AlA

Sub-community planners

(C) Feedback iteration

The number of business
areas, hospitals does not

" meet the requirement...
Evaluation $

Gender: Male

Age: 85

Education: Junior high
Family size: 1

76 o\
ﬂ & eee ZZSZ
e g

Residents with various profiles

Background: elderly per%)n

\——-——————————————--————————————-————-———————-— ———————

living alone 7 Final plan
(B) Collaborative generation /"Sub-community revision .
: I
: >1 business areas E
24 business areas . >2 schools... :
Requirements 22 hospitals : :
26 schools... : !
: > !
: 1
\ i :
= ﬁ ; :
I - 1 I
- :
> = _h: 4 4
== : Are you satisfied o e ] g :
! with the facilities in I'm S?t'_Sf'ed with O :
Initial plan : Z :
1 9 9 h ( @ 1
v A/ | prefer more green The office areas can !
v 1 ipyi\ space to relax... meet my need... @3 L
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Summary

* Deep learning for time series analysis

* When spatio-temporal data meet LLMs
» LLM-as-Enhancer
» LLM-as-Predictor 8
» LLM-as-Agent

--------------------------

A Time Series Data I General Purposes \

Universal Task ' E E

Domain-agnostic Solvers ' &3 6’(}} 5

Task-agnostic Task Solvers TimeLLM, UniTime, UniST o }  Forecasting Classification |

s I |
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:*_f Task-specific Pre-training + Fine-tuning ~ Solve complex real-world analytical : : e / E [. 3. s thl E
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4 Applications
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Applications

ﬁype of Forecasting Model%

Based on Number of
Timesteps

Based on
Methodology Used

Based on Duration of

Forecasting Application-specific

- 2 v
. Statistical and ¢ Weather
\ J Model Models based Methods YANOND0eS term Forecasting
P # odels
) Argricultral "
— Mu‘tl'step Short_term Yield
. v Feature-based | | Deep Learning Forecasting )

Techniques Techmques

Disease

iy Forecasting

—
—>»| Medium-term
—>

Long-term Forecasting

r N
} Pandemic and

J

— ™\
Environmental
Data
Fortecasting
\_ J

—>
-

| I Traffic
\_

—>

P
Economics and

—> Finance
8 Forecasting
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Application - Transportation

With the rapid growth of transportation data from sensors (e.g., loop detectors, cameras, GPS), there is an urgent need to use
deep learning to model the complex spatiotemporal correlations for tasks like:

* Traffic flow prediction

e Traffic incident detection

* Traffic congestion prediction

Transportation data can appear in various spatiotemporal forms:

e ST Raster: Traffic flow matrices (sensor x time)

 Graphs: Sensor networks modeled by road connections

 Time Series: Single-road traffic histories

Modeling Approaches:

 GraphCNNs for sensor network graphs

* RNN/LSTM for single-road time series

Additionally, transportation data is influenced by external factors (e.g., weather, holidays, events), so models must effectively
fuse external features with traffic data for better prediction accuracy.
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Application - Transportation

Introduce a novel framework that decouples traffic data into diffusion and inherent components to better model complex

spatial-temporal dependencies in traffic forecasting.

 Decoupled Spatial-Temporal Framework (DSTF): Separates traffic data into diffusion signals (capturing spatial dependencies)
and inherent signals (capturing temporal patterns).

 Dynamic Graph Learning Module: Learns dynamic characteristics of traffic networks over time.

* Residual Decomposition Mechanism: Enhances the model's ability to capture complex patterns by decomposing residuals.

o N History \ I

< s N N | ——
g : X' Estimation Diffusion dif ,
Linear . — —H Forecast »
Gate X Model dif

l Hf ¢ M Prediction

¥
S & Backcast .’
X b EB Regression
Layer

inh \
Dynamic F’y X:ﬂh i MDd‘El oreca :
Graph L, 1 - . .
Learning A Backcast — © Residual Links
L 7
e // || Decouple Block
— _/
k || Diffusion Block
L
X! || Inherent Block

ﬂ—’ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




Application - On-Demand Service

With the rise of on-demand service platforms (e.g., Uber, DiDi, Mobike, GoGoVan), a large volume of spatiotemporal (ST) data
is generated, involving customer locations and service times.

To better meet real-time demand and optimize services, accurate demand-supply prediction across locations and times is
crucial.

Deep Learning Approaches:

 Dockless bike-sharing: Deep learning methods predict demand-supply distributions.

* Bike-sharing systems: Graph CNN models forecast hourly bike demand at stations by modeling bike flow as a graph.
e Taxiservices: LSTM models predict area-specific taxi demand.

* Ride-hailing platforms: ResNet models predict supply-demand patterns.

ﬁ Modeling Strategy:

 Represent demand-supply across city regions as spatial maps or raster tensors.

* Apply CNNs, RNNs, or hybrid deep models for feature extraction and future prediction.
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Application - On-Demand Service

ST-MGCN: Spatiotemporal Multi-Graph Convolution Network:

_ Graph e
Forecasting

————————————————————————————————————————————————————————————————————————————

Incorporating
multi- i
relationship
@ Temporal: CGRNN
Contextual-gated g
History temporal modeling U

Non-euclidean

Forecast

spatial modeling

_____________________________________________________________________________
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Application - On-Demand Service

ST-MGCN: Spatiotemporal Multi-Graph Convolution Network:
Key Idea:

Model non-Euclidean spatial dependencies and global temporal dynamics simultaneously for
accurate region-level ride-hailing demand forecasting.

Encode pair-wise Aggregate different Capture spatial dependency

H correlations between regions observations with with graph convolution on Generate prediction
M Od e I A rc h Itect u re : Contextual Gated RNN

using multiple graphs

multiple graphs

e Multi-Graph Construction: -
Build three graphs to capture different spatial relationships: G : T (P
Neighborhood Graph (adjacent regions) | Sormeasam o
Functional Similarity Graph (similar POI surroundings) " = | o ° _@,.
Transportation Connectivity Graph (road network links) S oo
 Multi-Graph Convolution:
Perform graph convolutions over multiple graphs to aggregate information
from spatially correlated regions (both near and distant).
 Contextual Gated RNN (CGRNN):
Augments RNN with global context-aware gating.
Dynamically reweights different time steps based on global demand patterns.
 Prediction Head:

Outputs future region-level ride-hailing demand after spatial and temporal aggregation.
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Application - On-Demand Service

ST-MGCN: Spatiotemporal Multi-Graph Convolution Network:

-~

Neighborhood

Graph Generation

~

-~

CGRNN

Temporal modeling

~

-~

MGCN

Spatial modeling

~

y 0, V; and v; are adjacent
N, otherwise

POI similarity
As;j = sim(P,;, P, )

Road connectivity
Aci; = max(0, conn(vi,vj) — Ay ij)

m) -

\_ /
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Use 1-layer GCN to invoke
context information

Use spatial global pooling to
get temporal gate

Apply gate to input signal

Aggregate gated signal by
share-weight RNN

=) -

/

\_

Use stacked GCN layer to
extract spatial information

The locality is determined by
graph Laplacian and
convolution degree

A proper way to extract spatial
information under arbitrary

relationship




Application - On-Demand Service

ST-MGCN: Experiments

QUNC

GILLINGS SCHOOL OF

GLOBAL PUBLIC HEALTH

Method Beijing Shanghai
RMSE MAPE(%)| RMSE MAPE(%)
HA 16.14 29 17.15 34.8
LASSO 14.24+0.14 23.8+0.8 {10.624+0.06 22.940.8
Ridge 14.24+0.11 23.8+=0.9 |10.614+0.04 23.110.8
VAR 13.32+0.17 22.4+1.6 |10.5440.18 23.7£1.4
STAR 121060 22 27 2 k9 (105 021 23 2| 4
GBM 1366016 231 15 [0 25 10 1F 234 ¢ | )
STResNet [11.7740.95 14.84+6.0 | 9.87+0.94 14.946.0
DMVST-Net|11.62+0.48 12.3+5.5|9.61+£044 13.8£1.2
ST-GCN 11.62+0.36 10.145.1 | 9.2940.31 11.2+1.3
ST-MGCN |10.78£0.25 8.8£3.5 | 8.30£0.16 9.3:0.9




Application - On-Demand Service

OD-CED: Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing

i 9 92 g3 - G; - 91§3

Challenges: bl G - » -
g3 | 1 8 9 4

. Scalability - OD matrices grow o Il
exponentially with more spatial divisions. aeal 5 3 70 0 2 8_

.. Data Sparsity — Over 90% of fine-grained
OD flows have zero demand.

. Semantic & Geographical
Dependencies - Travel demand is T I
influenced by both regional function (e.g., - 4
residential vs. commercial) and spatial | bl -
proximity. ol . B
gs33L. 0 O O O O 1 0

(b)
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Application - On-Demand Service

OD-CED: Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing

OD-CED Model: A Novel OD Prediction

Framework (Y e
Trip _1i L St ey

Space Coarsening Module: Merges fine- e @—?——'—:——‘? (LN ]
grained cells into super-cells to mitigate L ps_. [Embi?,i,mg =l el
sparsity. (e Nobboh sed-d
Encoder-Decoder Architecture: Captures 9 —'X)-Qbeddmj/ TR et .
semantic and geographical dependencies
effectively.

Permutation-Invariant OD Embedding:
Learns robust representations of OD flows.

(@) (b) (©
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Application - On-Demand Service

OD-CED: Experiments City-C City-S
Dataset Performance Comparison (City-C & City-S): Method
City-C:

wMAPE | RMSE | CPC | wMAPE | RMSE | CPC

RMSE reduced from 1.255 (GEML) — 0.905 (OD-CED) HA 0.813 1.442 | 0.348 | 0.821 1.435 | 0.355
(~28% improvement).

WMAPE reduced from 0.667 (GEML) — 0.411 (OD-CED) o=y e kel e BRler 12l | e
(~39% improvement). LASSO 0.807 1.424 | 0.359 | 0.813 1.349 | 0.337
City-S: CSTN 0.782 1.370 | 0.354 | 0.721 1.217 | 0.451
RMSE reduced from 1.146 (GEML) — 0.740 (OD-CED)
(~35% improvement). MRSTN | 0.788 1.380 | 0.351 | 0.766 1.253 | 0.464
WMAPE reduced from 0.605 (GEML) — 0.323 (OD-CED) s (o oo | S (e (pom | pe
(~47% improvement).
STGCN | 0.681 1.337 | 0.488 | 0.596 1.210 | 0.674

Training Time Comparison (per epoch on V100 GPU):
OD-CED: 22.12s

STGCN: 28.81s
GEML (state-of-the-art): 39.63s CSTN | MRSTN | GEML | STGCN | OD-CED
CSTN & MRSTN: 1200+ seconds

OD-CED is 2x faster than GEML and over 50x faster than
CNN-based methods Training Time (in seconds) | 1222.13s | 1602.14s | 39.63s | 28.81s 22.12s
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OD-CED | 0.411 0.905 | 0.776 | 0.323 0.740 | 0.889

# of Params (in millions) | 0.54M | 0.67M 2.9M 1.6M 0.1M




Application - Meso Level Supply-Demand Forecasting

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided Ride-Hailing Markets

Goal: Predicting supply and demand in ride-hailing platforms using a causal, interpretable, and scalable

forecasting framework
Algorithm 3:, A collaborative causal spatio-temporal fusion transformer (CausalTrans).

Authors: Wang et al,,
Journal: ACM Transactions on Spatial Algorithms and Systems, 2024
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Application - Meso Level Supply-Demand Forecasting

Collaborative Problem Probabilistic Forecasting

POc,(t+ 1:t + Tra) %, t), 2, Gt + Topax)) « Given g € Q = {10%, 50%, 90%}, then quantile loss QL,
P(yy(t+ Lt + Trma) [y 8), Xy (G T+ Tmax), Zo (Gt + Tmax)) at each point q is:

Where: QLq(xe, %) ={q —1(xy < %)} * (xe — &)

x,(t): demand at time t in grid v;

v, (t): supply at time tin grid v;

z,(t): external covariates (e.g., weather, holiday) at time
tin grid v; Lossg = 2y,eq 2geq,—
Tmax . Pre-specified time length
v evV.

* Then final quantile loss is:

Tmax QLCI(xt xt 1')
M * Tyax

 We introduce quantile risk as a key metric:
2 theﬂ ZTmax QLCI(xt xt T)

Tmax
Y et Doy Ixel

where Q is the best dataset.

Riskq
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Application - Meso Level Supply-Demand Forecasting

The overview of CausalTrans framework: Encoder Docoder |+
(a). The framework consists of three essential e e ——
components: Fast S.F. (fast graph spatial fusion), - N =

. - a . Clustered
C.A. (causal attention), and T.A. (temporal oo j > Outps
attention). Demand and supply are trained | @ @
sepa rately in sequence. (domandistppiy) (demand/aupply)

(a) CausalTrans framework (b) Fast S.F. : fast spatial graph fusion

(b). The Fast S.F. consists of self-clustering with GAT o NN\ 1T Encoder

A8 rou RV T.A.
, R SSSENE - SRSESE Viasked
and fast attention. m—— § et e
(c). The C.A. applies offline trained causal weights @ 3 | —==— . o
to online treatments evaluations. 83 s | | 55 [
Chnens (= C'.or oupt
(d). The T.A. aims to keep ordering self-attentions. o

Output Sequences

(c) C.A. : causal attention units (d) T.A. : temporal attention units
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Application - Meso Level Supply-Demand Forecasting

CausalTrans - Causal Attention Mechanism
We transfer the weights of external covariates to causal weights by HTE methods (e.g. double machine learning).

Algorithm 1 Causal Attention Algorithm with DML
Input: Given demand matrix x(: ¢) at a grid v before time ¢, three kinds of treatments includes weekday and

(a) CausalTrans framework

hour slots T'(: t) = {W (: t), H(: t)}, weather vectors W (: t), and holidays one-hot vectors H (: t) External \ %
Output: causal effect coefficients 6 for T'(: t), Oy for W (: t), and Oy for H(: t) v
1: Take O7 as an example, and suppose that a AA group and AB groupon T'(: t)is Taa = Tap = {} o Historical %:& S
2: for all {Tw (to), T (tl)} < {MO’)’L, T'ue, SU’I’L}, {Th(to), Th(tl)} = {1, 24} do (demand/supply) .Q N

Causal Esnmators
(Offline)

3: if Tw (to) = Tw (tl), Th(to) = Th(tl), ?T_Test (:z:(to),:c(tl)) < 0.05 then

4: forallt; € {:ty} andt] € {: ¢} do Or, Ow and Oy
5: Calculate 1st-order differences x(t(, : to) and x(t] : t1)
. ~ ~ »
6: if pKPSS (ZC( 6 . to)), pKPSS (ZC(t’l . tl)) and PT Test( ( to) (t . tl)) > (.05 then Tg% EI‘E:C(AdEI' =
7: Taq.append([(z(t], : to), xz(t] : t1))]) 55 — E.
8: T'ap-append([(x(to), x(t1))]) M3 Attention X
9: end if Clustered L Clustered
. uster
10 end for ponvias [ I B
; i
12: end for d
13: Do DML on T'4 4 and T4 g datasets and estimate treatment coefficients 0 Output Sequences
14: Repeat from Step 2 and estimate 6y, and 6 by different DML. Output Sequences
15;: return 67, Oy, and Oy (c) C.A. : causal attention units

(a) causal attention algorithm

. . , (b) how to work in ConvTrans
step 1: external covariates: weather, holidays and subsidy;

step 1: offline training causal attention;

step 2: build various of control groups and treat groups; . ) . :
P group group step 2: add above weights in multi-head attention

step 3: do DML and get causal attention or weights.
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Application - Meso Level Supply-Demand Forecasting

CausalTrans - Causal Attention Visualization

— demand @320 | [ 00 [ .. | e treatments(rainfall) [ 1.2
demand_diff(24) [0 causal_attention
60 4 E0 probabilistic forecasting
AB Group 2 - 1.0
40 - AA Group 1 AB Group 1 AA Group 2 L 0.8
- 0.6
20
0 A ' .‘ o
g 0.2
sL
_20 7 :" :":.."- ay, ’.'.‘ ‘-..:. E. O% ':‘..‘:"“' e 5 '.: ‘.‘5 : 2
....... Yiescscsssssssstenncssnssannnnnnss® Sucnsunsans Sesssansnnuasnasanng® Y “sansanfaussasssendeessss’s canusnssnaaasass 9% *eeavdsnnsnsnssart Ut c i iaustrannnafen Rwvaiiw v il iusificdees —00
2018-06-25 2018-06-29 2018-07-01 2018-07-05 2018-07-09 2018-07-13 2018-07-17

*“AA group 1” and “AA group 2” are regarded as comparable contexts;

*“AB group 1” and “AB group 2” is control group and treatment group;
Do DML and get causal attention weights.
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Application - Meso Level Supply-Demand Forecasting

CausalTrans - Experiment

(a) Risk_(50%) losses on the retail and ride-hailing datasets.

ConvIrans SegZ2Seq  MQRNN DeepAR  DMVST S T-MGCN TFT CausalTrans
Retail 0.429° 0.411° 0379°  0.386 0403  0.395 0354°  0.352(-0.6%)
Ride-hailing (14, city A, Demand) ~ 0.573 0.550 0495 0499 0524 0482 0450  0434(37%) " h e h .
Ride-hailing (14, city A, Supply)  0.482 0.453 0428 0422 0443 0421 0415  0.393(-5.3%) Use grid search to optimize hyperparameters;
Ride-hailing (1d, city B, Demand) ~ 0.470 0.455 0405 0400 0422 0404 0370  0.361(-2.5%)
Ride-hailing (14, city B, Supply) 0,426 0404 0388 0384 0388 0378 0351 034145% *DeepAR outperforms Seq2Seq and MQRNN
Ride-hailing (7d, city A, Demand) ~ 0.756 0.717 0653 0663 0.664  0.677 0689  0.613(-6.2%) . . .
Ride-hailing (7d. city A, Supply) 0612 0560 0516 0519 0536 0575 0583 0468(93%  because of Poisson and weather covariates;
Ride-hailing (7d, city B, Demand) ~ 0.693 0.627 0574 0571 0590  0.588 0576 0.539(5.6%)
Ride-hailing (7d. city B, Supply) 0568 0519 0499 0501 0503 0525 0528 o4s490%)  CausalTrans outperforms other methods

primarily due to causal estimator DML;

(b) Risk_(90%) losses on the retail and ride-hailing datasets. *CausalTrans achieves lower losses on supply

than demand based on both causal

ConvIrans SeqgZSeq  MQRNN DeepAR  DMVST  ST-MGCN  TFT CausalTrans
Retail 0.192° 0.157°  0152° 05 0156  0.155 o oaxasw  relationship;
Ride-hailing (14, city A, Demand) ~ 0.238 0.208 0205 0205 0208  0.195 0192 0.164(146%) ) - :
Ride-hailing (1d. city A, Supply) 0,212 0.177 0164 0162 0173 0.165 o160 oaaaiias Long-term prediction focuses on unbiased
Ride-hailing (14, city B, Demand) ~ 0.208 0.176 015 0158 0170  0.57 0155  0.145(-6.5%) TR L
Ride-hailing (1d, city B, Supply) 0,205 0.197 0157 0188 0169  0.51 01 01967 distribution estimation.
Ride-hailing (74, city A, Demand) ~ 0.324 0.306 0276 0289 0286 0280 0297  0.244(-11.6%)
Ride-hailing (74, city A, Supply) ~ 0.259 0.233 0207 0204 0237 0248 0237 0173(-152%)
Ride-hailing (14, city B, Demand) ~ 0.288 0,269 0241 0240 0252 0255 0238  0216(-9.3%)
Ride-hailing (74, city B, Supply) ~ 0.214 0.184 0177 0179 0168  0.197 0204  0.153(-89%)
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Application - Climate & Weather

Weather and climate data capture atmospheric and oceanic conditions (e.g., temperature, wind, pressure, precipitation, air
quality) via sensors at fixed or mobile locations.

Due to strong spatiotemporal correlations in climate data, spatiotemporal deep modeling (STDM) techniques are widely used
for short-term and long-term forecasting.

Deep Learning Approaches:

* Air quality inference: Predict urban air pollution.

* Precipitation prediction: Forecast rain using remote sensing.
 Wind speed prediction: Model anemometer readings.
 Extreme weather detection: Identify severe weather events.
Data Types:

e Spatial maps: e.g., radar reflectivity images

* Time series: e.g., wind speed readings

 Event data: e.g., extreme weather occurrences

Example Models:

*Attention models for air quality prediction

*CNNs for detecting extreme weather and precipitation forecasting
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Application - Neuroscience

Various brain imaging technologies — such as fMRI, EEG, MEG, and fNIRS — are widely used in neuroscience research.
These technologies differ significantly in spatial and temporal resolution:

 fMRI: Millions of spatial locations, lower temporal resolution (~2 seconds per measurement)

 EEG: Tens of locations, very high temporal resolution (~1 millisecond)

Data Representation:
 Brain imaging data (fMRI, EEG) are naturally represented as spatial maps or rasters, making them suitable for DL analysis.

Deep Learning Applications:

* Disease classification and diagnosis: e.g., Autism Spectrum Disorder, amnestic Mild Cognitive Impairment, Schizophrenia
* Brain function network classification

* Brain activation pattern classification

Example Models:

e LSTM for Autism Spectrum Disorder detection

* CNN for diagnosing amnestic Mild Cognitive Impairment
* FNN for classifying Schizophrenia
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Application 1: BrainGNN

BrainGNN is a graph neural network (GNN) specifically designed for analyzing functional MRI (fMRI) brain data.
It predicts cognitive states or disease status while providing interpretability by identifying important brain regions and
connections.

Model Highlights:
Node-Level Pooling:
e Groups similar brain regions (ROIs) into clusters based on learned features.

ROI Selection Layer:
* Automatically selects important brain regions contributing to the prediction.

Attention Mechanism: A(l) A(z) AG) A(t)

 Highlights key functional connections between selected ROIs. . o

T Temporal Length

-

W(l) W(2) W(3) W(t) qﬁ'ﬂlf
\. NV\/\\ I :: 2
MM/ AMMNJWW\V'\ 10
fMRI Data . V' IV-MM | A
' I\W: E"_E.
I I =
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ROI Template 1 2 3 Titme (TR) e
Dynamic Graph Transformer for Brain Disorder Diagnosis
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Application

Introduce a model that jointly learns spatial and temporal features from resting-state fMRI (rs-fMRI) using a combination of
graph convolution and recurrent neural networks (RNNs).

Model Highlights:
Spatial Graph Convolution:
 Models functional connectivity between brain regions at each time step, treating brain ROIls as graph nodes.

Temporal RNN:

* Captures the evolution of brain connectivity over time by applying an RNN (such as GRU) on node embeddings.
End-to-End Training:

* Learns both spatial (graph structure) and temporal (dynamic activity) representations directly from raw fMRI sequences.

= Qur proposal: ST-GCN
> Consider both temporal dependency and functional connectivity
> Train on short sub-sequences
» Learns the importance of graph edges to the prediction

----------------------------------

A
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Application

Total Activation (TA) is a method that deconvolves fMRI signals to recover the underlying neural activity-inducing signals by
applying spatio-temporal regularization.

Model Highlights:
*Temporal Regularization:

* Promotes piecewise constant activation patterns over time (temporal sparsity).
*Spatial Regularization:

* Enforces spatial smoothness across neighboring voxels (nearby brain regions).
*Solves an optimization problem balancing data fidelity with spatio-temporal priors. Total Activation igo e S

¢
A

T

c»» He
oy

Total activation: fMRI deconvolution through spatio-temporal regularization
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Content

S5 Challenges and future works
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Challenges

* Latent graph learning

What to do when the underlying graph is not known?
* Learning in non-stationary environments
What to do when the environment changes?

e Scalability
How to deal with large collections of time series?
* Dealing with missing data

How to deal with missing observations within the time series?
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Latent graph learning

Learning and adjacency matrix

x Relational information is not always available
X or might be ineffective in capturing spatial dynamics.

v’ Relational architectural biases can nonetheless be exploited
— extract a graph from the time series or node attributes

A
O \/% : : <‘>
O - " » Graph extraction > O

e |t can be interpreted as regularizing a spatial attention operator.
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Latent graph learning

Time-series similarities

Probably, the simplest ar;proach to extract a graph from the time series
is by computing time series similarity scores.

e Pearson correlation OO0 000

e Correntropy

e Granger causality

e Kernels for time series

— Thresholding might be necessary to obtain binary and sparse graphs.
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Latent graph learning

An integrated approach: learn the relations end-to-end with the downstream task

e as a function of the input data,
e as trainable parameters of the model,
e or both.

This problem is known as latent graph learning (or latent graph inference).

ﬂ-’ﬁ l l P l GILLINGS SCHOOL OF
== GLOBAL PUBLIC HEALTH




Latent graph learning

Direct approach

A direct approach consists in learning A as function &(+) of edge OO0 000
scores @ € RVXN s g
A=¢(P) b = °
Edge scores @ O
— can be a table of learnable model parameters, 00000

— obtained as a function of the inputs and/or other parameters.

-y
|

Q0000

Function £(-) is a nonlinear activation

— it can be exploited to make A sparse.
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Learning in Non-Stationary Environments

Inductive learning

In real-world applications, one often needs to N e Mo
e operate under changes in the network connectivity 15 oAV g NN o AVaNp/aaagh W7
e make predictions for newly added nodes

e transfer the model to different sensor networks (collections of
time series)

Useful in several tasks, like, forecasting, missing data imputation, and virtual sensing.

Attention: Performance can easily degrade if the data distribution of target nodes

e deviates from that at training nodes
e changes over time.
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Learning in Non-Stationary Environments

Transferability of STGNNSs O

Global STGNNSs are inductive and can directly be used in the above Ms:‘“"
settings, provided that the training and target data are similar enough. O
4w
e MP operates on generic neighborhoods by Ms6Pl

MsSG
e MP parameters are shared across nodes '

Otherwise, STGNNs need to be adjusted O

e fine-tuning (a subset of) the weights of the model on the new data %M{ Dec P

e exploiting transfer learning strategies

Attention: Global-local STGNNs reduce the cost of transfer learning

e sharing most of the parameters and finetuning node-specific parameters only
e node embeddings can be regularized to facilitate the learning further.

G. Panagopoulos et al., “Transfer graph neural networks for pandemic forecasting”, AAAI 2021.
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Scalability

The scalability feature

o 8
, @ 8 8
 @Graph-based processing allows us to B
learn a single model... ® @ ~
o o—d\
» ..able to deal with a large collection of O ® ‘ C
. . ® 8 S °
time series... 6 ® ® ‘ ~
: : s w ~ .
e ...while accounting for the most relevant & B &
N . ® & N -
* relational information. /N 9
L\ o o
® ®
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Scalability

The scalability issue

Spatiotemporal data span — as the name suggests —two dimensions:

e the spatial dimension, corresponding to the number of time series (sensors).

e the time dimension, corresponding to the number of time steps (humber of observations
acquired per sensor).

In the real world, dealing with thousands of sensors acquiring data at high sampling rates is
quite common (e.g., smart cities).

» A large amount of data needs to be processed at once.

» |n particular, to account for long-range spatiotemporal dependencies.
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Scalability

Graph subsampling

Computations can be reduced by training on subgraphs of the full network,
e.g., by
e sampling the K-th order neighborhood of a subset of nodes;

e rewiring the graph to reduce the total number of edges.

Mostly adapted from methods developed in static graph processing (e.g., 2 references below).

* Subsampling might break long-range spatiotemporal dependencies.

* The learning signal may be noisy.
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Scalability

SGP: Scalable Graph Predictor

Extracted representations can be sampled uniformly across time and space during training.

™
O —
o 2 o z — o o
.
O : N—ams s s —] %%
l_
o © o O <ZE
m -
SNONE] e S [~ @ T g [ 0%
g O 5
- @ = g (T 7 =, | 090
o
: W4 "T' | |
R & | Echo State Network _-—/J s, X

v" The cost of a training step is independent of W, N and |E;|.

v’ Performance matches state of the art.
x More storage space is required, as the number of extracted features is much higher than d..
x More reliant on hyperparameter selection than end-to-end approaches.
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Dealing with missing data

The problem of missing data

So far, we assumed to deal with complete sequences, i.e., to have valid observations associated
with each node (sensor) and time step.

However, time series collected by real-world sensor networks often have missing data, due to:

e faults, of either transient or permanent nature;
e asynchronicity among the time series;

e communication errors...

Most forecasting methods operate on complete sequences.

— We need a way to impute, i.e., reconstruct, missing data.
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Dealing with missing data

Time series imputation

The problem of reconstructing missing values in a sequence of data is often referred to as time
series imputation (TSI).

Xt:t+T Xt:t+T
Ou. "\, ~ » M
. ’l TSI Method >
O T\ INANST ! ) o\ NANS Y
':::::::::::tl>me ::::::::::::the
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Dealing with missing data

Time series imputation

- . -
~ " - "' LY ]
- - - L) 7
“ -

i i
Liggr 77 time Myyyr 77T time

Time series imputation

Given a window of T" > 1 observations X 1 with missing values, the time series imputa-
tion problem consists in estimating the missing observations in the sequence

x! ~ p(xl| Xo7) Vi,tsuchthatm! =0

with X_7 = {z! | 2! € X_7 and m! = 1} being the observed set.
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Dealing with missing data
Deep learning for TSI

Besides standard statistical methods, deep learning approaches have become a popular
alternative, in particular, autoregressive models (e.g., RNNs).

A
<
<

1
1
1
(9
!
J \
:‘
\
Iy
Iy
r o,
! \
! \
~
—

l
&
I

— Effective in exploiting past (and future, with bidirectional models) node observations...
~ ...but struggle in capturing nonlinear space-time dependencies.
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Dealing with missing data

Forecasting from Partial Observations

A more direct approach to the problem is to avoid the reconstruction step and consider
forecasting architecture that can directly deal with irregular observations.

The mechanisms used in imputation models
can be adapted to build forecasting
architectures.

— Such models can be used to jointly impute o
missing observations and forecast future
values. T thE
-W { t+H
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How to succeed in this course?

.Module):
(self):
(Net, self).__init__Q)

f.convl = nn.Conv2d(:3,
elf.pool = nn.MaxPool2d(2,
elf.conv2 = nn.Conv2d(5,
w *

f.fc1 = nn.Linear(

elf.fc2 = nn.Linear( . )

elf.fc3 = nn.Linear(54, )

(self, x):

self.pool(F.relu(self.convi(x)))
1f.pool(F.relu(self.conv2(x})}

x.view(-1, * 5 * 5)

F.relu(self.fcl(x))

F.relu(self.fc2(x))

self.fc3(x)

o® ’

X

Practice

Explore

Discuss
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