Bios 740- Chapter 10. Image Registration

Acknowledgement: Many thanks to Mr. Mingchen Hu for preparing some of these slides. I also
drew on material from Dr. Gang Li’s presentation and the lecture presentations of StanfordCS231n as
well as content generated by ChatGPT.
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Image Registration

< Definition: Image registration is the process of aligning two or more images into a common coordinate system so

that transformed images are similar to each other.
s Applications:

CAR)

L)

» Remote sensing (e.g., satellite image change detection)
» Object tracking and video stabilization

 Augmented reality and autonomous navigation

s Key Types:

** Rigid vs. Non-rigid

¢ Intensity-based vs. Feature-based

¢ Intra-modal vs. Inter-modal

>.-11 T8 TCLIT

CAR)

)

CAR)

¢ Medical imaging (e.g., MRI to CT alignment, longitudinal studies, tumc o

* Reference,
* source or
* fixed image

4 Multimodal registration \

@ @

\Images from different modalities /

7

Interpatient registration \

T

\ Images from different patients /

Darzi, F. and Bocklitz, T., 2024. A review of medical image registration for different modalities. Bioengineering, 11(8), p.786.
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* Target,
* subject or
* moving image

4 Unimodal registration A

\ Images from same modalities /

/Intra-patient registration )

Sl

\ Images from same patient /




Registration vs. Other Image Transformation

*Image Registration:

» Aligns images spatially using geometric transformations  ~  _ _
(e.g., translation, rotation, deformation). f(x)=f(T(x)), forall xeQ

 Requires modeling spatial correspondences and often  \when ¥'= T(x) isaone-to-one transformation of x.
uses optimization.

» Aims to overlay structures between images. r
*Other Image Transformations: H L
* Include operations like contrast enhancement, histogram .. ., _ .. e
equalization, filtering. SEN=TUEN]
» Do not alter spatial coordinates of pixels. f()”c) =T[f(%)], foralliEQ
« Aim to improve image quality or extract visual features.
-Key Difference: Registration manipulates image geometry to  when T[y] is a monotonic function of 7.
match another image; other transformations adjust pixel
intensities or features without spatial alignment.

Restored Image 2
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Key Components of Registration

(1,8

> Let / : Q = RY be the moving image.

> Let /: Q — RY be the fixed /reference image.

» d indicates the number of channels (e.g., d = 3 for RGB).
» ) CR"is the image domain.

» y € Q: coordinates in the moving image h = {k(y),y € Q}. 0
» x € (1 coordinates in the fixed image (reference system) Transformation
model
l = {IQ(X),X € Q}
» 10— Q: push-forward (Lagrangian) transformation

aligning h to  such that y = y(x). y
» ¢! = b pull-back transformation such that x = ¢™2(y). ‘

Similarity cost

function

(1)

Similarity Cost Function:

> Measures alignment: e.g., SSD, Mutual Information
> S(h(e(x)), h(x))

Image
Registration

> Goal: Find ¢* that minimizes £(yp).
olinreulnis > Methods: gradient descent, Gauss-Newton, L-BFGS, etc.

Methods . . .
» Often uses multiresolution strategies.

©* = argmin L(p)
¢

Y

" E(p) = S(h(e(x)), k(X)) + AR()

Regularity cost
function Regularity Cost Function:

(iii)

P Imposes smoothness or topology preservation
> Rip)
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Four Key Questions of Registration

fixed moving — -
» What is a transformation model ¢ : 2 — € ? R W R Translation only
Ll B ELANE
. .. ; 4 250 By ¥
» What is the similar cost function ~ S(h(e(x)), k(x)) & ol WAL
» , aPrn "y s ‘
» What is the reasonability/regularity function R((p) o A & éiq"“fs._'f.% Translation
i o ‘i A | + Rotation
» How to optimize (’0* = arg min ﬁ((p) ? ) ' P4 Rigid transformation
SO Vg :~

Diffeomorphic
Mapping

e ESﬁmate N oW ) Perfusion Thickness Perfusion Thickss
‘ P : Individual Data: Accurately Group Data Stored in
to MOVIng Image , . Transformation Coregister to T| Anatomy Multivariate Template
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Parametrized Transformations
Image Transformations | .

Translation Rotation Scaling

* \ translation
ﬁ shear

Sheering Plane Reflection Deformation rotation

~

~

~

~

~

~
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~—

ail a1z ix X
general affine "I =1aa ax t v .
0 0 1 1
ONCOLOGYMEDICALPHYSICS.COM : 1 0 0 -‘ 1 0 O .
https://oncologymedicalphysics.com/image-registration/ Rotation around x axis [ 0 axp ay | = |0 cos® -sinf
10 a3 am] L0 sinf cosf |
/ > , 5 i :
(x \ (all aQ12 A3 tx\ (JC\ an 0 a cosO 0 sinf |
/ Rotation around yaxis| 0 1 0 |=]| 0 1 0
general affine o= ty 71 Lo Sl e A e
< asz]p dsn a33 I 4 . T =
| an 0 cosO —sinf 0
\ 1 \ 0 0 1 \1 Rotation around z axis | ay ay 0| = |sin@ cos@ 0
Lo il L8 0 1
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Parametrized Transformations: Example

interpolated data, m=[ 192 128] translation interpolated data, m=[ 192 128] scale
| | | | Sebaaiiy | '

PEAR: PP an
Pl S

rotation
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Landmark-based Registration

fixed movin _ _
; LY » Given landmark pairs {(x;, yi)} ¥,

» Find ¢ such that: ¢(x;) = y; for all i

» Aligns images based on corresponding landmark points.
» Landmarks are user-defined or automatically detected key points.
» Useful in medical imaging, anthropometry, and morphometry.

The basic idea of landmark-based registration is to
determine a transformation ¢ such that, for a finite number
of distinctive features (landmarks), any feature of the

moving image is mapped onto the corresponding feature of
the reference image.

b Q — RY h:Q—RY

(P(Xi)%yj:@(xi)‘|‘eia Vi:].,...,N
I2 = {IQ(X),X - Q} h = {Il(y),y c Q}

E(p) = S(h(p(x), b(x) + R(p) mumm | min ) llele) =yl + AR(P)

Nonparametric Regression
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Landmark-based Registration £(o)
¥
» Rigid: o(x) = Rx+t, R=exp(f[w]x), t€R>?

N
: 2
where [w]x is the skew-symmetric matrix of rotation vector w. mg',“ Z lo(xi) — yill* + AR(p)
i=1

p» Affine:
o(x) =Ax+t, AcR¥3 tecR?

» Nonparametric (I%.g., RKHS)
o(x) = Ax+t+ Y wih(|Ix — xill)
i=1

B r’log(r), n=
r!

> » Bending Energy (TPS):

ag(p 2 82(,0 2 62(,0 2
)= | {(a—) “2(50) *(a4) ] o
» Elastic Regularization:
" o) = [ (T4 25 o) o
S(Il((P(X))a IZ(X))-Z ”(P(Xf) - yl'”z ) » Diffusion Regularization:
=1

Rip) = /Q ||
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Landmark-based Registration: Example

L ={h(x),x € Q} h ={h(y),y € 2} T )&LM
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(1) Small vs Large Transformation Models
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» A small transformation model is characterized by small local Transformation Model %m;“/lffjge Dﬁigfzes of D;grifs of
. - elormartion ecdaom eedom
rotations and small local strains. oD 3D
» A large transformation model allows for large local rotations Rigid Small 3 6
. Affine Small 6 12
and Iarge Iocal strains. d-th order polynomial Small (d;'z) (df')
Cubic B-splines Small (%] +3)? (1E]+3)°
D ISCUSSIOHS Fourier Series Small 2(2h +1)* 3(2h+1)°
- - - H : 2 3
» While large transformation models are more expressive and Displacement Field suall N W
flexib_le, small transformation models are often sufficient in Viscous Fluid (vector Large o N2 I8
practice. field)
Stationary velocity Large varies varies
. ] ] ] ) (momenta)
» In medical imaging, many anatomical structures differ only by stationary velocity Large e 3N
small deformations, making small transformation models very  (vector field)
f f . Time-dependent Large varies varies
efrtective. velocity field
(momenta)
Time-dependent Large 2N?T 3N3T

» Small models are also simpler, involve fewer degrees of
freedom, and are computationally efficient to implement.

velocity field (vector

field)

(Song, 2017)




Rigid, Affine, and Deformable Transforms

Rigid Transformation:

P Preserves distances and angles

» Involves translation and rotation (no scaling or shearing)
» Few parameters (e.g., 3in 2D, 6 in 3D)

P Fast, often used for intra-subject alignment

Deformable Transformation:

» Allows local, nonlinear deformations

» High number of degrees of freedom
Affine Transformation : » Captures fine-grained anatomical variations

» Includes translation, rotation, scaling, and shearing » Computationally more expensive
» More flexible than rigid

» 6 parameters in 2D, 12 in 3D

» Good for global alignment

Moving Fixed

a r||d, b afflne, and (c deformable registration
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Deformable Transformation Models

» Deformable transformations allow for spatially varying,
nonlinear deformations of the image domain.

» Represented by a dense displacement field ¢ : Q — R" such
that x — ¢(x).

Mathematical Formulation

» Additive Form: ¢(x) = x + u(x) where u(x) is the
displacement field.

> Diffeomorphic Form: ¢ = ¢; where {¢:}:c[o1] is a
time-dependent flow satisfying:

Orde(x) = ve(Pe(x)), do(x) = x
» A diffeomorphism is a smooth, invertible transformation with
a smooth inverse: ¢ : Q2 — Q.

» Ensures one-to-one mappings and topological consistency.

» Commonly used in medical image registration to preserve
anatomical structure.

An example of B-spline transformation model is given by
e(x) = x +
213 0 ngn—o 2731—0 B, (x1) B, (x2) B, (x3) Ai+1,j+mk+n

where X=(xq, X5, X3), i = lJ—l]—lJ—lk lJ—
1, u———(l+1) v———(]+1) W———(k+1)and
all a € R3 are the parameters B-spline basis functlons are

—At2
defined as By (f) = —L¥30 73 p () - 306744

6 B1 6
—2¢3 2 3
() = =20 and By(f) = —for0 <t < 1.

These basis functions are derived using the Cox-de Boor
Recursive Formula. The B-spline Transformation Model is
often referred to as Free-Form Deformation (FFD). FFD
describes nonlinear deformations using a regular grid of
control points and B-spline basis functions. Local control
enables smooth, flexible modeling with a moderate number
of parameters.




(1i1) Similarity Cost Functions

Similarity cost functions measure how well two images align after transformation. It is crucial for optimization-based
registration algorithms. Choice depends on modality, noise level, prior segmentation, and specific registration goals.
Intensity-based:

» Compare voxel intensities directly across images.

» Assumes similar tissue types or structures have similar intensity patterns.

» Examples: Mean Squared Error (MSE), Normalized Cross-Correlation (NCC).

» Best suited for mono-modal registrations (same imaging modality).

Feature-based:

» Compare higher-level features such as edges, corners, contours, or landmarks.

» Extract salient image structures before similarity assessment.

» Examples: Mutual Information (MI) using gradient information, landmark-based distances.
» More robust to intensity distortions, multi-modal differences, and noise.
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(11) Similarity Cost Functions: Examples

Mean Squared Error (MSE) Normalized Cross-Correlation (NCC)

1 T 2
Duse(h, h) = — [ (h(x) — h(x))? dx ~ (Jalh(x) = h)(k(x) — k) o)
vse(h ) = o) /Q(l( )~ b)) Pucelh B) = =10 —112dx) (Jo(b(x) — B)2 d)

< Assu_m_es corresponfjing p_ointg have similar intensities. —p, \jeagyres the degree of linear correlation between intensity
P Sensitive to global intensity differences

: patterns.
(brlghtness/ contrast changeg). _ _ » Invariant to linear brightness and contrast changes.
> Sl_mple 0 Comp!“e_ an(_j differentiable, suitable for » Applications: Robust mono-modal registration under
gradient-based optimization. varying

» Applications: Mono-modal rigid, affine, and

- VY lighting conditions.
deformable registration.

Mutual Information

Images Pre-processing Registration Framework ( )
.. Pn,p\1J
—— o Dwvi(h, k) = i,j)lo - ,
. Image gradients | similarity l\/leasure\ mi(h, k) iZJpll’lz( J)leg (Pll(l)pb(j))
. Entropy images » Captures the statistical dependence between intensities.
. Phase » High MI indicates strong dependency and good alignment.
. Multi-resolution » Suitable for multi-modal registration (e.g., CT-MRI).
. Attribute vectors o » Sensitive to histogram estimation quality.
g/ N optimization ) » Applications: Multi-modal rigid and deformable registration.
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(111) Regularity Cost Functions: Overview

» Regularity terms are added to prevent unrealistic deformations such as folding, tearing, or overly sharp transformations.
» They enforce smoothness, invertibility, topology preservation, and physical plausibility of deformation fields.
Common categories of regularity:

» Diffusion Regularization: Promotes first-order smoothness.

» Elastic Regularization: Models material-like deformation behavior.

» Bending Energy Regularization: Controls curvature and smooths second derivatives.

Regularization is typically weighted relative to similarity measures in variational formulations.

» Penalizes spatial gradients of the deformation.
Sifusion(¢) = / IV(x)||?dx  » Encourages globally smooth, continuous transformations.
Q » Simple and computationally efficient, often used in non-rigidregistration
Diffusion Regularization frameworks.

Sotcs _ 2 1 \(t 24, P> Derived from linear elasticity theory.
clasic(%) /Q,uHsym(Vgo)H FAW(Vep)) dx » sym(Ve): Symmetric part of the Jacobian matrix models local shear and

Elastic Regularization stretch. p controls shear resistance; A controls resistance to volume change.

» Penalizes the Laplacian (second derivatives) of the deformation field.
» Leads to very smooth, nearly affine transformations locally.

_ o » Frequently used in spline-based models such as B-spline.
Bending Energy Regularization
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Advanced Regularizations

» Hyperelastic Regularization: Extends elastic models to very large deformations, preserving topology.
» Diffeomorphic Constraints: Ensures transformations to be invertible and differentiable; critical for brain/organ mapping.
» Sobolev Norm Regularization: Combines multiple derivative orders for fine control over smoothness and stiffness.

Shyperelastic(¢) = | W(V(x)) dx where W is a nonlinear strain energy density.
Q » Preserves topology (no folding or tearing).
» Suitable for highly deformable anatomical structures, e.g., abdominal organs.

1 i i i i i
where V is a reproducing kernel Hilbert space (RKHS) imposing smoothness.
Sdiffeo(V) = / [ve ||$ dit
0 Orpr(x) = ve(pr(x)),  wolx) = x

» Critical for topology preservation, especially in brain mapping, longitudinal
studies, and large deformation analysis.

2 2
ol p = Z /QlDa‘P(X)l dX  \where o is a multi-index.

|| <k » Allows fine control over smoothness (first- and second-order together).
» Useful in large deformation models requiring flexible regularity constraints.
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(iv) Optimization Techniques

u* = arg min (E(h(p), k) + AR(p)) = arg min E(p)

u(x)=p(x)—xeH

Gradient Descent Methods:

» Compute gradients of the objective function w.r.t.
deformation parameters. Pk+1 = Pk + hi.
P Iteratively update to minimize the total energy.
Newton and Quasi-Newton Methods:

P Use second-order derivatives (Hessian) or approximations.
» Faster convergence for well-behaved,problems.
Multi-Resolution Schemes:

P Solve registration problem at coarse-to-fine scales.
» Improves convergence and avoids local minima.
Variational and PDE-based Methods:

» Formulate registration as solving Euler-Lagrange equations.

» Ensures strong theoretical grounding

d

I =0 Vv

e=0

—E(u+ev)
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w(-)eH

Demons fluid:
h=—-G7 T]:(VED)
Demons elastic:

h=—G* (P 'VEp + VER)

Sobolev H1:
LL =1d - A
Vin B = (Id — AA)' VE

Sobolev H”:
LL = Z L0120

Vi<E = (LL)" VE
=G,* VE

GaulR-Newton:
h=—71 (JeTJe)
for SSD+diffusion:

' VE

1

h = —7(VIsVI] —AA) ™' VE

PDE-Inspired, semi-implicit:
h=—7 (Id+7AVER) "' VE

for diffusion:
1

h=—7 (Id— 7)) VE

Preconditioned Descent:

h=—-7 P 'VE




Image Registration Evaluation

» Evaluation measures the quality of the
registration.

» Key aspects to evaluate:

» Geometric accuracy: how well anatomical
features align.
» Intensity

consistency:  voxel-level

similarity post-transformation.

» Smoothness and physical plausibility:
absence  of
discontinuities.
Evaluation is critical for clinical applications
and model validation.

unrealistic ~ folding  or

* Interest-point based
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Name

Landmark
Error

ROI Overlap
Evaluation

Average
Volume
Difference

Average Sum
of Squared
Differences

Intensity
Variance

Average
(Normalized)
Correlation
Coefficient

Average
(Normalized)
Mutual
Information

Form

N
MLE = > 116() — ail
i=1

|SinT;|

che(sil TL) =2 |Si|+|Ti| '

11
AVD],R = le WTl (hl](X))
=

M

10U(S;, Ty) =

|S;inT ;|
[S;UT|

2
1
_ﬁz Tj(x)>

XER

ASSDjr = %Z Z (Ti (hi j (x)) - TJ-(X))2

i=1 x€ER

1Vi(x) = ﬁ}]?ﬁl T; (hl-j (x) — Ave(x))2 where Ave(x) =
T Ti(hyj ()

Ywer(Ti(hij(x) = T}) - Taer(Ti () = T))

ACC]"R = M
[ Saen(Tihiy 00 ~ T’ - Zaenl 0~ T5)°
AMI, 5
M
1 pij(Ti(hij(x), T;(x))
== i (T; ( hij(x) ), Tj(x)) log
M;; : ( ' ) ' Zpi(Ti(hij(x))'pj(Tj(x))

Value for
perfectly
registered

images

o

The higher
the better




Major Limitations

Computational Burden: _ Motivation for Newer Approaches:
»High computational cost due to per-pair » Development of deep learning models to directly predict
, optimization. _ o _ deformations.
* saﬁfgndant calculations when registering multiple » Aim to bypass per-pair optimization with a single trained
++ Real-time or large-scale applications become model._ : . -
impractical. » Achieve faster inference and scalability for clinical or
real-time use.

Moving 3D Image (m)

Non-Convexity of Objective Function:

“*The search space for transformations (e.g., . oy RSSO e (0 l voved: o)
displacement fields, diffeomorphisms) is highly \H
non-linear. Fixed 3D Image (f) ﬂ =5 s _).

¢ Objective functions have multiple local minima. ;

s+ Convergence depends heavily on initialization : I
strategies. A Lanfmo®) |

¢ Regularization must be carefully balanced to avoid i
over-smoothing or instability.

Auxiliary Information (Optional)

1
Fixed Image Moving Image J Moved Segmentations
Segmentations (s;)  Segmentations (sp,) ! (Sme @)

i
MY '> | Spatial
>4 :, ey | Transform

Lseg (Sf' Sm °© d))
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2. ConvNets based Registration
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Timeline of DL-based Registration

Classification of Medical Image Registration — supervised | | Unsupervised Weakly/semi-
methods MiRe DL-based DL-based supervised DL-
& MiReg MIReg based MIReg
|
[ | | | | |
Modalities of input i::r::(o T::::: Dimensions of A::t:l?i::zt(:;gr:;:‘to Nature of Adopted
images 08 (pasIonty input images 8 . deformation methodology
atlas) Lung, ..)
Deep similarity Deep reinforcement Transformer-based
Unimodal metrics-based learning-based MiRe
crrer, Intra-pati 2002 Rigid Traditional method s e g
MRI/MRI, — Intra-patient — 2D/2D —{  Rigi —{ Traditional methods
US/US...) Number of Publications Over the Years
| - élassical Ir‘nage Regxistration ‘
00 B Deep Learning Image Registration
Multi-modal .
ulti-moda - i @
; Non rigid Deep-Learning-based|  § .,
(CT/MRI, Inter-patient 30/3D (deformable) sthiorl g
US/MRI...) S 400
g 300 4
£
2 200
—{ Patient-To-Atlas | '~ 2D/3D 100
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Learning-based Image Registration

Key ldea:

» Train a neural network on a dataset of image pairs by optimizing a global loss function.
» During inference, apply the fixed trained network weights directly to new image pairs without further optimization.

Advantages: - |
» Implicit Regularization: = |
» Diversity in training data smooths the loss landscape. o |
» Reduces overfitting to noise or local artifacts. " .

100

Article Count

P Better Optimization Landscape:
» Pretrained weights help escape poor local minima.
» Transfer learning and advanced optimizers further improve convergence. ®

40

» Fast Inference: -

20

» Asingle forward pass yields the transformation. 7=

» Avoids time-consuming iterative optimization during testing. i mis ol om0
(Chen et al., 2024)

80
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Network Architectures for Deep Registration

Early Networks:
» Encoder-based architectures initially served mainly as feature extractors.
» Replaced hand-crafted features in traditional optimization frameworks.

Impact of U-Net:

» U-Net introduced encoder-decoder designs ideal for dense prediction tasks like deformable registration.
P Skip connections help preserve spatial information across scales.

» Allows for pixel-level accurate deformation field predictions.

Rigid/Affine Registration Networks:

» Encoder-only networks predict low-dimensional transformation parameters.

» Typically output 6 parameters (2D rigid) or 12 parameters (3D affine).

P Loss function minimizes alignment error between transformed and target images.

Supervision Targets:
» Dense displacement fields for training deformable registration models.
» Transformation matrices (rotation, translation, scaling) for rigid/affine registration.
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Spatial Transformer Network (STN)

Key COﬂCept Localisation net (md
» STN is a differentiable neural network module that spatially

transforms feature maps. 0 j
Sampler

» Enables models to learn transformations (scaling, rotation,
» Allows end-to-end training without requiring manual preprocessing. Spatial Transformer

translation) during training.

Components of STN: ]
» Localization Network: Predicts transformation parameters 0 é}\., h\. %a,,, q
(e.g., 6 parameters for affine transformations). :
» Grid Generator: Generates a sampling grid based on predicted 6. e v L™ Z

» Sampler: Applies the grid to the input feature map to produce the
transformed output.

(a) (b) (©) (d)

Impact:
P Facilitates unsupervised registration by learning spatial transformations directly

» Popular in tasks like image classification, object detection, and medical registration. -“
6
STN has led to a shift towards developing unsupervised methods that do not rely on m

ground-truth transformation.

Jaderberg, M., Simonyan, K., Zisserman, A., & Kavukcuoglu, K. (2015, June 5). Spatial Transformer Networks. arXiv.Org. https://arxiv.org/abs/1506.02025v3
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https://arxiv.org/abs/1506.02025v3

Supervised vs. Unsupervised Learning

Two Broad Categories

» Supervised Methods

» Use ground-truth transformations (matrices or dense displacement fields).

» Approaches leveraging landmark correspondences or anatomical label maps are still supervised.
» Unsupervised (Self-Supervised) Methods

» Do not need ground-truth transformations.

P Train by minimising the discrepancy between the deformed moving image and the fixed image.

Rise of Unsupervised Methods via Spatial Transformer Networks (STN)
» Introduced a differentiable module to learn spatial transforms inside neural nets.
» Enabled true unsupervised/self-supervised registration: end-to-end training with image-similarity losses.

Benefits of Removing Ground-Truth Requirement

» Eliminates costly generation of target transformations.

» Allows networks to explore richer deformation spaces.

» Easier enforcement of smoothness, invertibility, and topology preservation.
» Provides flexibility to adapt across modalities and datasets
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Paradigm for Learning-based Registration

Dol Regisrion (CNEN €L AL, 2024) iy Regisraion «+ For affine/rigid registration methods, neural
| network encoders are used for feature extraction and
Mong g Movizg e fully connected layers are used to output the

i parameters of the predicted transformation.

Parameters

|
|
|
|
 fow I _.%_’Ffiﬁjwm % 0S - - -
fintn | G T ¢ For deformable image registration (DIR), neural
d |
|
|

Deformation Ciround Truth
Deformation

upervised Learning

A networks with both encoder and decoder are used.
The result is a deformation field of equal sizes to the

R Cameaton Y
Fixed Image P~ ) Fised [mage

S

Fixed hmage l Moveng hmage | Fised [mage

_________________________________________ I e S S S NS I S ) .

) | input images.

5 Moving Image : Moving Image

J | e . . .
e | 4§; I} > In the supervised setting, the network output is

$ "@*u*@ | T compared to ground truth transformations generated
=~ — e Nerel . from synthetic transformation or traditional image

registration methods using a loss function.

# Loss Function | | v Loss Fnction 4

> In the unsupervised setting, the predicted
transformation is used by the STN to warp the
moving image, and the transformed image is then
evaluated against the fixed image using a loss
function.

Figure above illustrates the conventional paradigm of
learning-based rigid/affine and DIR with f the following
components:

* Moving and fixed images as input

» A deep neural network

« STN (for unsupervised methods)
A nction

° AIC J
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Local Similarity Measures in Deep Registration

Why move beyond MSE?
» Mean-squared error (MSE) ignores local intensity structure.
» Local similarity measures capture fine spatial correspondence.

Local Correlation Coefficient (LCC)

» Computes Pearson correlation in sliding windows W.

» Robust to bias—field and intensity non-uniformity in mono-modal MR.

» Implemented in deep nets via windowed convolutions = fully differentiable.

Local Mutual Information (LMI)

P Estimates mutual information within non-overlapping patches.

P Suited to multi-modal registration (e.g., CT-MRI).

P Patch-wise computation lowers memory vs. full 3-D histograms while remaining differentiable.

Trade-offs
» LCC & LMI improve alignment quality but increase computational cost compared with MSE.
» Choice depends on modality, GPU memory budget, and required accuracy.
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Quicksilver: IR as a Regression Problem

* Idea: Optimization 1s slow, so let’s do prediction instead

= “

- Conv + PRelLU - Dropout

Input: stacked patch

L H

- Maxpooling/Unpooling I:l Conv

Possible choices for what to predict: * Introduces a deep learning-based approach for fast deformable
. Local displacement ®(x) = x + u(x) image registration by predicting deformation models directly from
image appearance.

- Stationary velocity field &, = v o ® _ o _
« Momentum fields m = LTLv * Predicts the momentum-parameterization of LDDMM, enabling
patch-wise prediction while preserving theoretical guarantees like

diffeomorphic mappings.

 Provides a probabilistic version of the prediction network to
estimate uncertainties in predicted deformations during testing.

Yang, Xiao et al. “Quicksilver: Fast predictive image registration - A deep learning approach.” Neurolmage vol. 158 (2017): 378-396.

d01:10.1016/].neuroimage.20 0/.008
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Two-step Training Pipeline of Quicksilver

In: Bx1x15 Out: B x 64 x 8* Out: B x 128 x 5%
h

Initial momenta prediction (trained first) Correction momenta prediction (trained second) e | NEEE I I
: : ; : : T h sidiall| | [ssbial| | f:sdis
" | | | Final {Bilay : E - E-, E_, g
| | ; | ina v I P OJE B MElE N E
gg . ] i . c momenta AR | = S G ] : ]
=" ol ge|  niell | esllgel [ ] — , S | | sl kst |t
oo dEe momenta | st o ’ I |
EEEn E-F- i | o0 ¢ 2 ! ;2
s [ ol =013 [ ] 1AL ) - i
%ﬂt / - ' Correction | il
- momenta | sl
apply backward warp ¢ To® Out Bx1x15 = ou: 8128 ¢ % o 8250
3D (probabilistic) netwo Fi}dar(h:ﬁltgctarg DA
QUiCkSilver @ Input patches Py, Pr € R®***1> (moving / target)
Step 1:Train Prediction Network Train on original moving—target pairs ° Tin 3-D E“°°"e’s[ (no welght sharing) 3 ]
. - ey .. . e 2 blocks each: | 3 x (3° Conv + PReLU) — 2% ConvVstrige=2
using ground-truth initial momenta frqm full LDDMM optimization. o Channels: 1 - 64 - 128
Step 2: B-aCk'Warp Targets ShOOt prEdICted momenta fﬁgred to get @ Feature fusion — concatenate encoders — 256-ch latent tensor.
deformation ® and warp each target back: T'=T ~®. o Three Symmetric Decoders (m,, m,, m,)
Step 3:Train Correction rI;Idetwork Feed (moving, T ') patches; supervise o Mirror of encoder with transposed-conv unpooling Channels: 256 —
with residual mg — My~ to learn the momentum error. 128 = 1

o Final conv linear (no activation)

At inference: run Prediction — Correction, add the two momenta,

] . . @ Regularisation Dropout d = 0.2 after every conv (Bayesian MC-Dropout)
then shoot once for the final diffeomorphic map.

@ Loss — voxel-wise ¢ (i, m*)

@ Capacity — 97 360 kernels 21.8 M learnable params, trained with >10°
patches.
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Quicksilver

(1) Moving (2) Target (3) LDDMM (@)LP (5)LPC (1) Moving (2) Target

(a) LPBA40 (b) IBSR18

Example test cases for the image-to-image registration.

Deformation Error w.r.t LDDMM optimization on T1w-T1w data [mm|
Data percentile for all voxels 0.3% 5% 25% 50% 5% 95% 99.7%
Affne (Baseling) | 0.1664 046 09376 | 14320 | 200 | 35081 | 6.5
Source  Target LDDMM Predicted Uncertainty TiwTlwlP | 0038 | 00933 | 0184 | 021% | 0308 | 069 | 136l
TlvTiwlPC | 0089 | 00777 | 0186 | 02318 | 0338 | 05803 | LI5od
Atlas-to-image registration example. The coloring indicates the ThwTowlp | 0054 | 057 | 02847 | 0426 | 06057 | LONI | 20402
level of uncertainty, with red = high uncertainty and blue = low TyTowipc | 0050 | 013% | 02785 | 040714 | 0585 | 09701 | L93%2
uncertainty. TlwTowIP, images | 00660 | 01780 | 0351 | 0550 | 0508 | 152 | 2346
TiwTow IPC, 0images | 00634 | 00707 | 03386 | 0500 | 0737 | L1099 | 23607
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VoxelMorph

VoxelMorph is an unsupervised CNN-based DIR method for MRI brain atlas-based registration. The architecture uses a U-

Net-like architecture. Wiking 3D agein

© Inputs: m: moving volume f: fixed volume

go(f,m) Registration Field (¢) l Moved (m o ¢)

© CNN gy(f, m): UNet-style encoder—decoder outputs dense
displacement field u.

Segmentations (s¢) ~ Segmentations (sy)

(Sme¢)

Fixed 3D Image (f) TSpa';ial 3
. . ransrorm

© Deformation map: ¢ =Id + u (voxel-wise offsets). _
@ Spatial Transformer: Warps m to mo¢ with trilinear
interpolation (fully differentiable). Limoon(®) !
- Lim(fmeod)
© Training losses |
Y |mage similarity: MSE or local CC. Auxiliary Information (Optional) E

o Smoothness: ||Vu||2 Fixed Image Moving Image E Moved Segmentations

e Optional Dice term if segmentations available. N
patia

> | Transform

O Optimization: Single SGD training on {(f;, m;)} amortised
registration.

@ Inference: One forward pass: <1 s GPU / <1 min CPU.
Balakrlshnan G., Zhao A, Sabuncu M. R Guttag J., & Dalca, A. V. (2019) VoerMorph A Learning Framework for Deformable Medical Image Registration. IEEE Transactions on
001.0rg/10

A

- ing NLLD
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https://doi.org/10.1109/TMI.2019.2897538

DUNC

VoxelMorph

» The unsupervised loss function consists of two components for a regularization parameter A:
Lys (f; m, ¢) = Lgim (fr m, ¢) + ALsmootn (¢)

» L, can take either of two forms:

» Mean squared error: MSE(f,m o ¢) = l—;lzpeﬂlf(p) — [m o ¢p](p)]?

2
Yp,(f()~F ®) )([medl(p)—[m °$](p) : : :
[ p‘( : - IZ )( el f] : )] > Where p; Is the intensity
[Sp,(r @0 -F @) |, (Imed - 291 )) ]
of the i-th voxel and the local region is an n X n x n cube, f(p) = %Zpif(m) denote the local mean intensity
Image. This choice is more robust to intensity variations across scans and datasets.

> Local cross correlation CC(f,mo ¢) = X eq

» \We encourage 621 smooth displacement field ¢ using a diffusion regularizer on the spatial gradients: ..., (®) =
Zp€Q| |Vu(p) | |

> Optionally, auxiliary information such as anatomical segmentations s, s,,, can be leveraged during training. The loss
function can be defined as follows, where y is a regularization parameter:

La(fm; m, S¢, Sm. ¢) = Lys(f,m, ) + VLseg(Sf: Sm ° P)
> The segmentation loss L, over all structures k € [1, K] is defined as L..,(s/, 5, @) = —%Dice(s", sk o ¢)
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VoxelMorph Performance

1.0_|!!!!r1!!!!!lflllll'l1!'1..r1..r'.!l.ll.l.l|.l!!'!!'!.f'.!l..rl.l!I.l!.l!!'!.f!.r'!.rl.ll.l.ll.l!!'!.'!!!!!!!l!l!!
e T S

0.8F =

00.-[]]4
oe-—m-c
m-
e -
:: o
_m..
_m_‘.
_m_.
-.-'
_[p_.

0.6}

_|
0

NiftyReg
VoxelMorph-CC
VoxelMorph-L2

0.2+

0.0L

Pallidum
Caudatef -
Amygdala i

Brain-Stem I H H |:| -
Putamen
VentralDC L.
choroid-plexus| -+
e

Hippocampus
rd-Ventricle v
4th-Ventricle

Cerebral-Cortex .

Cerebellum-Cortex
Cerebral-W. Matter
Cerebellum-W. Matter| ‘.]'ﬁﬁffﬁ-é_'.ffﬁj'jﬁﬁ;-',
Lateral-Ventricle |-

VoxelMorph VoxelMorph
(MSE)

081

Method Die | GPUsee CPUsee | |Jy| <O | Toof \J¢| <0

Miealy  OOIS)| 0 0 o 0,8_
WLSNCO 0790086 | - S| SRS | 014 (o oot |

NitgReg (CC) 0755 (0048) | - D00 | 4514 | ogny £ =
0.7 -
(0.14)) (0114
(0.14) (0087)

085 |

Dice score

VoreMoph (CO) 0753 (0.145) | 045.001)  ST(1) | 19077 (5928) | 0366 (0114
VoreMoph (MSE) 0752 (040) | 045 001) ~ 57(1) | 9606 (4516) | 0184 (087

0.65

0.6

VoxelMorph VoxelMorph w/ seg
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Probabilistic Diffeomorphic Registration

o Likelihood: p(f | z;m) = N(f; mo ¢,,0%1)
o Prior: p(z) =N(0,L,), I;'=)L
[Input: Moving Image m]

Moving 3D Image (m)

deformation
\ defy(m,f) velocity field (¢),) l WA o )

Fixed Image f o

N iy field —
_ . atia
V.3D U-Net: R Fixed 3D Image (f) < 4 i ke ki Tra[r)mform i
[CNN: Predict u,/,,mp] ————— o Approximate posterior Loy
— . ! / integration

Trammg:VSamplmg . ) l layer

golz | f,m) = Nz 1y, diog(o2))

» loss (L) <€

Sample z = py + 0y O€
(e ~N(0,1))

1
1
|
|
|
} |
Inference: use fiy; only
1
:
1

Integra t;l:)n Layer e Variational loss:
{ br = exp(2) }‘ ““““ L(y) = Q}T%Hf —mo¢|*+3 (tr(ALZw) —log |Xy| + Ml)\mw)
v  Loss Computation |
Warp Moving Image Image Similarity
m = mo ¢, + KL Divergence e Optional surface loss:
+ (Optional) Surface Loss Lsurt = 2%3 (2 d(st[n] o ¢—z,5m) + 22, d(sml[n] o ¢z, 5¢))

Dalca, A. V., Balakrishnan, G., Guttag, J., & Sabuncu, M. R. (2019). Unsupervised Learning of Probabilistic Diffeomorphic Registration for Images and
e T GILLINGSSCHOOL'F : - 22 23 - 10.1016/j 12.2019.07.0C
E-UN (_/ GLOBAL PUBLIC HE:LTH



https://doi.org/10.1016/j.media.2019.07.006

Integration Layer and Performance

Scaling and Squaring Integration

Compute the exponential map ¢, = exp(z) using scaling-and-squaring:
1. Scale:z = 2/27

2. Initalize: ¢ = Id + z/2"

Method Avg. Dice GPU sec CPU sec mean |[/o| ol <0
Affine only 0.584 (0.157) 0 0 1 0

ANTs (SyN) 0.749 (0.136) - 9059 (2023)  1.001 (0.036) 7,523 (4790)
NiftyReg (CC) 0.755(0.143) - 2347 (202) 1.072 (0.131) 33,838 (8307)
VoxelMorph (CC) 0.753 (0.145)  0.45(0.01) 57 (1.0) 1.032 (0.074) 19,715 (3540)
Supervised-diff 0.730 (0.144) 0.35(0.03) 82.6(3.8) 1.088 (0.121)  0.05 (0.5)
VoxelMorph-diff 0.754 (0.139) 0.47(0.01) 842 (0.1) 1.075 (0.124) 0.2 (1.0)

3. RepeatT'times:¢ g0 ¢

Ensures that ¢, is a diffeomorphism (smooth, invertible, topology-preserving). 4
0.6 ‘

0.41

0.27

GILLINGS SCHOOL OF
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== VoxelMorph-diff
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Content

3. Network Architectures for Registration
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Registration Neural Networks

Recent registration NN architectures for registration leverage powerful deep learning tools:

« Adversarial learning for better realism

Contrastive learning for robust features

Transformers for global interactions

Diffusion models for uncertainty modeling

Hyperparameter conditioning for adaptability
Future: Combine multiple paradigms into unified,

efficient registration frameworks

ﬁ C GILLINGS SCHOOL OF
L8 UI J GLOBAL PUBLIC HEALTH

Method Anatomy Modality Network Infrast
AC-DMIR Brain/Uterus MR Transformer
ADMIR Brain MRI CNN
Attention-Reg | Prostate US/MRI CNN(Self Attent)
CycleMorph Faces/Brain/Liver | Photogra/MRI/CT | CNN
DiffuseMorph Faces/Brain/Cardc | Photogra/MRI DDPM

DLIR Cardiac/Chest MRI/CT CNN

FAIM Brain MR CNN
Fourier-Net Brain MRI CNN
HyperMorph Brain MRI CNN
TransMorph Brain/Abdomen MRI/CT Transformer
VoxelMorph Brain MRI CNN
ViT-VoxelMorph | Brain MRI Transformer
XMorpher Brain/Cardc MRI / CT Transformer

Table: Summary of selected registration methods: anatomy, modality, and
network infrastructure.




Adversarial Learning

Registration Network Discriminator

1. Deformation or Transformation Prediction:

» Generators predict deformation fields or affine transformation :D Q‘ 6 = mo &
parameters.

 Discriminators judge alignment quality between warped

moving images and fixed images, learning implicit similarity.
2. Inverse-Consistent Deformation Enforcement:
 Adversarial learning combined with cycle consistency 'mﬂﬂ;;m{ﬂ"ﬂﬂ Discriminator "”“E;:[i'f"’" Registration Network

constraints ensures that forward and backward deformations
are consistent. -Dﬂ" ’:D' ' ""‘-DE]' :I)Q— b= mye9
3 : .

. Incorporating Anatomical Label Maps:

* Labe' mapS are Warped alongSide images, and discriminators Two Roles of Adversarial Learning: (a) Méffic Learning for Similarity: Discriminator D learns
evaluate anatomical al ignment improvi ng structure to differentiate well-aligned vs poorly-aligned pairs. p = D(f, m ° ¢) used as similarity measure. (b)
. ! Modality Synthesis for Multi-Modal Registration Adversarial learning synthesizes images into a
preserva“ on. common modality space (e.g., A — B). Registration then proceeds in the synthesized space.
4. Flexible Positive Pair Definitions: 6. Knowledge Distillation via Adversarial Learning:

» Positive registration examples include blended images or pre- « A lightweight student network learns from a larger teacher
aligned multimodal pairs, relaxing strict identity assumptions.  network.

5. Modality Synthesis and Registration:
 Images are first translated across modalities using GANS, then
registered in a unified modality space. by student and teacher.

. Symmetric pipelines and uncertainty-weighted fusion further ® /Aftér training, only the compact student network is
improve registration robustness. retained, achieving comparable anatomical accuracy with

significantly fewer parameters.

Discriminator distinguishes deformation fields generated

ﬁUNC GILLINGS SCHOOL OF
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Contrastive Learning

Principle: DNNs learn by comparing positive pairs (similar) and negative
pairs (dissimilar), without relying on task-specific similarity metrics. Registration Network Autoencoder
Benefits for Registration: jE

« Avoids manual selection of similarity measures for different modalities ¢ - mod ~|
(e.g., MRI vs CT, mono- vs multi-modal). Contrastive Loss
 Learns registration-aware representations directly from data. j(_]
Contrastive Learning Strategies:

« Keypoint Patch-Based: Detect keypoints, extract patches, use Siamese (a)

networks and contrastive loss to optimize affine alignment.
* Representation Space Alignment: Map multi-modal images into

contrastive representations using separate networks, maximize mutual Ma = ‘kad ‘L
information (InfoNCE loss), followed by conventional registration. Contrastive Loss Regsalo Le ¢ = my o9
» Intermediate Feature Contrastive Supervision: Apply contrastive loss )(

| Autoencoder

to intermediate or final layers of encoder networks to improve feature /p— — f
quality.
« Synthesis-by-Registration: Train a registration network first, then train

an image synthesis network using patch-based contrastive loss (PatchNCE) " g)) g:)enfg;::szt'l‘e’grfﬁfg'anaggsuzse j‘f;Trijﬁ;‘ftgm”:e”‘c'

to enhance geo_metric ConSiStenCy- images from different modalities into a unified feature
Recent Extensions: representation, upon which registration model operates.

- Mono-modal Registration: Apply contrastive loss between unregistered ~ or the contrastive loss, we may minimize the distance
between corresponding key points and maximizing the

mOVing and fixed images, Ieveraging ConSiStency in anatomical StrUCtureS. distance between non-corresponding key pomts
* Positive pairs may include structurally similar but unaligned images to

(b)

Iﬁ plCUUTAGCATalildl
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Contrastive Learning: CNNFR

Objective: Improve the robustness and accuracy of rigid registration for multi-modal images (e.g., CT &
MRI) using deep learned descriptors instead of hand-crafted features like SIFT or MIND.

Key ldea: Use a Siamese CNN trained with contrastive loss to learn discriminative keypoint descriptors:
*Minimize feature distance between matching keypoints S T— o8 e
*Maximize distance between mismatches “ B | § ‘
Contrastive Loss:

C D

Transformation Fitting

R |
|

1 N ) ) E “"M"‘.':::“N_ir’ lu, g E i i
L= ;y,-d,- + (1 — yy)max(margin — d;, 0) e [ i
di = ||xi1 — xi2ll2 yi=1 if matched, O otherwise : e 1> M hlwdur | Comespondngkeypontpas | poered mage
) . . l Learning CNN : ihdd | : : :
I8 B E 1H E Pipeline (CNNFR):
—> S - e > - Ly > . . .
§ § 4 E B 1. Keypoint detection via DoG

2. Patch extraction around keypoints

3. Descriptor learning using contrastive Siamese CNN
e 4. Keypoint matching based on descriptor distance

5. Affine transformation fitting using RANSAC

The Siamese CNNs with Contrastive Loss

Hu, J., Sun, S., Yang, X., Zhou, S., Wang, X., Fu, Y., Zhou, J., Yin, Y., Cao, K., Song, Q., & Wu, X. (2019). Towards Accurate and Robust Multi-Modal Medical Image Registration Using
Contrastive Metric Learning. IEEE Access, 7, 132816-132827. https://doi.org/10.1109/ACCESS.2019.2938858
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https://doi.org/10.1109/ACCESS.2019.2938858

Contrastive Learning: CNNFR

Transfer Learning Variant (TrCNNFR): Key Results:

*Pretrained on natural image patches (UBC dataset) *TrCNNFR outperforms:

*Fine-tuned on CT-MR pairs — better generalization * SIFT, MIND, AIRNet, ELASTIX
Evaluation Metrics: *Robust to:

Target Registration Error (TRE) * Image noise, scaling, rotation
-Precision-Recall for keypoint matching * Missing data, low overlap regions

~29x faster than ELASTIX

Generalization:

*Tested on unseen body parts (chin—
shoulder) and modalities (T1-T2)
*Maintains competitive performance
without retraining

(a) Fixed CT (b) True MR (c) Initial moving image (d) Ground truth overlay (e) ELASTIX

(f) AIRNet (g) SIFT (h) MIND (i) CNNFR (i) TICNNFR

@UNC GILLINGS SCHOOL OF
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Transformers

1 Self-attention-Based:_ _ | Transformer-ConvNet l | Transformer-ConvNet

+» Transformers (e.g., ViT, Swin) replace or augment ConvNet encoders. 8 . n <)%

+¢ Capture intra-image relations for registration tasks. o []8 ¢ —mog 8“8 ¢ —meg
*, . : : . f/O f o

s Examples: Hybrid Transformer-ConvNet architectures; o

full Transformer encoders/decoders. ) b

2 Cross-attention-Based: T

+* Cross-attention mechanisms correlate features between moving ool l

and fixed images. § “ﬂgﬂﬂ o = mod

¢ Enhance matching accuracy across modalities or anatomy differences. f-g

+* Dual-stream encoders, deformable cross-attention modules improve o
spatial correspondence.

3. Advanced Transformer Architectures:

s Coarse-to-Fine Strategies: Multi-resolution ViTs
progressively refine deformations.

+» Deformable Cross-Attention: Sample beyond fixed windows
for better matching, reducing computational cost.

+» Coordinate-Based Cross-Attention: Explicitly guide spatial
correspondences (e.g., im2grid).

+ Motion Decomposition: Predict multiple candidate
deformation fields (e.g., ModeT), followed by competitive
weighting.

ﬁUNC GILLINGS SCHOOL OF
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4. ConvNet Evolution Inspired by Transformers:

* New ConvNet models (e.g., ConvNeXt, RepLKNet)
integrate Transformer concepts (e.g., large kernels).

s Enhanced U-Nets with large convolution kernels expand
receptive fields and challenge Transformer dominance.

s ConvNets maintain advantages: invariance to input size,
inductive bias, computational efficiency.

Future Direction:

Hybrid designs and improved ConvNets leveraging Transformer

insights are promising for registration tasks.




Transformers: TransMorph

« Goal: Develop a Transformer-based deep learning framework for unsupervised medical image registration.

» Model Architecture: TransMorph is a hybrid Transformer-ConvNet framework:
« Encoder: Swin Transformer extracts hierarchical features.
» Decoder: ConvNet reconstructs dense deformation field .
« Skip Connections: Preserve spatial details across encoder-decoder stages.

BxWxlxlp
Cone3D

ExWxlx2

Lszm(lf' L) (onv3D

HxWxlx3

HxWxbxib
[——3

o e
1= p
L oy’
Transformer CNN Spatial P
Encoder Decoder | | [N | _____ Transform — )
xxxxxx
/ Neural Network
Deformation Field, ¢

Fixed Image

Deformed Image

~— Skip connecton from Transformer
> Sip connection from convoluionayer

Affine Aligned
Moving Image

N
- Spatial
Transform

Deformed
Label

Bt Ittt L EEEEE R

......
1

Fixed Image

Lse,q (Sf' Sm°p) ——

- -y

"
Iiliiy

N o - -

___________________________________________________________

Chen, J., Frey, E. C., He, Y., Segars, W. P., Li, Y., & Du, Y. (2022). TransMorph: Transformer for unsupervised medical image registration. Medical
Image Analysis, 82, 102615. https://doi.org/10.1016/j.media.2022.102615
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https://doi.org/10.1016/j.media.2022.102615

Transformers: TransMorph

. . . . . . . . Inter-patient MRI Atlas-to-patient MRI
* In inter-subject and atlas-to-subject brain MRI registration, it achieved Model DSC_ [ %oflJy[<0 | DSC | %oflg<0
. - . . R Affine 0.572+0.166 - 0.386+0.195 -
significantly improved registration performance when compared to top- ST 09T <000l | 0esH | <0001
performing traditional and ConvNet-based registration models. Niftyhog g-;fgfg-g: 0-2";,‘;%2"3 g'g‘g‘gfg-}gg "22;’;&‘;46
- - - deedsBCV 0.719+0.130 0.253+0.110 0.733+0.126 0.147+0.050
¢ Even though c_:ertaln networks (VIT—V—Net) had _aImOSt tWICe the VoxelMorph-1 0.718+0.134 0.426+0.231 0.729+0.129 1.590+0.339
number of trainable parameters, TransMorph still outperformed all the VorelMorph2 | 072320.132 | 0389:0.222 [ 0.732¢0.123 | 15220336
. . . . VoxelMorph-diff 0.715+0.137 <0.0001 0.580+0.165 <0.0001
Transformer-based models in Dice Score, demonstratlng Swin- CycleMorph 0.719+0.134 | 0.23120.168 | 0.737+0.123 | 1.719+0.382
’ . . . MIDIR 0.710+0.132 <0.0001 0.742+0.128 <0.0001
Transformer’s superiority over other Transformer architectures. T e T T e e T
PVT 0.729+0.130 0.427+0.254 0.727+0.128 1.858+0.314
1.0+ P .o CoTr 0.725+0.131 0.415+0.258 0.735+0.135 1.292+0.342
| ln ll| .,__, [;_,:. nnFormer 0.729+0.128 0.399+0.234 0.747+0.135 1.595+0.358
08 i ] U ] i R t TransMorph-Bayes | 0.744+0.125 | 0.389+0241 | 0.753+0.123 | 1.560+0.333
’ ’] | ‘ TransMorph-diff 0.730+0.129 <0.0001 0.594+0.163 <0.0001
; l 1 TransMorph-bspl 0.740+0.123 <0.0001 0.761+0.122 <0.0001
0.6 1  Haa 4 { TransMorph 0.745+0.125 0.396+0.240 0.754+0.124 1.579+0.328
i . e
- “: ’] Enmpann ,'::/mi
l '\ 3] o T2EEE A HE R
0.2 sty o EE=2 S S A E B E
2 I VoxelMorphdiff = = g % = alsls g-
| CycleMorph a s = 5 = & = % E-.-
00 e —:':'Ia[)rllfmorph § § % = = EV. t=': g
& & & ét; g > = E = ,F“
& 3 RS RNy < R mn, 0.7 =
S & & & ¥ N &&@
& PO SN,
) <
R Qf
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Diffusion Models

Background:

« Diffusion models have gained popularity in computer vision for tasks, such as image synthesis and super-resolution.

« They learn to reverse a forward process where noise gradually diffuses image information—analogous to
thermodynamic diffusion.

« Advantage: no restrictions on training data variability or modality.

Application to Image Registration:

« Combine a diffusion network (to learn semantic priors via score function) with a registration network.

» The score function captures features of the fixed image and guides deformation of the moving image.

 This approach enables robust, continuous deformation estimation.

Examples: — "
DiffuseMorph (Kim et al., 2022): Diffusion Registration
% Diffusion network learns a conditional score function Vx log p(x|I_f). Network Network

m
¢ Score used by deformation network.
s+ Enhances semantic representation in registration. f — (= = ) = mog
Qin and Li (2023): 1
t

¢ Use the score as a spatial weighting function for similarity terms in the loss. f;
¢ Depart from conventional Gaussian noise modeling.

Challenges:
¢+ High computational cost due to thousands of sampling steps.
s Few existing works in registration; adaptation requires non-trivial reformulations.
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Diffusion Models: DiffuseMorph

 DiffuseMorph involves a diffusion network and a deformation network.
 The diffusion network learns a conditional score function (added noise)
» The deformation network uses the latent feature in the reverse diffusion process to estimate the deformation field.

» The registration process is a one-step procedure, as the fixed mage is the target image at the end of the reverse diffusion
process (t = 0), and it is already given. As a result, there is no need for time-consuming reverse diffusion steps to

synthesize a target image from the moving image.

» Furthermore, DiffuseMorph offers the added capability of producing continuous deformations through the interpolation of
the learned space.

Source Continuous registration m(¢,) Continuous generation py(x,_,|x,,(m,f))  Target

Deformation
network (—»
My

t—»|

Diffusion
network  |—
Gy

Vaf+J1-a.e

Mo M) — m($) X

Kim, B., Han, I, & Ye, J. C. (2022). DiffuseMorph: Unsupervised Deformable Image Registration Using Diffusion Model (No. arXiv:2112.05149). arXiv.
https://doi.org/10.48550/arXiv.2112.05149
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Hyperparameter Conditioning

Motivation:

« Traditional registration models require re-training for each hyperparameter setting (e.g., regularization
weight).

. Inspgirezj by HyperNetworks (Ha et al., 2017) and Hyperparameter Optimization (Franceschi et al., 2018).

Key ldea:

. gondition the registration network on hyperparameter values (e.g., deformation smoothness).

« Sample hyperparameters during training and generate deformation field. | Registration Network

« Compute loss with same sampled hyperparameter value to update network. 555 s

Benefits: 4, — mod

« Efficient hyperparameter tuning without training multiple models. f =

 Enables dynamic control of deformation regularization.

HyperMorph (Hoopes et al., 2022a): A —

« Two-network system: Hyperparameter

s Hypernetwork: Takes in regularization Other Approaches: Network
hyperparameter, outputs weights for the U-Net. Mok and Chung (2021b): Affine transformation of

s U-Net (VoxelMorph): Generates deformation field regularization maps based on sampled hyperparameter.
for image warping. Lightweight mapping network used for conditioning.

» Hyperparameter sampled from uniform Chen et al. (2023b): Extended conditioning to
distribution during training. Transformer-based models via conditional

« Best hyperparameter value selected via gradient layer normalization. Both use grid search to select
descent on validation Dice score. optimal hyperparameter.
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HyperMorph

The HyperMorph learns a hypernetwork that takes in an input hyperparameter and modulates a registration network to
produce the optimal deformation field for that hyperparameter value.

HyperMorph comprises two ConvNets: a hypernetwork and a UNet-like registration network such as VoxelMorph.

* The Ihypernetwork estimates the weights of the U-Net based on the provided hyperparameter value for the diffusion
regularizer

» The U-Net generates a deformation field to warp the moving image.

In each training step, the hyperparameter value is randomly sampled from a uniform distribution, and the loss is computed
using the same sampled value

After training, the best-performing hyperparameter value is acquired using gradient descent. In this process, the network
weights are fixed, and an optimizer iteratively updates the hyperparameter based on a target objective function such as the

Dice score.

Traditional Strategy HyperMorph Strategy
(1 (2 © o (2
Train multiple Validate Choose optimal Train single Efficiently optimize
models each model hyperparameter A model hyperparameter A using
validation data
Model using A; 5 .

. ' HyperMorph :

Model using A I !

T | - @ :

Model using A3 5 N A l

o Repeat with more precise {}\'}
A values

Hoopes, A., Hoffmann M., Fischl, B., Guttag, J., & Dalca, A. V. (2021). HyperMorph: Amortized Hyperparameter Learning for Image Registration (No. arXiv:2101.01035).
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HyperMorph

« Goal: Model how loss hyperparameters A influence the registration. Datasets:

» Define a hypernetworks function hg, (A) = 6, with parameters that ABIDE, GSP, PPMI, ADNI, UK Biobank —
takes as input sample values for A and outputs the parameters of the 3D T1-weighted brain MRIs.
registration network 6,,. Main Results:

: - Accuracy: Comparable Dice scores to grid search:
 To learn the optimal parameter 6;,, we optimize the loss : ;
P D h ¥ ABIDE: HyperMorph Dice = 0.833; Grid Search

Ly, (64;D) = Ep. L(6y;D,A : _ _
_ h h ) = Ea p(l_\)[ ( _h ) N Dice = 0.831; GSP: HyperMorph Dice = 0.845; Grid
where D is the dataset of images, p(A) is a prior probability over the  gearch Dice = 0.846
hyperparameters (uniform distribution here), and L is a registration loss Efficiency:
Involving hyperparameters A. 1 HP tuning: 5.2x fewer GPU-hours
2 HPs (e.g., A, learning rate): 10.5x fewer GPU-hours

Moving Input ‘ s Robustness: Lower standard deviation in Dice across
Tmage (in) Defo“;‘j“"“ @) random initializations.
Registration g Spatial i
Network (ge,) t& Transform Ada_ptIVIty' ) . .
Fixed Input » Optimal A varies across populations and brain
Image (f) : structures.
Hypenmetwrk (B Enables personalized tuning: different A values for
Hyperparameter i
Input hippocampus vs. cerebellum.

- Loss ( 0;, t{; mn, 4) 1{/ . . . . .
Hoopes, A., Hoffmann, M., Fischl, B., Guttag, J., & Dalca, A. V. (2021). HyperMorph: Amortized Hyperparameter Learning for Image Registration (No. arXiv:2101.01035).

arXiv. https://doi.org/10.48550/arXiv.2101.01035
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Symmetric and Cycle Consistency

Objective: Impose structural constraints to ensure invertibility and improve regularity in deformation-based registration

models.

Symmetric Consistency: Focuses on the deformation field ¢, not just the transformation T: ¢, ., o ¢, = Id
¢ Encourages the forward and backward deformation fields to be mutual inverses.

s Typically implemented using a single shared network to predict both directions.

Cycle Consistency: - A special case of transitivity, oftenwithC=A, T, ., o T, z(A) = A

¢ Ensures that registering an image to another and back yields the original image.

¢ Used in unsupervised learning and multi-domain settings (e.g., GAN-based registration)

Intuition: Enforcing these consistencies implicitly regularizes learned deformations and helps preserve anatomical

plausibility.

Implementation Approaches
» Symmetric Consistency Loss:

2
Lsym = ||pa-B 0 da — Id||E
» Cycle Consistency Loss:

Leye = |lla—lao Tesao Tassl?

ﬁ C GILLINGS SCHOOL OF
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Neural Network Setup:
A single network outputs both ¢:A—B and ¢:B—A.
The total loss mav include:

['total — ['sim + Alﬁsym + A2£cyc

Key Benefits:
¢ Encourages invertibility of deformation fields.

X/

+» Enhances registration accuracy and stability.

X/

s Complements smoothness.



Symmetric Consistency: GradlCON

Goal: Learn diffeomorphic image registration mappings without explicit spatial

regularization.
Key Idea: Use gradient-based inverse consistency

2 2
Leraaicon = ||v[q)ng o dgh] - I||F v.S. Licon = ||q)gB o Py’ — 1d||2

Motivation:
Avoid instability of pixel-wise inverse consistency.
Operate on Jacobians to ensure smooth transformations.

Implicit Regularization:

COPDGene

2 2
E[Lcragicon] ~ ¢ || [VOAE]Vdet VOAB |+ 2 |[vela=t |
Benefits:
Enforces SmOOthneSS and tOpOIOgy preservatlon Figure 1. Example source (/eft), target (middle) and warped source
Avoids hand-tuning of regularization weights. Benchmark Results: 1o i cprispnrscene .
Network: OAI (Knee MRI): Dice = 71.2% (vs. 68.4% baseline)
Multi-resolution U-Net-style architecture. HCP (Brain MRI): Dice = 80.5% (vs. 79.8%)
Predicts forward and backward deformation fields. COPDGene (Lung CT): TRE = 2.68mm (vs. 3.01mm)
Loss Function: AB DirLab (CT&: TRE = 1.31mm, Negative Jacobian = 0.0002%
L = —LNCC(/a, Ig 0 ®"7) + ALGradicon, A =1

Tian, L., Greer, H., Vialard, F.-X., Kwitt, R., Estépar, R. S. J., Rushmore, R. J., Makris, N., Bouix, S., & Niethammer, M. (2023). $\texttt{GradlCON}$: Approximate
Diffeomorphisms via Gradient Inverse Consistency (No. arXiv:2206.05897). arXiv. http://arxiv.org/abs/2206.05897
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CycleMorph: Cycle Consistency
Cycle Construction:

Y = T(X,éxy), X=T(Y,dyx)

X=T(,dvx), Y =T, éxy)

Key Architecture:
o Two networks Gx : (X, Y) = ¢xy and Gy : (Y, X) — ¢yx generate

forward and reverse deformation fields.
o Deformed images: Y = T(X,¢xy), X = T(Y, dyx)

® Cycle: )? — T(?:é\’){): V — T()?a &XY)
L(X: Y, GX; GY) - Lregist (X: Y, GX) + Lregist(yr X, GY) + aLcycle (X; Y, GX» GY) + ,BLidentity (X: Y, GX: GY)

D <=

Total Loss:
where Ly gist) Leycle aNd Ligentiry, are the registration loss, cycle loss and identity loss, respectively, and a, 8 are

hyperparameters.
} |
Registration Spatial \ Registration Spatial
network [~ = transform ~— \ 4| network |™* = transform ~—
T % / - T
Gy bxy 5 vl Gy Pyx v
\/
A t
I\
I\
! Registration Spatial _
network |—> = transform —»
T % 1'%
Lidenﬁty Lidentity

Spatial

- = transform —»
T 2

Registration

Gy Pyx

Gy

Pxy

!

network
!
Kim, B., Kim, D. H., Park, S. H., Kim, J., Lee, J.-G., & Yg, J. C. (2020). CycleMorph: Cycle Consistent Unsupervised Detormanle Image Registration

No. arXiv:2008.05772). arXiv. https://doi.org/10.48550/arXiv.2008.05772
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CycleMorph: Cycle Consistency

* Registration 10ss: Ly¢gi5: (X, Y, Gx) = —(T(X, pxy) QY) + AX|1Vyl|” Multiscale Refinement:
where A is a hyperparameter, ® denotes the local cross correlation. *  Global Network: Coarse registration at low
: o — o resolution

" Cyole10ss: Leycie(X.. 62,6 = [IT(F. ) - X||1 +{I7(8. f) - Y||1 Local Patch Network: Refines deformation in

* ldentity 10SS: Ligentiey (X, Y, Gy, Gy) = —[T(Y,Gx(Y,Y)) ® Y 643 local 3D volumes

¢« +T(X,6y(X, X)) ® X] « Final Deformation: ¢ = ¢_global + ¢ local
Datasets Evaluated: e ————.
Brain MRI (IBSR and LPBA40): Inter-subject registration I

across anatomical regions BB A i e = 5 o
Liver CT (LITS): Multiphase intra-subject organ alignment | ‘ | SR it ﬁ
Facial Expression: Landmark alignment for facial emotion ¢ L
transfer ® ol
Performance Highlights: i
Brain MRI: Dice = 0.756 (CycleMorph) vs. 0.749 " EANTsY O Veeboph VS DRV po ! s
(VoxelMorph) vs. 0.752 (ANTs) (R R R R
Liver CT:_Target Registration Error (TRE) = 3.9 mm vs. 4.7 é& f? f"g §,i;« &a f g §§;~§ 5 @5 § g g" 3‘? ¢ &;
mm (Elastix), 30x faster N &@5 %3 638 o“‘f N ff §¢ § & & § ¢ 8

9 ¢og SR S 87
3 I N
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Progressive and Multi-Scale Image Registration

Two Major Strategies:
¢ Progressive Registration: Sequentially refine deformation fields by cascading registration networks.

¢ Multi-Scale Registration: Employ image pyramids to learn
coarse-to-fine deformations across resolutions.

Progressive Framework (e.g., VTN, VR-Net): Reglstratlon

@ Decomposition of large displacement into smaller steps. Network

m
@ Each subnetwork G; predicts ¢; and updates the moving image: .m 5
m
li = T(li-1, ) f : 4’2 2 ¢3
e Final deformation field: & = ¢p0---0 ¢

Cycle-Based Optimization (VR-Net):
¢ Linearizes nonlinear registration objective with first-order Taylor expansion.

%+ Solves two convex problems: (1) similarity update and (2) regularization.
¢ Each network block refines deformation iteratively:

pkt1) = p(k) 4 Ap(k)

Panel (a) outllnes the framework for
progressive image registration
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Progressive and Multi-Scale Image Registration

Multi-Scale Pyramid Frameworks:

< LaplRN: 3 networks at increasing resolution with skip [ Regitation
connections and progressive refinement. e Network \
% Self-Recursive Contextual Net (Hu et al.): Shared weights; i L 1/t o 18
recursively refines ¢ using same network at different scales. ROESTTRUSITNGON. i OJ
Progressive Training Techniques: - :
< De Vos et al.: Train ConvNets at different resolutions stage- D "’ = ey y : e /2 /2
wise; no regularizer due to B-spline. - s f o @.J
“» Eppenhof et al.: Gradually increase input resolution and ¢1/;1 g e i
network depth during training. [ 2 \" =
Transformer-Based Approaches: (b) (c)

% NICE-Trans: Dual-path ConvNet encoder + Transformer
decoder predicts both affine + deformable fields.

% Maetal. (2023): Swin Transformer blocks at bottleneck refine
¢ progressively; final ¢ formed via upsampling and convolution.

Panels (b) and (c) illustrate two representative
strategies for multi-scale image registration in
learning-based methods: (b) a single-network
approach that aggregates deformation fields across
scales (e.g., im2grid), and (c) a multi-network
approach where each resolution scale is handled by a
separate network (e.g., DLIR and LapIRN).

ﬁ C GILLINGS SCHOOL OF
L8 UI J GLOBAL PUBLIC HEALTH




Vision Transformer for Affine Registration

Motivation:

+» Traditional affine methods are accurate but computationally intensive.
¢ CNNs lack global context, struggle with large misalignments.

Goal: Design a fast and robust model for 3D affine registration using Vision Transformers.
Architecture:

Three-stage coarse-to-fine pyramid.

Each stage: Patch embedding — Transformer — MLP — Affine matrix.

Fixedimage |
]

The moving image is warped progressively before the next stage. "=
Progressive Multi-Scale Training:

@ Use 3 scales: 64x64x64, 128x128x128, 192x192x192.
@ Deformation refinement across levels: M,

A; = MLP;(Transformer;(Embed(F;, M;))), M1 + ¢(A))(Mis1) ’8::::3:::;”‘
@ Residual skip connections for feature propagation. Perforimance (OASIS & ABIDE):
Loss anction: Dice score: 0.757 (OASIS), 0.724 (ABIDE) — best among 6
—1 baseline methods.
foim = 24 g NCCF MQ)), - Lrowt = Laim 24 Lses 1005 (mm): 3.12 (OASIS), 3.59 (ABIDE)

Runtime: 0.09s (GPU, C2FViT) vs. 6.6-38s (ANTs/Elastix)

Mok, T.C., Chung, A., 2022a. Affine medical image registration with coarse-to-fine vision
transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 20835-20844.
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Overview: : Applications of Image Registration

Core Goals: _ _ _ 1. Remote Sensing and Environmental Monitoring:
+ Match anatomical or structural features across time, modality, or > Align multi-temporal satellite images for land-use
subjects.

change, disaster assessment, deforestation tracking.

« Enable direct voxel- or pixel-wise comparison between aligned images. .. 11 ,is- Sentinel-2. Landsat series Google Earth

o - Engine.
Application Domains: | 2. Augmented and Virtual Reality (AR/VR):
< Medical Imaging: Diagnosis, image-guided surgery, treatment > Align real-world scenes with virtual objects using
planning.

visual SLAM and marker tracking.
» Example: Microsoft HoloLens, Meta Quest Pro.
3. Robotics and Autonomous Navigation:
¢ Use LIDAR and camera data fusion via registration

<+ Remote Sensing: Satellite image alignment for temporal analysis.
“» Computer Vision: Image stitching, motion tracking, 3D modeling.
% Augmented/Virtual Reality: Overlay alignment between virtual and

real scenes to build and update 3D maps.
Types of Registration: % Core to SLAM (Simultaneous Localization and
< Modality: Intra-modal (e.g., MRI-MRI), Inter-modal (e.g., CT- Mapping) frameworks.
MRI) 4. Industrial Inspection and Manufacturing:
%+ Transformation: Rigid, affine, deformable (non-rigid) < Register 3D CAD models to sensor data for defect
< Dimensionality: 2D-2D, 3D-3D, or 2D-3D registration detection or quality control.
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Applications in Biomedical Sciences

1. Longitudinal Studies: 5. Atlas-Based Analysis:
¢ Track progression of neurodegenerative diseases » Build anatomical atlases (e.g., MNI atlas) by deformably
(e.g., Alzheimer’s) by aligning baseline and follow- registering subjects to a common template.
up MRIs. » Enables population-wide analysis of brain shape and volume.
2. Multi-Modal Fusion: 6. Genotype-Phenotype Association:
¢ Fuse PET (functional) with MRI (structural) for » Align imaging-derived phenotypes with genotypic data
tumor detection and monitoring. (GWAS, eQTL). E.g., detect genetic variants associated with
s Example: PET-MRI registration enhances precision hippocampal volume.
in oncology.
7. Disease Subtyping and Progression Modeling:
3. Intra-Operative Guidance: » Register multi-subject, multi-timepoint scans to identify
% Register pre-operative MRI with real-time disease trajectories.

ultrasound during brain surgery.
8. Inter-Group Comparison:

4. Radiotherapy Planning: > Align scans to compare aging, disease, or treatment effects
¢ Align planning CT with daily Cone-Beam CT across cohorts. Applications in aging research, psychiatry,
(CBCT) for precise dose delivery in cancer and developmental neuroscience.
treatment.
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Generation of Anatomy-Realistic 4D Infant Brain Atlases with
Tissue Maps Using Generative Adversarial Networks

Dr. Gang Ll
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Introduction: Background

* Brain development during infancy

— Complex and dynamic
— Significant structural and volumetric changes

 Infant brain atlas construction
— Crucial to generate spatiotemporal (4D) volumetric
atlases with continuously sampled time points
— Essential for downstream tasks, e.g., atlas-guided
segmentation and spatial normalization

* Infant brain MR images (T1w/T2w) _— _—
— Low tissue contrast and dynamic change in appearance

« Challenging to generate accurate and
anatomically meaningful 4D infant atlases,

particularly, for younger ages
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Intf O dUCtiOn: Existing Methods and Limitations

Traditional methods

— Iterative atlas construction using symmetric group-wise normalization (SyGN) (Chen, L., et al.,

Neurolmage 2022)

Step 1: Building initial Step 2: Pairwise registration Step 3: Appearance update
templates B P — [
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(-) Separately built at discrete time points
(-) Require iterative and computationally expensive non-linear registration

Chen, L., et al., A 4D Infant Brain Volumetric Atlas Based on the UNC/UMN Baby Connectome Project (BCP) Cohort. Neurolmage (2022).
Also see: https://www.nitrc.org/projects/uncbcp_4d_atlas/
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Intf O dUCtiOn: Existing Methods and Limitations

* Deep learning-based methods

— Conditional atlas building using VoxelMorph
(Dalca, A, et al., NIPS 2019)

—  Atlas-GAN (Dey, N., g Al (Y 8021) S
— Generativ er ork (GAN)

Attribute (a;)
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Dalca, A., et al., Learning Conditional Deformable Templates with Convolutional Networks. NIPS (2019).

Dey, N., et al., Generative Adversarial Registration for Improved Conditional Deformable Templates. ICCV (2021).

Chen, L., et al., Construction of Longitudinally Consistent 4D Infant Cerebellum Atlases Based on Deep Learning. MICCAI (2021).

Pei, Y., et al., Learning Spatiotemporal Probabilistic Atlas of Fetal Brains with Anatomically Constrained Registration Network. MICCAI (2021).
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Challenge and Aims

« Challenge

— Low and dynamic tissue contrast of infant
brain MR images

e AIMS

— Provide explicit guidance from tissue maps to
help generate anatomically more realistic
Intensity atlases

— Produce tissue maps alongside intensity atlases

— Affinely scale the predicted atlas automatically to S 6Riosting
accurately reflect volumetric change

50f12
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Method: Deformable Atlas Construction and Affine Re-scaling Network

(a) Atlas synthesis network

(b) Registration network

(¢) Discriminator
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Experiments

—— Male

—— Female ’r
300 - -

* Dataset
— 699 MRI scans (T1w) from 322 subjects from the
UNC/UMN Baby Connectome Project (BCP)
(Howell, B.R., et al., Neurolmage 2019)

250 A

~ 0.8 x 0.8 x 0.8 mm? g
— Bias-corrected, skull-stripped, and segmented into & 150
white matter (WM), cortical gray matter (GM), and &
cerebrospinal fluid (CSF) using IBEAT V2.0 at oo
http://www.ibeat.cloud/ (Wang, L., et al., Nat Protoc
2023) N
« Comparison
— Atlas-GAN (Dey, N., et al., ICCV 2021) 04
e Evaluation Metric 0 500 1000 1500 2000

Scan Age (d
— Dice Similarity Coefficient (DSC) can Age (days)

Howell, B.R., et al., The UNC/UMN Baby Connectome Project (BCP): An Overview of the Study Design and Protocol Development. Neurolmage (2019).
Wang, L., et al., IBEAT V2.0: A Multisite-applicable, Deep Learning-based Pipeline for Infant Cerebral Cortical Surface Reconstruction. Nat Protoc (2023).
Dey, N., et al., Generative Adversarial Registration for Improved Conditional Deformable Templates. ICCV (2021). 7 of 12
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Results: Quantitative

« Experiments
— 699 scans are split by subject into 629 and 70 scans for training and testing, respectively

* Result
— Our method yields greatly improved performance in terms of Dice Similarity Coefficient (DSC)

- DSC, %,  (5)

White Matter Cortical Gray Cerebrospinal fluid
Matter
Atlas-GAN 56.96 (2.39) 51.28 (2.61) 34.17 (3.71)
Ours 81.39 (1.86) 83.90 (2.32) 60.22 (4.68)
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Results: Qualitative

* Result
— Improved tissue maps with
more accurate details
— Sharper and anatomically
more realistic intensity
atlases

Atlas-GAN

* Atlas-GAN, 1M ours, 1M
9of 12
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 Result

— Generated atlases at representative ages re-scaled from the population common space to the age-specific
spaces using the affine re-scaling network
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» \We present a deep learning-based framework with explicit
anatomical guidance for the construction of 4D infant
brain volumetric atlases, which can jointly

* Produce tissue maps alongside anatomically
realistic intensity atlases, and

» Affinely scale the predicted atlas to reflect
volumetric change during early development.
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Table 3. A summary of the publicly available benchmark dataset for medical image registration.

Dataset Anatomy Cohort Type Modality Highlights

IX® Brain Healthy Controls Tiw, T2w, PDw MRI Nearly 600 MRI images with cortical and subcortical label maps from
prior studies (Liu et al., 2024; Chen et al., 2022b; Hoopes et al., 2022c).

LUMIR (Dorent et al., 2024) Brain Healthy Controls Tilw MRI Part of Learn2Reg 2024 (Dorent et al., 2024), using the OpenBHB
dataset (Dufumier et al., 2022); 4,014 MRIs from ten public datasets
with label maps and landmarks.

LPBA40 (Shattuck et al., 2008) Brain Healthy Controls Tiw MRI 40 MRI scans affine-transformed to a common atlas with 50 manually
delineated brain structures.

Mindboggle (Klein and Tourville, 2012) Brain Healthy Controls Tiw MRI 101 MRIs affine-aligned to an atlas with 106 manually delineated brain
structures.

OASIS (Marcus et al., 2007; Hoopes et al., 2022b) Brain Alzheimer’s disease Tlw MRI 416 MRIs from OASIS-1 (Marcus et al., 2007) with label maps gener-
ated using FreeSurfer and SAMSEG, used in Learn2Reg 2021 (Hering
et al., 2022).

BraTS-Reg (Baheti et al., 2021) Brain Glioma Tiw, Tlce, T2w, FLAIR MRI 140 training, 20 validation, and 50 testing cases with manual landmarks
across baseline and follow-up scans.

CuRIOUS (Hering et al., 2022) Brain Glioma T1lw, T2-FLAIR MRI, 3D US Part of Learn2Reg 2020, 22 subjects with pre-op MRI, and intra-op 3D
US with annotated landmarks from EASY-RESECT (Xiao et al., 2017).

ReMIND2Reg (Juvekar et al., 2024) Brain Tumor resection Tlw, T2w MRI, 3D US Part of Learn2Reg 2024 (Dorent et al., 2024), 104 intra-operative US,
98 Tlce, and 67 T2 MRIs from 104 patients, with manual landmarks.

Hippocampus-MR (Hering et al., 2022) Brain Non-affective psychosis Tiw MRI Part of Learn2Reg 2020, 394 MR scans of the hippocampus region with
manually tracings for evaluation.

DIR-Lab (Castillo et al., 2013, 2009a) Lung COPD, cancer Breath-hold and 4DCT 20 CTs (COPDgene and 4DCT subsets) with 7,000+ manually paired
landmarks for evaluating deformable registration.

NLST (Team, 2011) Lung Smokers Spiral CT 100 paired inhale-exhale CTs with lung masks and keypoints; 10 test
images with manual landmarks for Learn2Reg 2022 (Heinrich et al.,
2022).

Lung-CT (Hering et al., 2022) Lung Healthy Controls Inspiratory, expiratory CT 30 paired lung CTs with lung masks and keypoints; evaluation with man-
ual landmarks from vessels and airways for Learn2Reg 2021 (Hering
et al., 2022).

EMPIRE10 (Murphy et al., 2011) Lung Healthy Controls Inspiratory, expiratory CT 30 lung CT pairs with 100 manual landmarks for each, covering different
scan types to evaluate registration methods.

Thorax-CBCT (Hugo et al., 2016) Lung Cancer Patients CT, CBCT 18 paired CTs from TCIA-4D-Lung with manual organ and target de-
lineations for interventional registration in Learn2Reg 2023 (Heinrich
et al., 2023).

Lung250M-4B (Falta et al., 2024) Lung Mixed CT 248 paired CTs from seven datasets with 4 billion voxels and 250M
keypoints, providing ground truth displacements and nnUNet segmenta-
tions.

ACDC (Bernard et al., 2018) Heart Cardiac diseases 4D cine-MRI 150 subjects with manual LV, RV, and Myo segmentations at ED and ES
phases for intra-patient registration.

M&Ms (Campello et al., 2021) Heart Cardiac diseases 4D cine-MRI 375 subjects from multiple centers with LV, RV, and Myo segmentations
at ED and ES phases for intra-patient registration.

MM-WHS (Zhuang et al., 2019) Heart Cardiac diseases CT, MRI 120 cardiac scans (CT and MRI) from 60 subjects with 7 key heart struc-
tures manually annotated for mono- and multi-modal registration.

Abdomen-CT-CT (Hering et al., 2022) Abdomen Cancer Patients CT Part of Learn2Reg 2020 (Hering et al., 2022), featuring 50 CT images
with 13 manually labeled structures from (Xu et al., 2016).

Abdomen-MR-CT (Hering et al., 2022) Abdomen Cancer Patients CT, MR Part of Learn2Reg 2021 (Hering et al., 2022), containing 16 CT/MR
pairs with 4 labeled structures.

ACROBAT (Weitz et al., 2024) Breast Breast Cancer Pathological images 4,212 whole-slide-images from 1,152 breast cancer patients.

ANHIR (Borovec et al., 2020) Body-wide Cancer tissue samples Pathological images 355 images with 18 different stains, resulting in 481 valid image regis-

COMULISglobe SHG-BF (Dorent et al., 2024)

COMULISglobe 3D-CLEM (Dorent et al., 2024)

Breast / Pancreas

Cell

Cancer tissue samples

Mitochondria, nuclei

Pathological images

Microscopy

tration pairs.

Part of Learn2Reg 2024 (Dorent et al., 2024), featuring paired second-
harmonic generation and bright field pathology images.

Part of Learn2Reg 2024 (Dorent et al., 2024), featuring 3 pre-processed
microscopy datasets with manually annotated landmarks.

2 https://brain-development.org/ixi-dataset/
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