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Motivation

The dog chased another dog

The animal didn’t cross the street because it was too tired

How to encode the text?

“dog” refers to two different entities in the first sentence

What does “it” refer to in the second sentence?

Is there any other way to model dependence?
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A High-Level Look
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e [Je e é“'dia”t] The Illustrated Transformer — Jay Alammar — Visualizing machine learning one

concept at a time. (jalammar.github.io)
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https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
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Attention Timeline

This timeline highlights the evolution of deep learning
and natural language processing. Starting in the 1990s
with rule-based methods, RNNs, and LSTMs, it
progressed to the introduction of simple attention
mechanisms in 2014.

The Transformer era began 1n 2017 with the
groundbreaking paper "Attention is All You Need,"
leading to a rapid adoption in NLP with models like
BERT and GPT by 2018. From 2018 to 2020,
Transformers expanded into fields like vision (ViTs) and
protein folding (AlphaFold-2). The generative era began
in 2021-2022 with models like Codex, GPT-X, and
DALL-E.

By spring 2025, Transformers power massive models like
ChatGPT, DeepSeek and open new applications in diverse
areas, with exciting prospects for the future.

1990s

2014

2017

2018

2018-2020

2021-2022

2024

Prehistoric Era

Rule-based methods, parsing, RNNs, LSTMs

Simple attention mechanisms

Beginning of transformers

Attention is all you need

Explosion of transformers in NLP

BERT, GPT-3

Explosion into other fields

Explosion into other fields: ViTs, Alphafold-2.

Start of Generative Era

Codex, Decision Transformers, GPT-X, DALL-E

Present Day

Huge models, more applications: Chat-GPT, GPT-4, Gemini,
Llama and open-source LLMs, Whisper, Robotics Transformer,
Stable Diffusion, Sora, and so much more...!

Future (?Y)

(Yang & Hashimoto, 2025)




Before diving into the attention mechanism, recall a common preprocessing step in NLP. Words are typically
represented as dense vectors called word embeddings. These embeddings are stored in an embedding matrix Wg,
where d is the embedding dimension and n is the vocabulary size. Embeddings provide the foundation for
queries, keys, and values in attention.
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https://www.youtube.com/watch?v=wjZofJX0v4M

* The model tends to settle on a set of embeddings where directions in the space have a kind of

* One classical example is that, the difference between vectors of and 1S very
similar to that between “king” and “queen”. Consequently, we can simply find the embedding of a
female monarch by taking “king”, adding the difference and search such an
embedding.

E(queen) - E(king) ~ E(woman) - E(man) E(queen) =~ E(king)+ E(woman) - E(man)

E(king)

TV 12
E(king)

j E(man)
E(queen) j
E

(woman)

E(man)
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https://www.youtube.com/watch?v=wjZofJX0v4M

Self-Attention: Motivation

* Suppose the following sentence is an input sentence we want to translate: The animal didn’t cross
the street because it was too tired. What does “it” in the sentence refer to? Is it referring to the
street or the animal? It’s a simple question to a human, but not as simple to an algorithm.

* The self-attention mechanism enables the model to associate “it” with “animal”.
Layer: | 5 $ Attention:| Input - Input %

B
The_ The_
animal_ animal_
didn_ didn_
" ' As we are encoding the word “it” in encoder
& 5 #5, which is the top encoder in the stack, part
cross._ Crose. of the attention mechanism was focusing on
e e "The Animal", and baked a part of its
street_ street_
because._ because,_ representation into the encoding of “it”.
it_ Nt
was_ was_
too_ too_
tire tire
d d

The lllustrated Transformer — Jay Alammar — Visualizing machine learning one concept at a time.
(jalammar.github.io)
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https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Self-Attention: Details

* The first step is to create three vectors from each of encoder’s input vectors. These vectors are created by
multiplying the embedding by three matrices that we trained during the training process (usually smaller in
dimension than the embedding vector).

Input Thinking Machines

X wa Q
Embedding D X
X =
Queries oL al [ 1] wa
X WK K
Keys <\ [ I WK " i
X WV '}
Values vil T 1] v [ 1] WV ?Tm
| | |
X —— =

The lllustrated Transformer — Jay Alammar — Visualizing machine learning one
concept at a time. (jalammar.github.io)
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https://jalammar.github.io/illustrated-transformer/
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Self-Attention: Details

* The second step is to calculate the scoring function and then divide it by the square root of the
dimension of the key vectors.

Input Thinking Machines
Embedding X1 X2

Queries q1 gz

Keys k1 k2

Values V1 V2

Score qie ki=112 gi ® k2 =96
Divide by 8 (/dx ) 14 12
Softmax 0.88 0.12
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e In the
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Self-Attention: Details

* The third step is to multiply each value
vector by the softmax score and sum up
the weighted value vectors.

* The resulting vector is the one we can send
along to the feed-forward neural network.

actual

implementation,

such

calculation 1s done 1in matrix form for faster

processing.

Input
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Score
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Self-Attention: Matrix Calculation

* Query, key and value matrices are calculated
through matrix multiplication.

Q = WoX = BT + QX 4 N Self-attention \
K =WgX =B 1T + Q1 X D
_ _ T
V=WyX=p0,1" +Q,X L N
Y = Softmax(QKT)V Q=4,1"+9,X N
N N N
Attention,
. 5 Softmax [K” Q) :
Q KT
Vv
Input, Keys, Output,
fr ( X ) X K=B1" + uX V - Softmax [K”Q]
softmax
Jax N
D
_ Values,
\_ V=81"+0,X )
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Self-Attention: Equivariance and Invariance

Definition Theorem
» T.(X) = XP; is a spatial permutation.  » Self-attention is equivariant:
> EqUivariant: A(Tﬂ-(X)) = Tﬂ-(A(X)) AS(Tﬂ-(X)) _ Tﬂ-(AS(X))

» Invariant: A(T,(X)) = A(X)

» Attention with learned query is invariant:

Let X € R xn’ Fﬂ- c R™"M 3 permutation matrix. ( ( )) ( )

» T,.(X) = XP; applies the permutation to columns.
» Compute attention on XP;:

0’ = W, XP; - softmax((WiXP,) " (WyXPy))

» Since softmax is equivariant and dot products are
permutation-consistent:

0’ = (W, X - softmax((WiX) " (W, X)))Pr = OP;
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RNN, CNN, and Self-Attention

RNNs are best for capturing sequential dependencies but struggle with long-range patterns.
CNNs excel at local spatial features and parallel processing but are not well-suited for sequence data.

Self-Attention provides flexibility in capturing long-range dependencies and global contexts but is
computationally expensive for very long sequences.

Aspect RNNs CNNs Self-Attention
: Capturing global
Primary Purpose Sequential data Spatial data processing relationships and

rocessin _
P & dependencies

Temporal and ordered Long-range and global

Data Handling Local and spatial features

sequences dependencies
Recurrent neural Convolutional neural Attention-based, often in
Model Type
networks networks transformers
. Recurrence and hidden Convolutions with Query-Key-Value
Core Mechanism . . .
states filters/kernels attention mechanism
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Comparing RNNs; CNNs and Self-Attention

Recurrent Neural Network 1D Convolution Self-Attention
YiT Y2 Vs T Vs Y1 Y, Y3 Ya ] (A (A
, | | , | , | , , | — V1~ [A] [Aea]
LT IXIXIX] viin
[ B [Ea] ]
[El (] [El
X, X, X; X, X, X, X; X, =
e S | ]
Works on Ordered Sequences Works on Multidimensional Grids Works on Sets of Vectors
(+) Good at long sequences: After (-) Bad at long sequences: Need to (-) Good at long sequences: after one
one RNN layer, h; "sees” the whole stack many conv layers for outputs self-attention layer, each output
sequence to “see” the whole sequence “sees” all inputs!
(-) Not parallelizable: need to (+) Highly parallel: Each output can (+) Highly parallel: Each output can
compute hidden states sequentially be computed in parallel be computed in parallel
(Johnson, 2022) (-) Very memory intensive
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Multi-Head Attention

* In practice, given the same set of queries, keys and values we may want out model to combine
knowledge from different behaviors of the same attention mechanism, such as capturing
dependencies of various ranges (e.g., shorter-range vs. longer-range) within a sequence. Thus, it
may be beneficial to allow our attention mechanism to jointly use different representation
subspaces of queries, keys and values.

* Instead of performing a single attention pooling, queries, keys, and values can instead be
transformed with h independently learned linear projections. These h projected queries, keys and
values are fed into attention pooling in parallel.

* This design is called multi-head attention, where each of the h attention pooling outputs 1s a head.
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Multi-Head Attention

Multi-head attention expands the model’s ability to focus on different positions, as well as gives the
attention layer multiple “representation subspaces”, thus improving the expressivity of the model.

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W to
R with weight matrices Q/K/V matrices produce the output of the layer

X

Thinking Qo
Machines F::H Kg/
0 WO
* In all encoders other than #0, Q1
we don’t need embedding. K1
We start directly with the output Vi1

of the encoder right below this one

R
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2 Positional Encoding
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Positional Embedding

» Unlike RNNs, which recurrently process tokens of a sequence one-by-one, self-attention ditches sequential
operations in favor of parallel computation.

* However, self-attention by itself does not preserve the order of sequence, that is, it is equivariant to
permutations of the inputs. What should we do to account for the order of words in the input sequence when it

really matters?
what we see:

he hit me with a pie

hit  with me
pie he a

what naive self-attention sees:

a pie hit me with he

a hit with me he pie

] ] ) (Levine, 2021)
he pie me with a hit

* The dominant approach for preserving information about the order of tokens is to represent this to the model
as an additional input associated with each token. These inputs are called positional embedding, and can
either be learned or a fixed a priori.
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Positional Embedding

* The naive positional encoding would just append t to the input: x; = (’if) However, it would
not be a great idea, because the absolute position is less important than the relative position.

| walk my dog every day every single day | walk my dog  The fact that “my dog” is right after “I walk” is
u u the important part, not its absolute position
Index
e : itional Encodi bri
% Therefore, we want to represent position in a way Sequence  of token  Fositional Encocting Matrix

that tokens with similar relative position will have
similar position encoding. 0, e Por P
“* What about using frequency-based representations? am 1 P10 Py Piq
a — 2 P20 Pa1 Pag
Robot — 3 — P P31 P3q

Positional Encoding Matrix for the sequence 'I am a robol!
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Positional Embedding: Example

* One typical scheme for fixed positional

;lrllcoc}ings are based on sine and cosine Equation Graph Frequency Wavelength
nctions.
 Suppose that X € R™? contains the d - sin(27) % 1 1
dimensional embeddings for n tokens of a A N
sequence. The positional encoding outputs sin(2 * 27t) 3\ )\ J 2 1/2
X + P using a positional embedding matrix A
P € R™4 of the same shape, whose element sin(?) bﬂ/i’/\‘ /2 o
on the ith row and the (2j)th or (2j + 1)th 1 \/

zzzzz

column is given by

sin(ct) ”De!oe\r\ds on ¢ c/2x 2z/c
. i i
Pi2j = sin (—ﬂ)rpi,2j+1 = COS( y_)
10004 10004
> Angular Frequency (wj): > Wavelength ())):
> =1 2j
“ 2 > )\ = 2T =21 x 1000 d
1000 d o . i 0
» Each increment i — i + 1 increases the argument by w;. > A larger exponent ¥ yields a larger wavelength.
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Positional Embedding: Example

* Equivalent to
] pos pos
pi,Zj = SIn 27'[/,1— 'pi,2j+1 = C0S 277,'/1—
J J

I3 Think of each dimension as a musical string:

* Low-frequency dimensions (large A) — slow, smooth waves
* High-frequency dimensions (small A) — fast, jittery waves

By combining them, the model gets a richer encoding of position, similar to combining bass and treble to form
a musical tone.

e How the Model Uses This

* The self-attention mechanism doesn't know order inherently.
» Positional encodings shift the vector space so tokens at different positions are separable, even if their word embeddings are similar.
* This enables the model to attend to relative and absolute positions of tokens.
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Positional Embedding: Example

~N O O B Lo N —, OO

DUNC

in binary is 000 0
in binary is 001

in binary is 0190 10
in binary is 011
in binary is 100
in binary is 101
in binary is 110
in binary is 111

Row (position)
w N
o o

I
o

50

0 20

« ,, . 4.Column (encoding dimension)
even-odd” indicator

-0.5

-1.0

» Monotonically decreasing frequency: In sinusoidal
positional encoding, each higher dimension has a lower
frequency.

> w; = #21 decreases with .

10000 d
» Encodes absolute position using increasingly coarse granularity.

» Binary representation analogy:

» High-order bits change less frequently than low-order bits.
» Similarly, high-j dimensions oscillate more slowly in positional
encoding.

» Continuous vs. Binary: Float-based sinusoidal encodings are
more space-efficient and allow fractional offsets.

“first half-second half indicator” indicator
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Positional Embeddmg

0 100 200 400 50

o L

S L ||| "” l “ "l

Relative Intuition Summary of Intuition
Because sinusoids are shifted versions of one * Wavelength controls how fast the position-

another, subtracting positional encodings of positions based values change.

a and b gives a pattern that the model can use to * Using a range of wavelengths gives the model
infer relative positions. fine to coarse positional resolution.

100
0.75
0.50
025
0.00
-0.25
-0.50
-0.75

o

’J ""H,t '? '.' |‘llﬂ

i H}# ( m

W N

r,m"f'r'i; f f J
i, H’h ’h,a'lhl’h.h

That’s why: * The model learns patterns of where things are
* Positional encoding enables absolute and relative via combinations of sinusoids, like Fourier
positioning, encoding.

* Without needing recurrence or convolution.
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Alternative Positional Embeddings

Learnable Positional Embeddings:
L Treat position embeddings as trainable parameters.
L No mathematical constraint, but less interpretable.

Relative Positional Encoding:

L2 Encodes the difference between positions.

> Helps with tasks where relative order matters (e.g.,
text generation).

Rotary Positional Encoding:

o Efficiently integrates positional information into
attention.

> Particularly effective for long-sequence tasks.
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Vision Transformer

Patch-Based Tokens:

> Image 1s split into patches and embedded as tokens.
L A 2D coordinate (X, y ) 1s mapped to position
embeddings.

PE(X, y) = concat(PE(x), PE(y))

2D Positional Embeddings:
2 Often a learnable embedding for each patch index.
> Alternatively, sinusoidal in each spatial dimension,

then combined.

Why It Works:

I Preserves spatial relationships for tasks like

recognition, detection.
Vision Transformers handle global and local contexts

effectively.
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3 Transformer Architecture
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Why Transformers?

Parallel Computation + Short Path Length:

L Self-attention can handle all tokens in parallel.

L Minimal path length for global dependencies, vital for deep
architectures.

Transformer Dominance in NLP:
> Nearly all state-of-the-art language tasks use Transformer
based models.

L Default approach: ’Grab a large pretrained Transformer”
(BERT, GPT, T5, etc.).

Vision Transformer (ViT):

L Patch-based input turned into token embeddings.

L Now a go-to model for image recognition, detection, and
segmentation.

Islam, S., Elmekki, H., Elsebai, A., Bentahar, J., Drawel, N., Rjoub, G., & Pedrycz, W. (2024). A

Audio/Speech

11%

Multi-Modal
15% —

Natural Images
20%

Computer Vision
31%

Medical Images
11%

40%

Figure 4: Proportion of transformer application in Top-5 fields

Documents by year

Documents

45k

40k

35k

30k

25k

20k

15k

10k

sk

0
2015 2016 2017 2018 2019 2020 2021 2022 2023

Year

comprehensive survey on applications of transformers for deep learning tasks. Expert Systems with Applications, 241, 122666.

2024



Why Transformers?

Before Transformers After Transformers
Com puter Vision Natural Lang. Proc. Computer Vision  Natural Lang. Proc.  Reinf. Learning
Convolutional NNs (+ResNets) Recurrent NNs (+LSTMs) .

Speech Translation RL Translation Graphs/Science
Deep Belief Nets (+non-DL) Seq2Seq =
sal utw ==
I o | | - I | o | ' Dy(s.,0))] +Ery [V, log(1 - Dy(s.0))] an :
\i‘ 5. Takea olicy stepfrom ; 06, mlemcuummm1ag(n.,.,,,(s.a;).
m m E, Vg ol - W.»mm. .
| | h e I I 0l=s'S 3 I u t e where Q(3, @) = E, log(Dy, (5.4)) |80 = 8,00 = ] :
AW e G Sty Core it BimesograrieTo Y ol o

(Bertasius, 2024)
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From Attention Mechanism to Transformer

* If we have attention, do we even need recurrent connections?
* (Can we transform our RNN into a purely attention-based model?

Attention Is All You Need
Neu ripS 2017 Ashish Vaswani* Noam Shazeer* Niki Parmar”* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com
Llion Jones® Aidan N. Gomez™ ! Lukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com
Citation: 173883+ Illia Polosukhin® *

illia.polosukhin@gmail.com
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Transformer

' Output
* Transformer is composed of an encoder and a / [ Soﬂfnax ]\
decoder. Transformer :
Linear ]
e The input and output sequence embeddings are added ( —— :
with positional encoding before being fed into the 4 / Decoder )

encoder and the decoder.
« The encoder is a stack of multiple Transformer layers, (‘excoms A
used to transform the text embeddings into a EEEEGN
representation that can support a variety of tasks. i
 The decoder is also a stack of multiple Transformer : To7e o :

layers, used to predict the next token to continue the input
text. It also inserts a sub-layer, known as the encoder-

. 3
decoder attention. N ~ \_ : )
DECODER 1 —
s D
Feed Forward
ENCODER A \. J : Positi . Position
| — covang | [ Zoion | (et | [ S0
( Feed Forward ) Encoder-Decoder Attention - /
\ J
3 f 4 Input Target
( Self-Attention ) Self-Attention
\ y, . . : .
f f https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-
https://jalammar.github.io/illustrated-transformer/ works-step-by-step-b49fada64{34/
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Transformer Layer (Block)

L Input: D x N matrix of word embeddings, where D is the RSk e

embedding dimension and N the sequence length.

-

Residual connection Residual connection

i

O Multi-Head Attention: y i
“* Each token can attend to every other token. N o B i
¢ Output dimension is D x N. ) E \ i
¢ Residual connection: add the original inputs back. g — i
> LayerNorm: | __:_'E i
; ﬁglﬁrlrll Zﬁ;g::gﬁ)S;)iﬁ?ggﬁf;;;?g?;iiifgfy Input Multi-head LayerNorm ~ Paralel neural LayerNorm i Output

' self-attention networks (x N) :
o Fully Connected Feed-Forward: \ )
v" Same MLP applied to each column.
v' Residual connection again.
O Final LayerNorm: X <« X+ MhSa[X]
U Normalizes outputs across D for each token. X <« LayerNorm 'X]
O Result: .Output 1s a D x N matrix with updated token « B ol [X 2 Vne {1’ S N}
representations. T L P[Xn|

X <+ LayerNorm X],
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Transformer Layer: Residual Connection

* Residual connection is a simple but powerful technique 1 ) odul
.. class AdaNorm(nn.Module):
from computer vision. """The residual connection followed by layer normalization."

* Observation: Deep neural networks are surprisingly bad def __init__ S?lft norm_shape, dropout):
super().__init__

at learning the identity function. e oo

self.1n = nn.LayerNorm(norm_shape

* Therefore, directly passing “raw” embeddings to the

next layer would be very helpful! def forward(self X Y-
X = f(xl—l) + X1 return self.1ln(self.dropout(Y

 This prevents the network from “forgetting” or
distorting important information as it is processed by

many layers. Residual connection :g+)
. . All vectors interact -
Residual connections are 1 each ofh Self-Attention
also thought to smooth the with each other | i ! f
IOSS landscape and make [no residuals] [residuals] T t 1 T
tra|n|ng eaS|er! [Loss landscape visualization, Xl )(2 X3 X4
Liet al., 2018, on a ResNet]

ﬁ l l P I GILLINGS SCHOOL OF
= GLOBAL PUBLIC HEALTH




=N
ELUNC GLOBAL PUBLIC HEALTH

Transformer Layer: Layer Normalization

* Problem: Deep neural networks often suffer from internal
covariate shift, where the distribution of inputs to each layer
changes during training, making optimization difficult.

Batch Norm Layer Norm

* Solution: Reduce variation by normalizing to zero mean and
standard deviation of one within each layer.

Batch norm d-dimensional vectors Layer norm
RE for cach sample in batch different dimensions of a

B B d d
\ 1 1 1 / 1 Layer Normalization
=Yg o=yl p==) o= =) (a5 p)?
! B; z B; / d; : d;( it Residual connection QP
1-dim All vectors interact Self-Attention
- oa- with each other ~t t t t
=yt i=—L+f
o 0 | | | |
X, X, X3 X,

Layer norm is not applied to an entire transformer layer, but just to
the embedding vector of a single token.
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Position-wise Feed-Forward Networks

* The pOSlthl’l—Wlse feed-forward . class PositionWiseFFN(nn.Module):
network transforms the representation ;";The.pqsitionvlv%sefﬁeed—fo;v_v(ajgd netuo rk."""
at all the sequence positions using the © ;a;gf;-(sini{ (?-n“m- LR, AL OURE PURES )
same MLP. This is Why we call 1t self.densel = nn .‘LazyLinear(ffn_num_hiddens)

p self.dense2 = nn.LazylLinear(ffn_num_outputs)

def forward(self, X):
return self.dense2(self.relu(self.densel(X)))

shinker|

jon [ | 1 |

|

[

ent

MLP independently NI Me | | mLp
Multilayer on each vector 1 1 1 1
Perceptron [ ][ ][ L
OINIE AN s, JiGT IS ’ Layer Normalization
Residual connection ('J‘r)
All vectors interact Self-Attention
with each other t t t t
I f f f
Xy X5 X3 Xa

https://www.youtube.com/watch?v=wjZofJX0v4M
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https://www.youtube.com/watch?v=wjZofJX0v4M

Putting it All Together

» Self-attention is the only interaction between vectors.
* Layer normalization and MLP work independently per vector. 5 yf y: A
* The structure 1s highly scalable and highly parallelizable. ' 619 '

—
.

| | | 1
MLP MLP MLP MLP

Y1 Y2 Y3 Ya
3 1 4 3 1 I [ I
| | | | I
Layer Normalization Layer Normalization
+
P &
[ [ I | h 4
MLP | | MLP | | MLP| | MLP Self-Attention
t 1t 1 | t
T Layer Normalization
Layer Normalization t t t 4
— |
d'-) ) t t )
1 1 1 1
, Seltf-Attentl;)n , | X1 X, e o
t t t t
1 1 1 1
% X2 X3 Xa In practice, we often put the layer normalization inside the residual attention,

which tend to give more stable training and 1s commonly used in practice.
Johnson, 2022
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Encoder

* The Transformer encoder consists of multiple identical Transformer layers that process the input
sequence in parallel. Each layer refines the input representation by capturing dependencies across all
positions. (N = 6 in the paper Attention is all you need).

* The encoder outputs a contextualized representation for each token, which serves as input to the decoder.

| A [ Loem e St”de”t] > Input: D x N, matrix of embeddings (or projected tokens).
; t N > Self-Attention Layer:
( FNCOPER ) > ( PECODER J » Each token attends to every other token in the source.
( ENC:)DER ] ( DEC:DER 2 » Multi-head mechanism for capturing diverse relationships.
- - J » Residual connection + LayerNorm keep gradients stable.
( ENCODER J ( DECODER ] » Feed-Forward Layer:
p L L \ » Position-wise MLP applied to each token's embedding.
. ENCODER J [ DECODER ) » Another residual connection + LayerNorm.
( . J [ : R » Stacking Layers:
ENCODER DECODER
- ) ) g » Typically L identical encoder layers.
( ) . . . .
] ENCODER ] ( DECODER ) » OQutput is D X Ngyc, providing contextualized embeddings for
— X _/ each source token.
INPUT ‘ Je  suis étudiant The lllustrated Transformer — Jay Alammar — Visualizing machine learning one concept

at a time. (jalammar.github.io)
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https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer Decoder

» Decoder Sublayers:

1. Masked Self-Attention: Targets attending to themselves (past
tokens).

2. Cross-Attention: Queries from the decoder, Keys and Values
from encoder.

3. Feed-Forward Network: Applies position-wise transformations
to each token.

» Residuals 4+ LayerNorm:

» Each sublayer uses skip connections and normalization.
» Ensures stable training and consistent dimensionality.

» Qutcome:

» Decoder hidden states are enriched with relevant source info.
» Final step: linear layer + softmax for next-token prediction.

Thinking Machines
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( Softmax
3
( Linear
i, L
....... > DECODER #2
§ §
.,'P( Add & Normalize )

= IS oo o T
o ,*( Add & Normalize )
e ; 3
..... :"( Encoder-Decoder Attention )
A —— Be-----ccccmcmmmmme- 3
'.>( Add & Normalize )
' R R
E ( Self-Attention )




Decoder: Masked Self-Attention

e The Transformer decoder is also composed of multiple

layers and generates the output sequence step by step. In ouTeuT [ | am a student]
the decoder self-attention, queries, keys and values are - 4
all from the outputs of the previous decoder layer. ( ENCODER ) DECODER
L) )
* However, each position in the decoder is allowed only ( ENCODER ] ( DECODER
to attend to all positions in the decoder up to that . N .
position. This masked attention preserves the B ) i

7
ENCODER
&

7
DECODER
&

autoregressive property, ensuring that the prediction
only depends on those output tokens that have been

N N )
J

N\ () ()
— ) )

generated. ENCODER J l DECODER
4 . 7y
ENCODER [ DECODER
. I ’

INPUT [Je suis étudiant]
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Decoder

Decoding time step:@Z 3456 OUTPUT

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

DUNC

?

( Linear + Softmax

T

[ ENCODER ] ) ( DECODER

\— ) U

4 LY
[ ENCODER J [ DECODER
o
[ITT1] [ITTT] [ITTT1]
CITT1 [TTT1] [T
Je suis étudiant
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Decoding time step: 1@3 456

OUTPUT |

f

s

ENCODERS

Vencdec ( Linear + Softmax

D t

\\— \— )

DECODERS
o
EMBEDDING t t t 4
witHTiMe OO0 OO0 OO0 Emm

SIGNAL

EMBEDDINGS CITT1] [T 1] LTI I
e suis étudiant PREVIOUS |
RS ! OUTPUTS



Decoder: Final Layer

e The Linear layer is a sirpple fully connected Which word in our vocabulary -
neural network that projects the vector is associated with this index?
produced by the stack of decoders, into a much,
much larger vector called a logits vector. Get the index of the cell
. : . 5
* The softmax layer then turns those scores into with the h'gh(e:ﬁ V;;L)'(e)
probabilities (all positive, all add up to 1.0). !
e The cell with the hloghest p}‘ob?tl?lllty is chosen, logprobs [T A O
and the word associated with it is produced as 012345 A . vocab_size
the output for this time step.
( Softmax )
/\ *
To date, the cleverest thinker of all time was logits NENEENNEENEEEEEEEEEE _
—————————————— 012345 * .. Vocab_size
( Linear )
A
Decoder stack output LT

-
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Transformer: Putting it All Together

A Transformer is a sequence of Transformer layers.

Wicivs il Decoder decodes one position at a
multi-head attention keys and values ' oy e
kf’l, o kf}m and Uf,p o ,vf’m
6 layers, each with d =512 Tinear
( \ . - -
- _ (Adda Norm J+~ residual connection with LN
o e s ) H— hf = WiReLU(W{a! + bS) + b
passed to next layer £ + 1 \ e ] < — 2 1% T 51 2
¢ ¢ -, ¢ ¢ S ) Add & Norm residual connection with LN
h; = WoReLU(W7a; + b b S— Mult-Head : :
2 ( T 1) T 0 o[ Feed Ationtion | 4 multi-head cross attention
2-layer neural net at each position boe | I ¥
—12 —p1 ¢ - residual connection with LN
a; = LayerNorm(h;™" + a;) 5{ 4008 Nom Masked
' ' ‘ A e - same as encoder only masked
essentially a residual connection with LN | Ly (i oLl
, S, , W S
- y € e,
: : Bl Positional Positional
IHPUt. hte Encoding D & Encoding
. Input Output .
output: a; Embedding Embedding (Levine, 2021)
concatenates attention from all heads
Inputs Qutputs
(shifted right)
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Content

4 Transformer Applications
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Transformers are Everywhere Now!

AUNC

cook shimp

wipe wine

call elevator high five

Robotics, Simulations, Physical Tasks

Genomics
——d
54

o~
= )

Radiograph
1

Radiology
Report

Mammaography

(B %)

Dermatology
\ ==
- S
LS =

Med-PaLM M

v

Medical
Knowledge

GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH

Pathology

Medical
Question
Answering

Medical Visual
Question
Answering

Medical image
Classification

Radiology
Report
Summarization

Radiclogy
Report
Generation

Genomic
Variant Calling

MultiMedBench modalities and tasks

Biology + Healthcare

:
g~

A

s
&

|
% 207 &




Transformers are Everywhere Now!

ChatGPT )

@ Whatareyou?

I'ma large language model D) O .
trained by OpenAl.I'm a form e n W h
of artificial intelligence that p I S e r

} has been designed to

process and generate
human-like language.
@ Areyouhuman?

I'mnot a human and | don’t
have the ability to think or
feelin the same way that a

person does.

Text and Language
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Why Transformers?

* Downsides:
« Attention computations are technically O(N?)
* Somewhat more complex to implement (positional encodings, etc.)

* Benefits:
* Much better long-range connections
* Much easier to parallelize
* In practice, can make it much deeper than RNN.

* The benefits seem to vastly outweigh the downsides, and Transformers work much better than RNNs and LSTMs in
many cases. Arguably, Transformer is one of the most important sequence modeling improvements of the past decade.
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Pretraining and Fine-Tuning

Definition: Train a model on a large, general-purpose dataset. Definition: Further training a pretrained model on a smaller,

Objective: task-specific dataset.
o Capture grammar, semantics, and world knowledge. Goal:
Develop universal language representations. > Leverage general knowledge from pretraining.

Benefits: > Specialize for a target task (classification, QA, NER, etc.).

L Model gains broad patterns (e.g., BERT, GPT, etc.). Advantages:

L Reduces the amount of data needed for future tasks. > Requires far less data than training from scratch.

L2 Often uses large corpora (Wikipedia, BookCorpus, etc.). W Faster convergence, lower computational cost.

Examples: L3 Often leads to state-of-the-art performance on downstream

LJ Masked language modeling (BERT). tasks.

L Next token prediction (GPT). Process:
L Load pretrained weights, replace final layer with task-specific
output.

L Train on the smaller labeled dataset for a few epochs.
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The Rise of Large Language Models (LLM)

* Scaled up versions of Transformer architecture, e.g. billions/trillions of parameters
e Typically trained on massive amounts of “general” textual data (e.g. web corpus)
* Training objective is typically “next token prediction”: P(Wiyq |We, We_q, ..., W7)

* Emergent abilities as they scale up (e.g. chain-of-thought reasoning)

* Heavy computational cost (time, money, GPUs)

» Larger general ones: “plug-and-play” with few or zero-shot learning ﬁ
* Train once, then adapt to other tasks without needing to retrain m
* E.g. in-context learning and prompting

 Why do LLMs work so well? What happens as you scale up?

. , o Gemini/Bard  ChatGPT/ GPT-4 Claude 3 Llama 3
* Potential explanation: emergent abilities! (Google) (OpenAl) (Anthropic) (Meta)
* An ability is emergent if it is present in larger but not smaller models
* Not have been directly predicted by extrapolating from smaller models

* Performance is near-random until a certain critical threshold, then improves heavily
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Scaling up Transformers

Sca“ng up Transformers $3,768,320 on Google Cloud (eval price)
L S S S " [ TS

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)
RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)
GPT-2 48 1600 ? 1.5B 40 GB

Megatron-LM 72 3072 32 8.3B 174 GB 512x V100 GPU (9 days)
Turing-NLG 78 4256 28 17B| ? 256x V100 GPU

GPT-3 96 12,288 96 175B 694GB

Iu

Gopher 80 16,384 128 2808B 10.55TB J4096x TPUV3 (38 days)

(Johnson, 2022)
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* With Transformers, language modeling performance improves smoothly as we increase model size, training
data, and compute resources in tandem.

» This power-law relationship has been observed over multiple orders of magnitude with no sign of slowing!

* While scaling is a factor in emergent abilities, it is not the only factor! E.g. new architectures (DeepSeek, as
discussed later), higher-quality data, and improved training procedures, could enable emergent abilities on

smaller models

Behold, a wild pi creature,

foraging in its native land. In

order not to kill it in any other

way, he has set the land ablaze. And
now you hear the voice of your

father, "The man's going to kill

you now. You have not seen me so many

times, yet you have heard my voice.
So he is going to make it worse on a
large scale by going to

after [ 26%
[to_|
into [ 6%
up [ 6%
out I 4%
through | 2%
Transformer =» = .
on |1%
against | 1%
GPT2 ="
and | 1%

around | 1%

Behold, a wild pi creature,
foraging in its native habitat of
mathematical formulas and
computer code! With its infinite
digits and irrational

tendencies, this strange
creature is beloved by
mathematicians and tech
enthusiasts alike. Approach with
caution, for attempting to
calculate its exact

precise [J] 6%
value [ 12%
true I %

decimal | 3%

digits [ 3%

Transformer =» ., |,
circumference | 0%

decimals | 0%

endless | 0%

GPT3

numerical | 0%

never | 0%

https://www.youtube.com/watch?v=eMIx5fFNoYc



https://www.youtube.com/watch?v=eMlx5fFNoYc
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How to succeed in this course? I
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Visualize

Practice

Discuss
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