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Motivation

The dog chased another dog

The animal didn’t cross the street because it was too tired

• How to encode the text?

• “dog” refers to two different entities in the first sentence
• What does “it” refer to in the second sentence?

• Is there any other way to model dependence?



A High-Level Look

The Illustrated Transformer – Jay Alammar – Visualizing machine learning one 
concept at a time. (jalammar.github.io)

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


Attention Timeline
This timeline highlights the evolution of deep learning 
and natural language processing. Starting in the 1990s 
with rule-based methods, RNNs, and LSTMs, it 
progressed to the introduction of simple attention 
mechanisms in 2014. 
The Transformer era began in 2017 with the 
groundbreaking paper "Attention is All You Need," 
leading to a rapid adoption in NLP with models like 
BERT and GPT by 2018. From 2018 to 2020, 
Transformers expanded into fields like vision (ViTs) and 
protein folding (AlphaFold-2). The generative era began 
in 2021-2022 with models like Codex, GPT-X, and 
DALL-E. 
By spring 2025, Transformers power massive models like 
ChatGPT, DeepSeek and open new applications in diverse 
areas, with exciting prospects for the future.

(Yang & Hashimoto, 2025)



Word Embeddings in NLP
Before diving into the attention mechanism, recall a common preprocessing step in NLP. Words are typically 
represented as dense vectors called word embeddings. These embeddings are stored in an embedding matrix W𝑬, 
where d is the embedding dimension and n is the vocabulary size. Embeddings provide the foundation for 
queries, keys, and values in attention.

https://www.youtube.com/watch?v=wjZofJX0v4M

https://www.youtube.com/watch?v=wjZofJX0v4M


Word Vector Embedding
• The model tends to settle on a set of embeddings where directions in the space have a kind of 

semantic meaning.
• One classical example is that, the difference between vectors of “man” and “woman” is very 

similar to that between “king” and “queen”. Consequently, we can simply find the embedding of a 
female monarch by taking “king”, adding the difference “woman” – “man” and search such an 
embedding.

https://www.youtube.com/watch?v=wjZofJX0v4M

https://www.youtube.com/watch?v=wjZofJX0v4M


Self-Attention: Motivation
• Suppose the following sentence is an input sentence we want to translate: The animal didn’t cross 

the street because it was too tired. What does “it” in the sentence refer to? Is it referring to the 
street or the animal? It’s a simple question to a human, but not as simple to an algorithm.

• The self-attention mechanism enables the model to associate “it” with “animal”.

As we are encoding the word “it” in encoder 
#5, which is the top encoder in the stack, part 
of the attention mechanism was focusing on 
"The Animal", and baked a part of its 
representation into the encoding of “it”.

The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time. 
(jalammar.github.io)

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


Self-Attention: Details
• The first step is to create three vectors from each of encoder’s input vectors. These vectors are created by 

multiplying the embedding by three matrices that we trained during the training process (usually smaller in 
dimension than the embedding vector).

The Illustrated Transformer – Jay Alammar – Visualizing machine learning one 
concept at a time. (jalammar.github.io)

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


Self-Attention: Details
• The second step is to calculate the scoring function and then divide it by the square root of the 

dimension of the key vectors. 



Self-Attention: Details
• The third step is to multiply each value 

vector by the softmax score and sum up 
the weighted value vectors.

• The resulting vector is the one we can send 
along to the feed-forward neural network.

• In the actual implementation, such 
calculation is done in matrix form for faster 
processing.



Self-Attention: Matrix Calculation
• Query, key and value matrices are calculated 

through matrix multiplication.
𝑄 = 𝑊!𝑋 = 𝛽"1# + Ω"𝑋
𝐾 = 𝑊$𝑋 = 𝛽%1# + Ω%𝑋
𝑉 = 𝑊&𝑋 = 𝛽'1# + Ω'𝑋
𝑌 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾# 𝑉



Self-Attention: Equivariance and Invariance

Sketch

Definition Theorem



RNN, CNN, and Self-Attention
RNNs are best for capturing sequential dependencies but struggle with long-range patterns.
CNNs excel at local spatial features and parallel processing but are not well-suited for sequence data.
Self-Attention provides flexibility in capturing long-range dependencies and global contexts but is 
computationally expensive for very long sequences.

Aspect RNNs CNNs Self-Attention

Primary Purpose Sequential data 
processing Spatial data processing

Capturing global 
relationships and 
dependencies

Data Handling Temporal and ordered 
sequences Local and spatial features Long-range and global 

dependencies

Model Type Recurrent neural 
networks

Convolutional neural 
networks

Attention-based, often in 
transformers

Core Mechanism Recurrence and hidden 
states

Convolutions with 
filters/kernels

Query-Key-Value 
attention mechanism



Comparing RNNs, CNNs and Self-Attention

(Johnson, 2022)



Multi-Head Attention
• In practice, given the same set of queries, keys and values we may want out model to combine 

knowledge from different behaviors of the same attention mechanism, such as capturing 
dependencies of various ranges (e.g., shorter-range vs. longer-range) within a sequence. Thus, it 
may be beneficial to allow our attention mechanism to jointly use different representation 
subspaces of queries, keys and values.

• Instead of performing a single attention pooling, queries, keys, and values can instead be 
transformed with ℎ independently learned linear projections. These ℎ projected queries, keys and 
values are fed into attention pooling in parallel.

• This design is called multi-head attention, where each of the ℎ attention pooling outputs is a head.



Multi-Head Attention
Multi-head attention expands the model’s ability to focus on different positions, as well as gives the 
attention layer multiple “representation subspaces”, thus improving the expressivity of the model.
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Positional Embedding
• Unlike RNNs, which recurrently process tokens of a sequence one-by-one, self-attention ditches sequential 

operations in favor of parallel computation. 

• However, self-attention by itself does not preserve the order of sequence, that is, it is equivariant to 
permutations of the inputs. What should we do to account for the order of words in the input sequence when it 
really matters?

 

• The dominant approach for preserving information about the order of tokens is to represent this to the model 
as an additional input associated with each token. These inputs are called positional embedding, and can 
either be learned or a fixed a priori.

(Levine, 2021) 



Positional Embedding
• The naïve positional encoding would just append 𝑡 to the input: 𝑥( = )!

( . However, it would 
not be a great idea, because the absolute position is less important than the relative position.

v Therefore, we want to represent position in a way 
that tokens with similar relative position will have 
similar position encoding.

v What about using frequency-based representations?



Positional Embedding: Example
• One typical scheme for fixed positional 

encodings are based on sine and cosine 
functions.

• Suppose that 𝑋 ∈ ℝ*×,  contains the 𝑑 -
dimensional embeddings for 𝑛 tokens of a 
sequence. The positional encoding outputs 
𝑋 + 𝑃 using a positional embedding matrix 
P ∈ ℝ*×, of the same shape, whose element 
on the 𝑖th row and the (2𝑗)th or (2𝑗 + 1)th 
column is given by

     𝑝",$% = sin "

&'''
!"
#
, 𝑝",$%(& = 𝑐𝑜𝑠 "

&'''
!"
#



Positional Embedding: Example

• Equivalent to

𝑝-,/0 = sin 2𝜋
𝑝𝑜𝑠
𝜆0

, 𝑝-,/012 = 𝑐𝑜𝑠 2𝜋
𝑝𝑜𝑠
𝜆0

🎵 Think of each dimension as a musical string:
• Low-frequency dimensions (large λ) → slow, smooth waves
• High-frequency dimensions (small λ) → fast, jittery waves

By combining them, the model gets a richer encoding of position, similar to combining bass and treble to form 
a musical tone.

• How the Model Uses This
• The self-attention mechanism doesn't know order inherently.
• Positional encodings shift the vector space so tokens at different positions are separable, even if their word embeddings are similar.
• This enables the model to attend to relative and absolute positions of tokens.



Positional Embedding: Example

“even-odd” indicator
“first half-second half indicator” indicator



Positional Embedding

Relative Intuition
Because sinusoids are shifted versions of one 
another, subtracting positional encodings of positions 
a and b gives a pattern that the model can use to 
infer relative positions.
That’s why:
• Positional encoding enables absolute and relative 

positioning,
• Without needing recurrence or convolution.

Summary of Intuition
• Wavelength controls how fast the position-

based values change.
• Using a range of wavelengths gives the model 

fine to coarse positional resolution.
• The model learns patterns of where things are 

via combinations of sinusoids, like Fourier 
encoding.



Alternative Positional Embeddings
Vision Transformer 
Patch-Based Tokens:
▶ Image is split into patches and embedded as tokens.
▶ A 2D coordinate (x, y ) is mapped to position 
embeddings.

2D Positional Embeddings:
▶ Often a learnable embedding for each patch index.
▶ Alternatively, sinusoidal in each spatial dimension, 
then combined.

 Why It Works:
▶ Preserves spatial relationships for tasks like 
recognition, detection.
▶ Vision Transformers handle global and local contexts 
effectively.

Learnable Positional Embeddings:
▶ Treat position embeddings as trainable parameters.
▶ No mathematical constraint, but less interpretable.

Relative Positional Encoding:
▶ Encodes the difference between positions.
▶ Helps with tasks where relative order matters (e.g., 
text generation).

 Rotary Positional Encoding:
▶ Efficiently integrates positional information into 
attention.
▶ Particularly effective for long-sequence tasks.
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Why Transformers?
Parallel Computation + Short Path Length:
▶ Self-attention can handle all tokens in parallel.
▶ Minimal path length for global dependencies, vital for deep
architectures.

Transformer Dominance in NLP:
▶ Nearly all state-of-the-art language tasks use Transformer 
based models.
▶ Default approach: ”Grab a large pretrained Transformer”
(BERT, GPT, T5, etc.).

 Vision Transformer (ViT):
▶ Patch-based input turned into token embeddings.
▶ Now a go-to model for image recognition, detection, and
segmentation.
Islam, S., Elmekki, H., Elsebai, A., Bentahar, J., Drawel, N., Rjoub, G., & Pedrycz, W. (2024). A
 comprehensive survey on applications of transformers for deep learning tasks. Expert Systems with Applications, 241, 122666.



Why Transformers?
Before Transformers After Transformers

(Bertasius, 2024)



From Attention Mechanism to Transformer
• If we have attention, do we even need recurrent connections?
• Can we transform our RNN into a purely attention-based model?

Citation: 173883+

Neurips 2017



Transformer
• Transformer is composed of an encoder and a 

decoder.
• The input and output sequence embeddings are added 

with positional encoding before being fed into the 
encoder and the decoder.

• The encoder is a stack of multiple Transformer layers, 
used to transform the text embeddings into a 
representation that can support a variety of tasks.

• The decoder is also a stack of multiple Transformer 
layers, used to predict the next token to continue the input 
text. It also inserts a sub-layer, known as the encoder-
decoder attention.

https://jalammar.github.io/illustrated-transformer/
https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-
works-step-by-step-b49fa4a64f34/



Transformer Layer (Block)
▶ Input: D × N matrix of word embeddings, where D is the
embedding dimension and N the sequence length.
▶ Multi-Head Attention:
v Each token can attend to every other token.
v Output dimension is D × N.
v Residual connection: add the original inputs back.
▶ LayerNorm:
Ø Applied to each column (token) independently.
Ø Normalizes across the embedding dimension.
▶ Fully Connected Feed-Forward:
ü Same MLP applied to each column.
ü Residual connection again.
▶ Final LayerNorm:
q Normalizes outputs across D for each token.
▶ Result: Output is a D × N matrix with updated token
representations.



Transformer Layer: Residual Connection
• Residual connection is a simple but powerful technique 

from computer vision.
• Observation: Deep neural networks are surprisingly bad 

at learning the identity function.
• Therefore, directly passing “raw” embeddings to the 

next layer would be very helpful!
𝑥3 = 𝑓 𝑥342 + 𝑥342

• This prevents the network from “forgetting” or 
distorting important information as it is processed by 
many layers.



Transformer Layer: Layer Normalization
• Problem: Deep neural networks often suffer from internal 

covariate shift, where the distribution of inputs to each layer 
changes during training, making optimization difficult.

• Solution: Reduce variation by normalizing to zero mean and 
standard deviation of one within each layer.

Layer norm is not applied to an entire transformer layer, but just to 
the embedding vector of a single token.



Position-wise Feed-Forward Networks
• The position-wise feed-forward 

network transforms the representation 
at all the sequence positions using the 
same MLP. This is why we call it 
position-wise.

https://www.youtube.com/watch?v=wjZofJX0v4M

https://www.youtube.com/watch?v=wjZofJX0v4M


Putting it All Together

(Johnson, 2022)

• Self-attention is the only interaction between vectors.
• Layer normalization and MLP work independently per vector.
• The structure is highly scalable and highly parallelizable.

In practice, we often put the layer normalization inside the residual attention, 
which tend to give more stable training and is commonly used in practice.



Encoder
• The Transformer encoder consists of multiple identical Transformer layers that process the input 

sequence in parallel. Each layer refines the input representation by capturing dependencies across all 
positions. (𝑁 = 6 in the paper Attention is all you need).

• The encoder outputs a contextualized representation for each token, which serves as input to the decoder.

The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept 
at a time. (jalammar.github.io)

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


Transformer Decoder



Decoder: Masked Self-Attention
• The Transformer decoder is also composed of multiple 

layers and generates the output sequence step by step. In 
the decoder self-attention, queries, keys and values are 
all from the outputs of the previous decoder layer. 

• However, each position in the decoder is allowed only 
to attend to all positions in the decoder up to that 
position. This masked attention preserves the 
autoregressive property, ensuring that the prediction 
only depends on those output tokens that have been 
generated.



Decoder



Decoder: Final Layer
• The Linear layer is a simple fully connected 

neural network that projects the vector 
produced by the stack of decoders, into a much, 
much larger vector called a logits vector.

• The softmax layer then turns those scores into 
probabilities (all positive, all add up to 1.0).

• The cell with the highest probability is chosen, 
and the word associated with it is produced as 
the output for this time step.



Transformer: Putting it All Together

(Levine, 2021) 

A Transformer is a sequence of Transformer layers.
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Transformers are Everywhere Now!

Robotics, Simulations, Physical Tasks Playing Games

Biology + Healthcare



Transformers are Everywhere Now!

Vision: Generating Images & Video

Audio: Speech + Music
Vision: Analyzing Images & Videos

Text and Language



Why Transformers?
• Downsides:

• Attention computations are technically 𝑂 𝑁"

• Somewhat more complex to implement (positional encodings, etc.)

• Benefits:
• Much better long-range connections
• Much easier to parallelize
• In practice, can make it much deeper than RNN.

• The benefits seem to vastly outweigh the downsides, and Transformers work much better than RNNs and LSTMs in 
many cases. Arguably, Transformer is one of the most important sequence modeling improvements of the past decade.



Pretraining and Fine-Tuning
Definition: Train a model on a large, general-purpose dataset.
Objective:
▶ Capture grammar, semantics, and world knowledge.
▶ Develop universal language representations.
Benefits:
▶ Model gains broad patterns (e.g., BERT, GPT, etc.).
▶ Reduces the amount of data needed for future tasks.
▶ Often uses large corpora (Wikipedia, BookCorpus, etc.).
Examples:
▶ Masked language modeling (BERT).
▶ Next token prediction (GPT).

Definition: Further training a pretrained model on a smaller,
task-specific dataset.
Goal:
▶ Leverage general knowledge from pretraining.
▶ Specialize for a target task (classification, QA, NER, etc.).
Advantages:
▶ Requires far less data than training from scratch.
▶ Faster convergence, lower computational cost.
▶ Often leads to state-of-the-art performance on downstream
tasks.
Process:
▶ Load pretrained weights, replace final layer with task-specific 
output.
▶ Train on the smaller labeled dataset for a few epochs.



The Rise of  Large Language Models (LLM)
• Scaled up versions of Transformer architecture, e.g. billions/trillions of parameters

• Typically trained on massive amounts of “general” textual data (e.g. web corpus)
• Training objective is typically “next token prediction”: 𝑃(𝑊#$%|𝑊& ,𝑊&'%, … ,𝑊%)
• Emergent abilities as they scale up (e.g. chain-of-thought reasoning)
• Heavy computational cost (time, money, GPUs)
• Larger general ones: “plug-and-play” with few or zero-shot learning

• Train once, then adapt to other tasks without needing to retrain
• E.g. in-context learning and prompting

• Why do LLMs work so well? What happens as you scale up?
• Potential explanation: emergent abilities!

• An ability is emergent if it is present in larger but not smaller models
• Not have been directly predicted by extrapolating from smaller models

• Performance is near-random until a certain critical threshold, then improves heavily



Scaling up Transformers

(Johnson, 2022)



Scaling Laws & Beyond Scaling
• With Transformers, language modeling performance improves smoothly as we increase model size, training 

data, and compute resources in tandem.
• This power-law relationship has been observed over multiple orders of magnitude with no sign of slowing!

• While scaling is a factor in emergent abilities, it is not the only factor! E.g. new architectures (DeepSeek, as 
discussed later), higher-quality data, and improved training procedures, could enable emergent abilities on 
smaller models

https://www.youtube.com/watch?v=eMlx5fFNoYc

https://www.youtube.com/watch?v=eMlx5fFNoYc
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How to succeed in this course?
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