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Motivation

Recurrent Neural Networks (RNINs) are motivated by their ability to address challenges inherent in sequential data.

- | @ 8

Weath(_ar Stock market Autocomplete Genetic
forecasting trends for texting sequencing

Many real-world datasets are inherently sequential, where the order of data points is crucial.

% Time series: Stock prices, weather forecasts, and sensor data require capturing patterns over time.

%+ Text: The meaning of a sentence depends on word order ("' The cat chased the dog" vs. " The dog chased the cat").
% Speech: Phonemes and intonation must be processed sequentially to understand spoken language.

“* Video: Frames in a video sequence have temporal relationships that determine the flow of events.

E% P g =

Speech Video frame Musi.c.
recognition prediction composition
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Sequences
,

~
A sequence i1s an ordered list of elements, where the order of the elements
matters. They are fundamentally different from unordered data because each
clement 1s dependent or influenced by the previous elements.
. J
Examples:
e Letters (words)
Words (sentences)
* Sentences (documents) "Hello, how are you?" (chatbot input).
 Frames (video) . : :
. . _ e.g., A security camera capturing a person walking.
* Amino-acids (genetic code) e.g., "ACGTAGCTAGT" represents a biological sequence.
« fMRI/ECG signals
( Why Are Sequences Important? h
Unlike independent data points, sequences contain temporal or contextual dependencies:
* Future values depend on past values (¢.g., predicting tomorrow’s weather).
* Words in a sentence rely on context (e.g., in "bank deposit" vs. "river bank").
\_* Biological sequences determine genetic functions. D
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Sequences

Challenges in modeling sequential data

= [Infinite number of possible sequences:

** Sequences can vary in length (short vs. long sequences).

¢ Sequences can have variable patterns (c¢.g., DNA sequences, language models).

% Order matters, meaning different orders of the same elements can have different meanings.

= Need for Probability Distributions Over Sequences:

» Since an infinite number of sequences exist, we cannot store all possible sequences explicitly.
» Instead, we model a probabilistic function that assigns a likelihood to each possible sequence.
» Example: Given a sequence S=(x1,x2,...,xT), we want to learn a probability distribution P(S).

Output: y(" y@ O @ 6 6

I

RNNs are designed for modeling sequences
* Sequences of any length in the input, in the output, or in both
* They can remember past information

* Apply the same weights on each step

Input: XTU X?Z) x?3) x?“) XTS) x?e) Time
-
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Different Categories of Sequence Modeling

one to one one to many many to one many to many many to many

Vanilla mode without RNN Sequence output Sequence input Sequence input and output  Synced sequence input
e.g. image classification e.g., image captioning e.g., sentiment analysis e.g., machine translation and output
e.g., video classification

Source: https://karpathy.qgithub.io/2015/05/21/rnn-effectiveness/
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https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sentiment Analysis and Video Analytics

Input Visual Sequence  Output
Features Learning

SENTIMENT ANALYSIS

POSITIVE NEUTRAL NEGATIVE
"Great service for an affordable "Just booked two nights "Horrible services. The room
price. at this hotel." was dirty and unpleasant.
We will definitely be booking again." Not worth the money."

Sentiment Analysis is a NLP technique used to determine the
emotional tone of a given text. It helps identify whether the
sentiment of the text is positive, negative, or neutral. Video analytics enable machines to recognize

https://www.gosmar.eu/machinelearning/2020/08/23/recurrent-neural-networks-for-sentiment-analysis/ actlons, Ob‘]eCts’ and scenes in videos.

https://imerit.net/blog/using-neural-networks-for-video-classification-blog-all-pbm/
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Machine Translation

Machine Translation (IMT) is the task of translating a sentence x from one language (the source language) to a
sentence y in another language (the target language).

Goal: Produce translations that are both fluent and faithful to the meaning of the source text.

Applications: Global communication, localization cross-lingual information retrieval, etc.

x: L'homme est né libre, et partout il est dans les fers

English:
y: Man is born free, but everywhere he is in chains
Chinese:
"ANEMEH, B ERMSTERE.,
Japanese:
[ ABREBCEFASN. ECITOWTHEITELSNTU
%, |
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Not trivial to model!

Morgen ] ich nach Kanada| |zur Konferen:z
Tomorrow will fly to the conference||in Canada

1519F 6002 I F AEE T &M, EMER/LE S A
IR E, PRXREBEMIIME=022,

In 1519, six hundred Spaniards landed in Mexico to conquer the Aztec Empire with a
population of a few million. They lost two thirds of their soldiers in the first clash.

translate.google.com (2009): 1519 600 Spaniards landed in Mexico, millions of people to
conquer the Aztec empire, the first two-thirds of soldiers against their loss.
translate.google.com (2013): 1519 600 Spaniards landed in Mexico to conquer the Aztec
empire, hundreds of millions of people, the initial confrontation loss of soldiers two-thirds.

translate.google.com (2015): 1519 600 Spaniards landed in Mexico, millions of people to
conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash. StanfordCS224n
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NMT: the first big success story

Neural Machine Translation (NMT): Uses deep learning and end-to-end training to model translation and
offers improved fluency and the ability to capture complex dependencies.

Neural Machine Translation went from a fringe research attempt in 2014 to the leading standard method in 2016

« 2014: First seq2seq paper published [Sutskever et al. 2014 ]

* 2016: Google Translate switches from SMT to NMT — and by 2018 everyone had
* https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

B Microsoft &svsrran  Google
Bailme ©3ume  Tencent i OfiLiEES

 This was amazing!

* SMT systems, built by hundreds of engineers over many years, were outperformed by NMT systems trained by
small groups of engineers in a few months
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http://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Deepseek v.s. OpenAl
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Modern NLP Systems

https://ai.plainenglish.io/deepseek-r1-vs-chatgpt-01-my-experience-ddbe09e80aa9
https://huggingface.co/blog/large-language-models
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Challenges

» Standard NN models (MLPs, CNNs) are not able to handle sequences of data
¢ They accept a fixed-sized vector as input and produce a fixed-sized vector as output.

R/

*» The weights are updated independently, meaning there is no memory of past computations.

R/

* The models do not have recurrence, so they cannot learn patterns across time steps.

£ Many real-world problems require capturing context over time: R
* Speech Recognition — Words depend on previous words.
¢ Time-series Prediction — Future values depend on past observations.
% DNA Sequencing — Genetic patterns unfold over long sequences.
¢ Natural Language Processing (NLP) — Meaning depends on word order.
\ J

* Example: Simple Context-Dependent Problem: Output YES if the number of 1s in the sequence is

even; otherwise, output NO.
e Input: 1000010101 — YES; Input: 100011 — NO
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Challenges

High Dimensionality and Complexity - Sequential data often involves high-dimensional inputs with complex
interdependencies:

“» Text: Words and phrases have semantic and syntactic relationships across sentences.

“ Time Series: Multivariate time series data (e.g., temperature, humidity, and pressure) exhibit interdependencies
between variables over time.

“ Biological Data: DNA sequences and protein structures involve intricate, sequential patterns.

Solution: RNNs address this by learning hierarchical representations through their recurrent structure, encoding both
local and global patterns.

Noise and Missing Data - Sequential data often contains noise or missing values:
» Noise: Sensor readings and time series data may have irregularities or anomalies.
» Missing values: Gaps in sequences arise from interruptions in data collection.

Solution: RNNs aggregate information over time, making them robust to noise and capable of interpolating missing
values using contextual information.
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Challenges

Temporal Dependencies
% Short-term dependencies: In text, the current word depends on immediately preceding words (e.g., "I want to eat

a...””).
% Long-term dependencies: Distant elements in the sequence can influence the current state (¢.g., in a paragraph, the

topic sentence affects subsequent sentences).
Solution: RNNs maintain memory through hidden states, enabling them to model temporal dependencies. Variants like
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) address challenges such as vanishing gradients,
allowing effective modeling of long-term dependencies.

Variable-Length Inputs and Outputs - Many real-world tasks involve sequences of varying lengths, which
traditional models struggle to handle. RNNs process inputs dynamically, making them ideal for tasks with variable-
length data.

Examples:

“» Natural Language Processing (NLP): Sentences have varying word counts, and RNNs can process each word
without requiring fixed input dimensions.

“* Speech Recognition: Audio recordings vary in duration depending on the speaker or content.

“» Time Series: Data collected over irregular time intervals often results in sequences of differing lengths.
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Content

2 Recurrent Neural Networks (RNNS)
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Text Processing for RNN

DUNC

Step Task Description

1 Preprocessing Text Clean text, tokenize, remove stopwords, and normal-
ize case using NLTK.

2 Build Vocabulary Assign a unique index to each word using a
frequency-based vocabulary.

3 Convert Text to Sequences Map tokenized words to their corresponding integer
indices.

4 Padding Sequences Standardize input sequence lengths by adding
padding tokens where necessary.

5% Dataloader Preparation Create PyTorch dataset and dataloader for mini-
batch training.

6 Load Pretrained Word Embed- | Use GloVe embeddings (100D) for better semantic

dings representation.

7 Define RNN Model Construct an RNN with an embedding layer, hidden
layers, and output layer.

8 Loss and Optimization Use Binary Cross-Entropy Loss (‘BCEWithLogit-
sLoss‘) and Adam optimizer.

9 Train Model Train the RNN model using mini-batches from the
dataloader.

10 Make Predictions Preprocess new text, convert it to sequences, and run
inference using the trained model.
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Word Embeddings

Most similar to ‘paper’

offer salesman

promote

firs position

employee
documentary
history discount

website property  account

small

a S P ustomer

6o service

product
infinity

sabre

Word embeddings are a fundamental technique in NLP. They
convert words into dense, continuous vector representations. Word
embeddings place similar words closer in vector space. Unlike
traditional one-hot encoding, embeddings preserve:

“* Semantic relationships between words.

% Contextual meaning of words in sentences.

“* Word similarity and analogies.

Types of Word Embeddings

» Frequency-Based Methods

= TF-IDF (Term Frequency-Inverse Document Frequency)
= LSA (Latent Semantic Analysis)

» Prediction-Based Methods (Neural Networks)

v' Word2Vec (CBOW & Skip-gram)

v GloVe (Global Vectors for Word Representation)

v' FastText (Subword Embeddings)

v' Transformer-Based (BERT, GPT)



Word Embeddings Dimensions

Word Dimensio
from transformers import BertTokenizer, BertModel Embeddings n  Key Features
import torch Trained on large corpora like Google
Word2Vec 50-300 News
# Load BERT model GloVe 50-300 Uses word co-occu.rrence st.atistics
tokenizer = BertTokenizer.from_pretrained("bert-base- EaSUIEXT SO 0500 [iandicsisHovohdinTamation
uncased") C_or_1text.ual embeddings from
model = BertModel.from_pretrained("bert-base-uncased") =0 Loze erelreciionel Lol
BERT (base) 768  Transformer-based, context-aware
# Tokenize and get embedding BERT (large) 1024 More parameters than BERT base
—n " GPT-2 (small) 768  Transformer-based generative model
text = "Hello world
to.kens - tOkemzer(t?Xt’ return_tensors="pt") GPT-2 (medium) 1024 More layers and parameters
with tOI’Ch.nO_gdraId*(z. « GPT-3 12288 High-dimensional transformer model
SLRLIES el ek el @ For small models or mobile applications —
o : : o Use 50-300 dimensions (Word2Vec, GloVe).
print("BERT Embeddlng USRS ¢ © For NLP applications with context-awareness —
UL ESE tefelan, SEISSERER) Use 512-1024 dimensions (BERT, ELMo).

@ For large-scale generative AI —
Use 1024+ dimensions (GPT-3, Transformers).
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Formulation: Language Modeling (LM)

A language model (LLM) is a statistical or machine learning model

that predicts the next word in a sequence or assigns Books
babilities t f word // Laptops
robabilities to sequences of words.
p 1 the students opened their
Predicts the likelihood of a sequence of words \\ Lunch Boxes

Generates human-like text (e.g., GPT models)

Understands context and meaning

Enables Al systems to process and generate natural language
- o 1 2 t

More formally: given a sequence of words g( )733( )7 . ,;1:( ), P(w(t_l_l)l {B(t) CE(l))

compute the probability distribution of the next word p(t+1) 70t

(t+1)

Exams

where @ can be any word in the vocabulary |/ —= {fwh cony W)Y }

Example:
» Input: "I am going to the"

» Model prediction: "store” (80%), "beach" (15%), "moon" (5%)
» The model assigns probabilities and selects the most likely next word.
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Language Modeling

* You can also think of a Language Model as a system that assigns a probability
to a piece of text

* For example, if we have some text z() ... z(T) then the probability of this text
(according to the Language Model) is:

PV, . . 1)) =PaW) x P(@| W) x ... x P(xD| TV, . . =)

T
=[] P®| 2¢D,...,20)

t=1

|\

J

Y
This is what our LM provides

StanfordCS224n
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History of Deep RNN's

The Rise of Deep RNNs (2010s - Present)

€ RNNs in NLP and Al

*2013 — Google used LSTM for speech recognition.
*2014 — Seq2Seq Models (Sutskever et al.) used LSTMs for machine translation.
*2015 — Google Translate adopted LSTMs for neural machine translation (NMT).

@ Attention and Transformers Change the Game
*2015 — Bahdanau et al. introduced Attention Mechanisms, improving Seq2Seq models.
*2017 — Vaswani et al. introduced Transformers, replacing RNNs with a more parallelizable model.

4§ Key Concept:
Transformers like BERT (2018), GPT-3 (2020), and ChatGPT (2022) outperformed RNNs, leading to their decline in NLP.

StanfordCS224n
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Recurrent Neural Networks (RNN)

A family of neural architectures

Core idea: Apply the same

weights W repeatedly
outputs
(optional) {
~
hidden 2 W
states g
.

input sequence {

(any length) (D) z(2) x(3) AS))

nn.RNN (input size, hidden size, num layers, batch first=True)

StanfordCS224n
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y® = P(x®)|the students opened their)

A Simple RNN Language Model™| o

|

output distribution

4 = softmax (Uh(t) - b2> e RV -

a ZOO:
U
(0 (D B(2) B(3) R®)

o %% - %% o 1%% o 1%% o
hidden states : hy : hy : hy : h :
h) = 5 (Whh(t_l) + W.e® + b1) Q@ @ 0] 0] @
0) s the initial hi — A N 7 5
h is the initial hidden state W, W, W, W,
: r—:—~ ’ . \ r—:—~
. (1) (2) 3) © (4)
word embeddings ele|l “le| “le| °|o
o) — Fp® © ° © ©
e To To Te
the students opened their
words / one-hot vectors () +(2) (3) ()
w(t) c R|V| Note: this input sequence could be much /
longer now! StanfordCS224n
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RNN L an gu age MOdelS g@ = P(:ZS;/Lzhe students opened their)

laptops

RNN Advantages:
* Can process any length input
* Computation for step ¢ can (in

theory) use information from many

steps back U

*  Model size doesn’t increase for longer h©)__ hY h(L h(?:)—~ h®)
input context o o @ ® @

: : Q| Wi, ([0 W, |@| Wr |@| Wr | @

« Same weights applied on every P > @ 1o 1o l @
timestep, so there 1s symmetry in how L L ® ) @ (0] (0]
inputs are processed. AW Tw Tw Tw

e e e e

RNN Disadvantages: - e(1) : e®| © e O e4)| O

* Recurrent computation is slow o) : : :

e In practice, difficult to access - Vore on T T‘ T‘
information from many steps back E E E E

these later

the students opened their
StanfordCS224n A (2 2 (3) 24

l lP l GILLINGS SCHOOL OF
= GLOBAL PUBLIC HEALTH




Training an RNN Language Model

¢ Prepare the dataset (tokenize text into words) and convert words to numerical tensors (word embeddings).

¢ Build an RNN-LM and compute output distribution Q(t) for every step t.
(1)

/7

¢ Loss function on step ¢ is cross-entropy loss between predicted probability distribution Y
and the true next word y( ) (one-hot for (1)),

JD0) = CE(y®,§0) = - > yPlog g = —log g |
weV

/7

¢ Average this to get the overall loss for entire training set:

1 — 1 —
T0) =72 700 =72 ~loeds),

StanfordCS224n
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Training an RNN Language Model

= negative log prob
of “students”

Loss — | JW(§) J2)(9) J3)(0) JH(0)

T

PredlcFed . g e ) @
prob dists
U U U U
h©)___ h h(2) h(3) h4
@ @ (0] @ @
@ Wi |0 W, (@0| Wr |@| Wh |@| Wi _
@ 10 1@ 1@ 1@ .
@ @ @ @ (0]
— 7 7 7 7
W, W, W, W,
(1) 2)| © 3) © (4| ©
“’le| “le| “le| ° o
@) @) @) @)
T Tz Tz s
Corpus — the students opened their exams "
21 2 (2) 2(3) 24 StanfordCS224n
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Training an RNN Language Model

= negative log prob
of “opened”

Loss —  JM(g) J2) () J3) () JD ()

[ .

Predicted
—_— () 7(2) 7 (3) 7 (4)
prob dists e Y Y Y
U U U U
h©)___ h) h(2) h3) h%)
o © O O O
@ Wi |0 W, (@0| Wr |@| Wh |@| Wi _
© 1@ @ @ @ g
© © O O O
— N ! ! !
W, W, W, W,
(1) (2)] © 3) © 4| ©
“’le| “le| “le| ° o
@) @) @) @)
T T2 Tz s
Corpus — the students opened their exams "
(1) 7(2) 23 24 StanfordCS224n
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Training an RNN Lan uage Model

= negative log pro
of “their”
Loss —  JM(g) J2) () J3) () JD ()
Predicted T T T T
—_— () 7(2) 7 (3) 7 (4)
prob dists Y Y Y Y
U U U U
h©)___ h h(2) h(3) h4
@ @ (0] (0] @
@ Wi |0 W, (@0| Wr |@| Wh |@| Wi _
@ 10 1@ 1@ 1@ .
(0] t (0] @ (O]
— 7 7 7 7
W, W, W, W,
(1) (2)] © 3) © 4| ©
e o e o e o e o
@) @) @) @)
T Tz Tz s
Corpus — the students opened their exams
(1) 2(2) 2 (3) 7 (4)
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Training an RNN Langua

J3)(0)

T

Q(3)

2!

Wi,

e Model

= negative log prob
of “exams”

J ()

|

g(4)

h(4)

Loss — J(1)(g) J2) ()
Predicfced 5 e
prob dists

U U
h©)___ h h(2)
@ @ @
| Win (0| W, |@
(0] 10 1@
@ @ @
— T 7
W, W,
O (@)
o) : e(2) :
© @)
e To
Corpus =—— the students
(1) 2(2)
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o3)

i?
h(3)
(@]
(O]
Q@
@]

e/
N

opened

E

@)

Cd

0000}??

1
—E%ooooqu

their
24

v

exams

StanfordCS224n




Training an RNN Language Modef

Teacher forcing”

T
Loss —— JM@) + JA@B) + JO@) + JD@) +.. = JO)= %Z,ﬂt)(e)
/]\ N N\ N t=1
PredICted :g(l) ﬁ(2) :g(?,) yA(4)
prob dists N " N
U U U U FC Layer
ho)__ e B2 B3 B4
: W, : %% o %% ° %% o W,
@ h" h>: h’: h>: hs RNN Layer
@ @ @ @ @
— 7 7 7 7
W, W, W, W,
(1) (2)] © 3)] © 4| ©
“le| “le| “le| ° o
© hd © hd Embedding Layer
T T2 Tz s
Corpus —— the students opened their exams
z() (2 x(3) x4 StanfordCS224n
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Training Challenges

Memory Constraints: Storing all word embeddings, gradients, and activations requires enormous memory.
« Computational Cost: Performing backpropagation over the entire dataset in a single step is impractical.
* Batching is Required: Instead of processing all data at once, models use mini-batches to update weights

efficiently. 1 T
_ (t)
JO) == I
Challenges =1 Solution

Too much memory usage Mini-batch training Divide the entire dataset into mini-batches
__ (e.g., batch size = 32).

Long sequences overflow Truncated BPTT (TBPTT) |

memory Truncate the sequence into smaller sub-sequences

Exploding gradients Gradient clipping (e.g., 20 time steps at a time).
7 . e . . . .

Slow training ¥ Efficient batching and Clip gradients to a maximum norm (e.g., 5).

parallelization
C

max(||g[|, C)

g=gx
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Backpropagation for RNNs

J® (6)
RO AU RO RUD h@i
(@) @ (@) @) (@)
o| W, Wi, |@| W, || Wr |l@| Wh |@| W,
—> eee rg > rg r >
@ &) (@) @) @
° o (o [of e

Question: What's the derivative of .7 () w.r.t. the repeated weight matrix W7, ?

“The gradient w.r.t. a repeated weight
is the sum of the gradient
() w.r.t. each time it appears”

o.J(®) t o J®
oWy, 2 OW,,

Answer:

Why?
StanfordCS224n
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Backpropagation for RNNs

In practice, often
“truncated” after ~20
timesteps for training
efficiency reasons

o.J ()
OW,;, |4
T Apply the multivariable chain rule:
. . =1
Question: How do we calculate this?
t

Answer: Backpropagate over timesteps 8J _ Z 8J® aWh‘(i)
i=t, ..,0, summing gradients as you go. oW, = OWh|, OWh
This algorithm is called “backpropagation . 9
through time” [Werbos, P.G., 1988, Neural _ 0J
Networks 1, and others] = Wil StanfordCS224n
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RNNs greatly improved perplexity

Model Perplexity
n-gram model — | Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013) 3 [
RNN-2048 + BlackOut sampling (J1 et al., 2015) 68.3
Increasingly Sparse Non-negative Matrix factorization (Shazeer et
al., 2015) 222
complex RNNs = _
LSTM-2048 (Jozefowicz et al., 2016) 43.7
2-layer LSTM-8192 (Jozefowicz et al., 2016) 30
Ours small (LSTM-2048) 43.9
| | Ours large (2-layer LSTM-2048) 39.8 !

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

StanfordCS224n

GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH

DUNC




Content

3 Extensions of RNN
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Vanishing gradient intuition

J(4)(9)
0 0 ®
5 A @ W | |44 §
o 5 O
0 0 0 0
o.J#)
orh

L This decay makes it difficult for RNNs to learn long-term dependencies.
> Empirical evidence shows rapid gradient norm decay.

StanfordCS224n
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Why is vanishing gradient a problem?

J2) () J4 ()
N A
h(1) h(2) h(3) h4)
O O O O
ol . W O W ___|e W . |®
O O O o
o] e ° e

» Short-Range vs. Long-Range: Imagine a long chain of dominos where each domino represents a layer or time step. If
the force transferred from one domino to the next diminishes (say by a constant factor each time), then after a long chain,
the force reaching the first domino becomes nearly zero. This means the first few dominos (or layers) barely "feel" the
impact of the initial force (or error), and thus they do not adjust effectively based on long-term dependencies.

» Resulting Behavior: The model ends up "paying attention" only to the parts of the sequence that are immediately
relevant (the nearby gradient signals) while ignoring distant context. This leads to challenges such as:

¢ Inability to learn relationships or dependencies that span many time steps.

¢ Poor performance on tasks that require integrating information over long sequences.

l lP l GILLINGS SCHOOL OF
= GLOBAL PUBLIC HEALTH




Long Short-Term Memory RNNs (LSTMs)

» At each time step t, the LSTM maintains a hidden state h(t) and a cell state ¢(t), both vectors of length n.
» The cell state stores long-term information, while the hidden state represents the immediate output.

» Three gates—the forget gate, input gate, and output gate—dynamically control the erasing, reading, and
writing of information in the cell state.

» Each gate is computed as a vector with values between 0 and 1, where values indicate the proportion of
information to keep or update.

» This gating mechanism allows the LSTM to selectively maintain important information over long
sequences, effectively addressing the vanishing gradient problem encountered in traditional RNNSs.

This dynamic gating system is a key innovation that makes LSTMs powerful for tasks requiring long-term memory, such as
language modeling, speech recognition, and time-series prediction.
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Long Short-Term Memory (LSTM)

A sequence of inputs x(. Compute a sequence of hidden states 2" and cell states (V. On timestep

Sigmoid function: all gate
Forget gate: controls what is kept vs values are between 0 and 1

forgotten, from previous cell state \

\

Wb 4 U™ + bf)

(1) —
Input gate: controls what parts of the ' =lo

new cell content are written to cell \ (
(1) _ (W.h(t—n L Ux® 1 b.)
1 o) i 3 L i

Output gate: controls what parts of
cell are output to hidden state ~ olt) —|g

W,h=1 L U,z + bo)

New cell content: this is the new
content to be written to the cell \
Cell state: erase (“forget”) some ~(t) (t—1) (t)
content from last cell state, and write \ ¢’ = tanh (Wch + Ucw = bc)
(“input”) some new cell content c(t) _ f(t) @c(t_l) n 'i(t) @é(t)

Hidden state: read (“output”) some -, h(t) _ O(t)Qtanh c(t) I
content from the cell

Y
All these are vectors of same length n

-

Gates are applied using element-wise
StanfordCS224n (or Hadamard) product: ©
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Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

& O, ®

A

4 )
>——e——— > >
A Letst]l] A

—»Clr —» >
© ® ©

O—P>—>—<

Neural Network Pointwise Vector
Layer Operation Transfer

StanfordCS224n

Concatenate Copy

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM) @

You can think of the LSTM equations visually like this: y = softmax(Uh + bs) € RV

Write some new cell content

The + sign is the secret!
Forget some \ %

cellcontent | ——u

Output some cell content
Compute the to the hidden state
forget gate
Compute the @ Compute the Compute the
input gate new cell content output gate
o0 > > <
Neural Network  Pointwi Vect
euriay:rwor Ogl(;]r;’\:::cs)?\ Traeris(f);r CalCATEaEe PPy StanfordCS224n

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Preserving Long-Term Dependencies
LSTMs vs. Vanilla RNNs

« LSTM Advantage:

The LSTM architecture makes it much easier for an RNN to preserve information over many

timesteps. Example: If the forget gate is set to 1 and the input gate to 0 for a cell dimension, the
corresponding cell state is preserved indefinitely.

 Vanilla RNN Limitation:

A vanilla RNN must learn a recurrent weight matrix that preserves information in the hidden state. In
practice, vanilla RNNs typically manage to preserve information over only about 7 timesteps.

 Extended Memory with LSTMs:

LSTMs can effectively preserve information for around 100 timesteps, greatly enhancing the model's
ability to capture long-term dependencies.

e Alternative Approaches:
There are other methods to create direct, linear pass-through connections that capture long-distance
dependencies.
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This contextual representation of “terribly”

< < > has both left and right context!
Bidirectional RNNNs n

Concatenated
hidden states

‘jnaoooooo]

}/ioooocooo]
©@0®00000|
0000

}/ﬂcoccoooo]
VﬂcctuooooJ
}/ACQQOOOOO]

PN
@) @) ® @) @)
Backward RNN 8 8 8 8 8
O O @) @) @
O 1@ 1@ - N -
Forward RNN o ’l @ l @ > @ l o >
O O O @ O
7 7 7 StanfordCS224n

the movie as terribly  exciting !

S
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Bidirectional RNNs

This is a general notation to mean
“compute one forward step of the

RNN” —it could be a simple RNN or
LSTM computation.

On timestep t:

Forward RNN ﬁ(t) =|RNNgw (ﬁ(t—1)7 w(t)) }Generally, these

two RNNs have
Backward RNN () _ RNNBW(Z(t-I-l), z®)

separate weights
Concatenated hidden states t ORNC
R = [R®); B ®)]

N

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the

StanfordCS224n
next parts of the network.
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Stacked RN Ns

Stacked RNNs (also known as deep RNNs): multiple recurrent layers are placed on top of each other.

 The output of each RNN layer serves as the input to the next, creating a hierarchical representation of the sequential
data. The lower RNNs should compute lower-level features and the higher RNNs should compute higher-level features.

2 This architecture is used to capture complex, abstract temporal patterns. Hierarchical layers can learn more abstract
features. Better capture complex temporal dependencies.

> Improved Performance: Often achieve higher accuracy on tasks such as language modeling, speech recognition, and
time series prediction.

> However, they also introduce challenges such as increased training complexity and computational cost.

L3 With careful design and tuning, stacked RNNs are a powerful tool for sequence modeling. gu%«,
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Three-layer RNN's

Yt = g(Woh?) + bo)

olyoe (o] (o] (o] [e N
RNN layer 3 : h>: >: >: >: >:
¢
o oo @ ? ”:“ )
RNN fayer 2 ol ¢ oo e 16 h(? — f(Wf)hﬁl) + W), + b(2>)
9 @ 9 9 9 d
o L]
W(l)
RNN layer 1 h_, S > > > hi = f<W>$1)Xt + W,Sl)hgl_)l + b(l))

g{oouo
I
——( 0000
——(0000)]
——(e000]

@]
(@
(@}
(@}
T StanfordCS224n

the movie was terribly  exciting
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Multi-layer RNNs in practice

¢ Stacked RNNs allow for more complex, hierarchical representations: Lower layers capture basic, low-
level features, while higher layers integrate these into more abstract, high-level features.’

¢ Performance improvements are observed with moderate stacking: Empirical results (e.g., from Britz et
al., 2017) indicate that 2—4 layers can be optimal for tasks such as machine translation.

¢ Deep RNNs require architectural innovations: For very deep RNNs (e.g., 8 layers or more), skip-
connections or dense connections are necessary to maintain gradient flow and facilitate training.

¢ Transformers push depth further with built-in residual connections: Models like BERT, which can
have 12-24 layers, offer a different approach to capturing long-range dependencies via self-attention and deep
stacking.
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GRU (Gate Recurrent Unit)

* (Gate Recurrent Unit 1s one of the 1deas that has enabled RNN to
become much better at capturing very long-range dependencies and T
> h(t]

made RNN much more effective. s N\
hit-1] > (3 )—{+)

 The GRU is like a LSTM with a gating mechanism to input or forg t]
certain features, but lacks a context vector or output gate, resulting 1] Alt]
fewer parameters than LSTM. Proposed as a simpler alternative to S - DU
LSTM, the GRU merges the forget and input gates into a single up« L ) J

gate. N A y

* GRUs are known for having fewer parameters than LSTMs, which x(t]
lead to faster training and similar performance in many tasks.

Each GRU cell has two main gates:

L Reset Gate (r(t) ): Controls how much of the previous hidden state to forget.
o Update Gate (z(t) ): Decides how much of the candidate activation to use.
The GRU combines these gates to update its hidden state without a separate cell state.
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1. Update Gate (z;): Determines how much of the past hidden state h;_4 should be
retained and how much of the new candidate state h;_4 should be added to form

the current hidden state.
uw=0W, 2+ U, h1+b,)

2. Reset Gate (r;): Determines how much of the past hidden state h;_; contributes to

the computation of the new candidate state h,_;.

re =W, -z;+ U, -hy1+Db,)
3. Candidate State (ﬁt): New information computed at the current time step.
h; = tanh(Wy, - & + Uy, - (14 @ hy_1) + by)

4. Hidden State Update: CorAnbines contributions from the past hidden state h;_; and N

the new candidate state h;_; using the update gate z;. e — \_L

h{t-1] > x i h(t]

hi =2 Ohy 1+ (1—2)0 Bt l %X—iﬂ [M
X _o |> o |>tanh ]
L J y, J

StanfordCS224n ~—{ J

x[t]
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4 Motivation to Spatio-temporal Modeling
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Spatio-temporal Data

ST data types ST data instances Data formats

—
-
—




Spatio-temporal Data — Time setries

 Time series is a sequence of data points collected or recorded at specific time intervals,
showing how a variable changes over time
*Multivariate time series 1s a typical spatio-temporal data

Sunspots

.....

llllllllllllllllll
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Spatio-temporal Data — Time series

With recent advances in sensing technologies, a myriad of Time Series (TS) Data
has been collected and contributed to various disciplines

Sports Analysis
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Spatio-temporal Tasks

[Forecasting]

P red Ictive Iea i ng: : Weather forecasting, Energy/Traffic planning
Prediction; Forecasting |

¢ Classification

Estimation and Inference [ 2
. p. [Imputation]
e Anomaly detection Wp/ ' Data mining "
>

recommendation others

>
Past Observations Future Time Series

Time
[Anomaly Detection]

Industrial Maintenance

Time

detection

pr?ad]ction [Classification]

Action recognition, Heartbeat diagnosis

Time

Wang, Y., Wu, H., Dong, J., Liu, Y., Long, M. and Wang, J., 2024. Deep time series models: A comprehensive survey and benchmark. arXiv preprint arXiv:2407.13278.
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S Deep ST Models and Applications
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Problem formulations

Table 1. Summary of deep Forecasting Models based on Forecast and Model Type

Forecast type Model type Formulation
Local univariate Zit+1:t+h = Y(Zi 165 Xi 1:44h)
Point Global univariate Zit+1:0+h = Y(Zi 16, Xi 1040 P)
Multivariate Ziitiih = Y(Z1ts Xepah, P)

Local univariate | P(z; t+1:0+hlZi1:t> Xi1:e+h3 0i)s  0i = Y(Zi1:65 Xi1:040)
Probabilistic | Global univariate | P(z; ;+1:t411Z1:t, Xa:4050:), 0 = ¥ (Zi,1:6, Xi, 1:04h> P)
Multivariate P(Zisr:t4nZats Xaipn; 0), 0 = ¥(Ziy, Xiit4h, D)

For one-step and multi-step forecasting models # = 1 and h > 1, respectively.
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Setup of multivariate time series

A set of N correlated time series, where each i-th time series is associated with:

e an observation vector xt € R% at each time step t;
e a vector of exogenous variable uf: € R% at each time step t;
¢ a vector of static (time-independent) attributes vi € R%,

r- Target variables -------------------- ~-  Exogenous variables -------------- :

S
_I_
N

<
I
OO;OO
2
338383

Matrices denote the stacked N observations at time t,

e.g., X, € RV*% U, € RN*%,

Cini, A., Marisca, I., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.

DUNC

GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH




Setup of multivariate time series

We consider a setup where observations have been generated by a time-invariant spatiotemporal
stochastic process such that

z; ~p* (2| X<, U<, V) Vi=1,...,N;

X;.t+7: the sequence of observations within time interval [t, t + T);

X.;: observations at time steps up to t (excluded)

Note that the time series:

e can be generated by different processes,

e can depend on each other,

e are assumed homogenous, synchronous, regularly sampled.

Cini, A., Marisca, |., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.
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* Pairwise relationships existing among the time series at time step t

Rel ati O n al in fO r m ati O n can be encoded by a adjacency matrix A, € {0, 1}V*V.

* A canbe asymmetric and dynamic (can vary with t).

* optional edge attributes e? € R% can be associated to each non-

* Pairwise relationships existing among the time series at time step t rroentyof A
. . e & = : the set of attributed
Can be enCOdEd by a adJacency matrlx A t e {O’ 1 }N XN . edges encoding all the available relational information
* Tuple indicates all the available information at
time step t.

r- Nodes (sensors) mmmmmmesmsmomeme

* A, can be asymmetric and dynamic (can vary with t). y—{ec0ee)

. . Lj . ~- Edges (functional dependencies) --
* optional edge attributes et] € R% can be associated to each non- | ¢! . )

00000

zero entry of A;.

s & = {<(7Ja])a e;‘]> | Vi, g At[iaj] 7é O}:the set of attributed
edges encoding all the available relational information

. TI1lo g
o Tuple Gt = (X:,U, &, V) indicates all the available information at V= : £ — oo
time step t. ° o) |

Cini, A., Marisca, |., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.
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Relational information

 The term spatial refers to the dimension of size N, that spans i EmesedCeolicelionrtlelationalint
the time series collection; in the case of fMRI, the term spatial G, = (X, U, £, V)
reflects the fact that each time series might correspond to a
different physical location.

e We use the terms node and sensor to indicate the N entities
generating the time series.

* We assume the existence of functional dependencies between | o
the time series. Gty = {Gtrr-++»Gts- -Gt}

— e.g., forecasts for one time series can be improved by
accounting for the past values of other time series.

Cini, A., Marisca, |., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.
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Spatio-temporal Modeling

[Spatial Temporal Forecasting Techniques}

Statistical
or
Time series
Models

Machine Learning
Models

Low-rank-based
Models

Deep Learning
Models

Regression Models

AutoRegressive i Principal
2 Linear
grated g > Regression *[Eemeonent Machi -Vse‘c;t':r
Average(ARIMA) 9 Analysis(PCA) achine(SVM) v \ 4 \ 4
A S ) E—
(— Seasonal ) . Singular Value Convolution- Graph-Recurrent Graph-Recurrent Attention-based Others
Autoregressive > Ridge > D & posi Shallow Neural Recurrent Models Models Models Models
Integrated Moving Regression (VD) Network
\Average(SARIMA)) S
= e ——— T
Vector Auto LASSO
Regression Regression dom Forest Graph Graph Neural
e’ \ J Ci lution ks(GNN)- Attention-based Auto Encoders
( ‘ > Conv-LSTM Networks(GCN)- Temporal STGNNs
Intergated Moving| LSTM onvolution(TCN,
Average(STARIMA Bayesian K-Nearest
Regression Neighbors Diffusion Feed Forward
>  conv-GRU > Convolutional Graph-Wavenet Transformers Neural Network
Recurrent
) Deep Belief
Decision Trees Graph i eep Sede
] Graph SAGE- ”| Networks (DBN:
Gaussian Networks(GATs) etworks (DBNs)
> LSTM/RNNs
_ LSTVSI‘;‘NN —
s
Regression Stacked Auto
XGBoost Encoder(SAE)
CNN-LSTM Self Attention
GANs
Generative
Adversial
Networks(GANSs)

Kumar, R., Bhanu, M., Mendes-Moreira, J. and Chandra, J., 2024. Spatio-Temporal Predictive Modeling Techniques for Different Domains: a Survey.
ACM Computing Surveys, 57(2), pp.1-42.
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Applications

UNC

Based on Number of

Y

Type of Forecasting Models

Timesteps

Single step

Multi-step

GILLINGS SCHOOL OF
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Based on
Methodology Used

v

v v v

Statistical and
Probabilistics
Models

Low-rank-

based Methods Hybrid Models

Al Based
Models

Feature-based
Techniques

Deep Learning
Techniques

—>

Y

Based on Duration of

Forecasting

Very Short
term

Medium-term

Long-term

Application-specific

Weather

IClimate
Forecasting

Argricultral
> Yield
Forecasting

Pandemic and
Disease
Forecasting

Traffic
Forecasting

Environmental
Data
Fortecasting

Economics and
> Finance
Forecasting




Application - Transportation

With the rapid growth of transportation data from sensors (e.g., loop detectors, cameras, GPS), there is an urgent need to use
deep learning to model the complex spatiotemporal correlations for tasks like:

* Traffic flow prediction

* Traffic incident detection

e Traffic congestion prediction

Transportation data can appear in various spatiotemporal forms:

» ST Raster: Traffic flow matrices (sensor x time)

e Graphs: Sensor networks modeled by road connections

e Time Series: Single-road traffic histories

Modeling Approaches:

* GraphCNNs for sensor network graphs

* RNN/LSTM for single-road time series

Additionally, transportation data is influenced by external factors (e.g., weather, holidays, events), so models must effectively
fuse external features with traffic data for better prediction accuracy.
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Application - Transportation

Introduce a novel framework that decouples traffic data into diffusion and inherent components to better model complex

spatial-temporal dependencies in traffic forecasting.

* Decoupled Spatial-Temporal Framework (DSTF): Separates traffic data into diffusion signals (capturing spatial dependencies)
and inherent signals (capturing temporal patterns).

* Dynamic Graph Learning Module: Learns dynamic characteristics of traffic networks over time.

* Residual Decomposition Mechanism: Enhances the model's ability to capture complex patterns by decomposing residuals.

o N History \
r w a
g X' Estimation Diffusion
dif |
Line - —
r Gate 2 el Model H Forecast Hr
f @ N Prediction
| <&
«\

.
S—= Backcast R
X b fa Regression
Layer
inh \
A X Inherent _%% F st Hf y
P% X Model | oreca
Dynamic
t
LS;:':i:g X — © Residual Links
S Backcast )
X b L/ D Decouple Block
S =
D Diffusion Block
Xl+l I:] Inherent Block
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Application - On-Demand Service

With the rise of on-demand service platforms (e.g., Uber, DiDi, Mobike, GoGoVan), a large volume of spatiotemporal (ST) data
is generated, involving customer locations and service times.

To better meet real-time demand and optimize services, accurate demand-supply prediction across locations and times is
crucial.

Deep Learning Approaches:

* Dockless bike-sharing: Deep learning methods predict demand-supply distributions.

* Bike-sharing systems: Graph CNN models forecast hourly bike demand at stations by modeling bike flow as a graph.
* Taxi services: LSTM models predict area-specific taxi demand.

* Ride-hailing platforms: ResNet models predict supply-demand patterns.

X Modeling Strategy:

* Represent demand-supply across city regions as spatial maps or raster tensors.

* Apply CNNs, RNNs, or hybrid deep models for feature extraction and future prediction.
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Application - On-Demand Service

ST-MGCN: Spatiotemporal Multi-Graph Convolution Network:

 orapn
Forecasting

Incorporating
: multi- :

relationship

_______________________________________________

i Contextual-gated
. temporal modeling U

History

o,
IERERAE 7

I 1

Forecast ainl ‘&\ Q Al Non-euclidean :
) = : \\‘*ag ok / I :

. :

! |

2] ‘
AEREIFEHS, |

spatial modeling

_______________________________________________
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Application - On-Demand Service

ST-MGCN: Spatiotemporal Multi-Graph Convolution Network:
Key Idea:

Model non-Euclidean spatial dependencies and global temporal dynamics simultaneously for
accurate region-level ride-hailing demand forecasting.

Encode pair-wise Aggregate different Capture spatial dependency

Model Architecture: e arema™ | Comtammea et I | e arap || Conerete predietion
* Multi-Graph Construction: coo [, o o] ..
Build three graphs to capture different spatial relationships: _'oo/g{é}o_' i
Neighborhood Graph (adjacent regions) I o
Functional Similarity Graph (similar POl surroundings) _,th\‘c’ L % [ o ° _@_.
Transportation Connectivity Graph (road network links) J S| =~ | e o
 Multi-Graph Convolution: e e -
Perform graph convolutions over multiple graphs to aggregate information L,

from spatially correlated regions (both near and distant).
* Contextual Gated RNN (CGRNN):

Augments RNN with global context-aware gating.

Dynamically reweights different time steps based on global demand patterns.
* Prediction Head:

Outputs future region-level ride-hailing demand after spatial and temporal
aggregation.

Connectivity Contextual Gated RNN GCN
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Application - On-Demand Service

ST-MGCN: Spatiotemporal Multi-Graph Convolution Network:

Graph Generation

POI similarity
AS,ij = Sim(Pvi' ij)

Road connectivity
Acij
= max(0, conn(v;, v;) — Ay;;)

\_

Neighborhood
A= 0, v; and v;j are adjacent
MU, otherwise

Temporal modeling

CGRNN

« Use 1-layer GCN to invoke
context information

Use spatial global pooling to
get temporal gate

» Apply gate to input signal

« Aggregate gated signal by
share-weight RNN

- -

Spatial modeling

MGCN

» Use stacked GCN layer to
extract spatial information

The locality is determined by
graph Laplacian and
convolution degree

« A proper way to extract
spatial information under
arbitrary relationship

/
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Application - On-Demand Service

ST-MGCN: Experiments

DUNC
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Method Beijing Shanghai
RMSE MAPE(%)| RMSE MAPE(%)
HA 16.14 23.9 17.15 34.8
LASSO 14.2440.14 23.84+0.8 [10.62+0.06 22.9+0.8
Ridge 14.2440.11 23.840.9 |10.614+0.04 23.14+0.8
VAR 13.324+0.17 22.441.6 |10.544+0.18 23.7+1.4
STAR 13.16+0.22 22.241.9 [10.524+0.21 23.2+1.4
GBM 13.66+0.16 23.14+1.5 [10.254+0.11 23.4+1.2
STResNet [11.77£0.95 14.8£6.0 | 9.87+0.94 14.9£6.0
DMVST-Net|11.62+0.48 12.34+5.5|9.61+0.44 13.84+1.2
ST-GCN  |11.62+0.36 10.1+5.1 | 9.2940.31 11.2+1.3
ST-MGCN (10.78+0.25 8.8+3.5 | 8.30+0.16 9.31+0.9




Application - On-Demand Service

OD-CED: Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing

91 g2 93 9;j 9183
Challenges: a s . Y
g3 1 8 9 4

1. Scalability - OD matrices grow o
exponentially with more spatial divisions. sl 5 3 7 0 0 2 .

2. Data Sparsity — Over 90% of fine-grained
OD flows have zero demand.

3. Semantic & Geographical
Dependencies - Travel demand is o oo e - g - g
influenced by both regional function (e.g., al e o
residential vs. commercial) and spatial ol B -
proximity. o I -
g1, 0 O O O O 1 0

(b)
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Application - On-Demand Service

OD-CED: Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing

OD-CED Model: A Novel OD Prediction

Framework 4 Prepsr::ge:smg\/ Sge’ X, Xip X
Trip _I_;__ﬁg‘_i___\
« Space Coarsening Module: Merges fine- —— & Q___[TZJ L X !

Transformer ] Transformer ]

grained cells into super-cells to mitigate

PS — g \ [ Encoder
sparsity. | cospece }—/ 6%_-;-_&_)' Lré:gérerg“:'
« Encoder-Decoder Architecture: Captures X® —me‘e’m/ Ber B € RN j

semantic and geographical dependencies
effectively.

e« Permutation-Invariant OD Embedding:
Learns robust representations of OD flows.

@ (b) ©
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Application - On-Demand Service

OD-CED: Experiments
Dataset Performance Comparison (City-C & City-S):
« City-C:
o  RMSE reduced from 1.255 (GEML) — 0.905 (OD-CED)
(~28% improvement).
o WMAPE reduced from 0.667 (GEML) — 0.411 (OD-CED)
(~39% improvement).
o« City-S:
o RMSE reduced from 1.146 (GEML) — 0.740 (OD-CED)
(~35% improvement).
o  WMAPE reduced from 0.605 (GEML) — 0.323 (OD-CED)
(~47% improvement).

Training Time Comparison (per epoch on V100 GPU):
e OD-CED: 22.12s
e STGCN: 28.81s
e GEML (state-of-the-art): 39.63s
e CSTN & MRSTN: 1200+ seconds
e OD-CED is 2x faster than GEML and over 50x faster than
CNN-based methods.
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City-C City-S
Method

wMAPE | RMSE | CPC | wMAPE | RMSE | CPC
HA 0.813 1.442 0.348 | 0.821 1.435 0.355
OLSR 0.822 1.419 0.324 | 0.816 1.351 0.333
LASSO 0.807 1.424 0.359 | 0.813 1.349 0.337
CSTN 0.782 1.370 0.354 | 0.721 1.21% 0.451
MRSTN 0.788 1.380 0.351 | 0.766 1.253 0.464
GEML 0.667 1.255 0.540 | 0.605 1.146 0.597
STGCN 0.681 1.337 0.488 | 0.596 1.210 0.674
OD-CED | 0.411 0.905 | 0.776 | 0.323 0.740 | 0.889

CSTN | MRSTN | GEML | STGCN | OD-CED

# of Params (in millions) | 0.54M | 0.67M 2.9M 1.6M 0.1M
Training Time (in seconds) | 1222.13s | 1602.14s | 39.63s | 28.81s 22.12s




Application - Meso Level Supply-Demand Forecasting

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided Ride-Hailing Markets

Goal: Predicting supply and demand in ride-hailing platforms using a causal, interpretable, and scalable
forecasting framework

Algorithm 3:, A collaborative causal spatio-temporal fusion transformer (CausalTrans).

Authors: Wang et al.,
Journal: ACM Transactions on Spatial Algorithms and Systems, 2024
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Application - Meso Level Supply-Demand Forecasting

Collaborative Problem

PQxy (t + 11t + Timax) %, (2 £), 2y (: T+ Tmax))
PQyy(t + 1t + Tma) 1Yo (0, %y G+ Timax), Zp (0
+ Tmax))

Where:

x,(t): demand at time t in grid v;

Y, (t): supply at time tin grid v;

z,(t): external covariates (e.g., weather, holiday) at
time tin grid v;

Tmax . Pre-specified time length

v eV.
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Probabilistic Forecasting

« Given g € Q@ = {10%, 50%, 90%}, then quantile loss QL,
at each point q is:

QLq(xe, 2 ) ={a —1(x¢ < &)} (x -

« Then final quantile loss is:

Tmax QLq(xt xt T)

M * T ax

Lossg = Xy.eq Zgeq2q =

« We introduce quantile risk as a key metric:
2 thE.Q ZTmax QLCI (xt xt T)
Xy, e DX x|

where ( is the best dataset.

Riskq =




Application - Meso Level Supply-Demand Forecasting

The overview of CausalTrans framework: Encoder Oupa e s

(a). The framework consists of three essential
components: Fast S.F. (fast graph spatial fusion),

Self-clustering

Inputs/Targets

. Clustered
C.A. (causal attention), and T.A. (temporal ter - — Ougars
attention). Demand and supply are trained Puvee Buvee

. Inputs Targets
separately in sequence. (demansupply) (demandisupply)

(a) CausalTrans framework

(b) Fast S.F. : fast spatial graph fusion

(b). The Fast S.F. consists of self-clustering with

Encoder
T.A.

GAT and fast attention. v —1f Se.f“f:liﬁi‘iim
(c). The C.A. applies offline trained causal weights . I e Forvrd
0 to online treatments evaluations. B8 Lt ]| 58
Clllrl:)t:t;ed _|_ _Clustered Output
(d). The T.A. aims to keep ordering self-attentions. o
(c) C.A. : causal attention unitsOlltput Sequences (d) T.A. : temporal attention units
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Application - Meso Level Supply-Demand Forecasting

CausalTrans - Causal Attention Mechanism

We transfer the weights of external covariates to causal weights by HTE methods (e.g. double machine learning).
Algorithm 1 Causal Attention Algorithm with DML

Input: Given demand matrix z(: t) at a grid v before time ¢, three kinds of treatments includes weekday and

(a) CausalTrans framework

hour slots T'(: t) = {W(: t), H(: t)}, weather vectors W (: ¢), and holidays one-hot vectors H (: t) cExtermal
Output: causal effect coefficients O for T'(: t), Oy for W (: t), and 05 for H(: t) VARV ARy
1: Take 61 as an example, and suppose that a AA group and AB groupon T'(: t) is Tan = Tap = {} oistorical @m 3
2: for all {Tw (to), T (tl)} € {MO?’L, Tue, S’U,TL}, {Th (to), T (tl)} € {1, 24} do (demand/supply) &5 '
30 i T (to) = Tw(t1), Th(to) = Th(t1), Prrest (z(to), 2(t1)) < 0.05 then JorusaEatimators

forallt) € {:tp}andt) € {: t;} do Or, 0w and O

4
5: Calculate 1st-order differences Z (¢, : to) and Z(t} : t1)

6: if PKPSS (E(té) : t())), PKpss(i(tll : tl)) and PT—Test(i(t() : t()),.%(tll : tl)) > (0.05 then
7

8

gé Erbc%der =8
Ty a-append([(z(t : to), z(t] : t1))]) 55 T £S
SN asked Oc
: TAB.append([(:I: (to), x(tl))]) Lﬁg I Attention Iﬁ 3
9: end if AR o
10: end for Clustered Feed | _|_ _Clustered
’ . Inputs Forward
11:  endif
12: end for J
13: Do DML on T4 4 and T4 g datasets and estimate treatment coefficients 61 Output Sequences
14: Repeat from Step 2 and estimate 6y and 6 by different DML. ‘ _ Output Sequences
15: return Op, Oy, and Oy (c) C.A. : causal attention units

(a) causal attention algorithm

step 1: external covariates: weather, holidays and subsidy;
step 2: build various of control groups and treat groups;
step 3: do DML and get causal attention or weights.

ﬁ l l P I GILLINGS SCHOOL OF
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(b) how to work in ConvTrans
step 1: offline training causal attention;
step 2: add above weights in multi-head attention




Application - Meso Level Supply-Demand Forecasting

CausalTrans - Causal Attention Visualization

—— demand e treatments(rainfall) [ 1-2
demand_diff(24) 717 causal_attention
60 1 I probabilistic forecasting
AB Group 2 r1.0
40 1 AA Group 1 AB Group 1 AA Group 2 0.8
F0.6
204
U L 0.4
3 "'~' 02
-20 - 4 o e A e 2 Y Lk
Selsrsaahenaansn s sarsnssssnce. S Pt annonaonG O Bhgacnnonncooenaonam e = IR . - « . - o* - « SISt Qs S OPRaANOaCACE S ARG cenoad - (s FOT STt L AX T 0.0
2018-06-25 2018-06-29 2018-07-01 2018-07-05 2018-07-09 2018-07-13 2018-07-17

*“AA group 1” and “AA group 2” are regarded as comparable contexts;

*“AB group 1” and “AB group 2” is control group and treatment group;
Do DML and get causal attention weights.
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Application - Meso Level Supply-Demand Forecasting

CausalTrans - Experiment

(a) Risk_(50%) losses on the retail and ride-hailing datasets.

ConvTIrans Seg2Seq MQRNN DeepAR DMVST  ST-MGCN  TFT CausalTrans

Retail 0429 0411°  0379° 0386 0403 0395 0354°  0.352(-0.6%)

Ride-hailing (14, city A, Demand) ~ 0.573 0550 0495 0499 0524 0482 0450  0.434(-3.7%) . .

Ride-hailing (1d, city A, Supply) 0482 0453 0428 0422 0443 0421 0415 0393(53%)  *Use grid search to optimize hyperparameters;
Ride-hailing (14, city B, Demand) ~ 0.470 0455 0405 0400 042 0404 0370 0361(-2.5%)

Ride-hailing (1d, city B, Supply) 0426 0404 0388 0384 0388 0378 03571 034145% *DeepAR outperforms Seq2Seq and MQRNN
Ride-hailing (14, city A, Demand) ~ 0.756 0717 0653 0663 0664 0677 0689  0.613(-6.2%) . .

Ride-hailing (14, city A, Supply) 0,612 0.569 0516 0519 0536 0575 058  046893%) because of Poisson and weather covariates;
Ride-hailing (7, city B, Demand) 0693 0.627 0574 0571 0590 0588 0576  0.539(-5.6%)

Ride-hailing (7d, city B, Supply) 0568 0519 0499 0501 0503 0525 0528 04s490% *CausalTrans outperforms other methods

primarily due to causal estimator DML,

(b) Risk_(90%) losses on the retail and ride-hailing datasets. *CausalTrans achieves lower losses on supply

than demand based on both causal

ConvTrans Seq2Seqg MQRNN DeepAR DMVST  ST-MGCN TFT CausalTrans . )
Retail 0.192° 0.157°  0152° 0156 015  0.55 o oazsw  relationship;
Ride-hailing (14, city A, Demand) 0,238 0.208 0205 0205 0208  0.195 0192 0.164(-14.6%) i i :
Ride-hailing (1d, city A, Supply) 0,212 0.177 0164 0162 0173 0.165 0160 o1iag Long-term prediction focuses on unbiased
Ride-hailing (14, city B, Demand) 0,208 0.176 0159 0158 0170  0.57 0155 0.145-6.5%) e L
Ride-hailing (14, city B, Supply) 0203 0.197 0157 0188 0169  0.151 0 ot distribution estimation.
Ride-hailing (74, city A, Demand) 0,324 0.306 0276 028 028 0280 0297  0.244(-1L6%)
Ride-hailing (74, city A, Supply) 0259 0233 0207 0204 0237 0248 0237 0.173(-152%)
Ride-hailing (7d. city B, Demand) 0,288 0.269 0241 0240 0252 0255 0238 0.216(-93%)
Ride-hailing (7d, city B, Supply) 0214 0.184 0177 0179 0168  0.197 0204  0.153-89%)
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Application - Climate & Weather

Weather and climate data capture atmospheric and oceanic conditions (e.g., temperature, wind, pressure, precipitation, air
quality) via sensors at fixed or mobile locations.

Due to strong spatiotemporal correlations in climate data, spatiotemporal deep modeling (STDM) techniques are widely used
for short-term and long-term forecasting.

Deep Learning Approaches:

* Air quality inference: Predict urban air pollution.

* Precipitation prediction: Forecast rain using remote sensing.
* Wind speed prediction: Model anemometer readings.

* Extreme weather detection: Identify severe weather events.
Data Types:

* Spatial maps: e.g., radar reflectivity images

* Time series: e.g., wind speed readings

* Event data: e.g., extreme weather occurrences

Example Models:

*Attention models for air quality prediction

*CNNs for detecting extreme weather and precipitation forecasting
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Application - Neuroscience

Various brain imaging technologies — such as fMRI, EEG, MEG, and fNIRS — are widely used in neuroscience research.
These technologies differ significantly in spatial and temporal resolution:

* fMRI: Millions of spatial locations, lower temporal resolution (~2 seconds per measurement)

* EEG: Tens of locations, very high temporal resolution (~1 millisecond)

Data Representation:
* Brain imaging data (fMRI, EEG) are naturally represented as spatial maps or rasters, making them suitable for DL analysis.

Deep Learning Applications:

* Disease classification and diagnosis: e.g., Autism Spectrum Disorder, amnestic Mild Cognitive Impairment, Schizophrenia
* Brain function network classification

* Brain activation pattern classification

Example Models:

e LSTM for Autism Spectrum Disorder detection

* CNN for diagnosing amnestic Mild Cognitive Impairment
* FNN for classifying Schizophrenia
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Application 1: BrainGNN

BrainGNN is a graph neural network (GNN) specifically designed for analyzing functional MRI (fMRI) brain data.
It predicts cognitive states or disease status while providing interpretability by identifying important brain regions and

connections.

Model Highlights:
Node-Level Pooling:

* Groups similar brain regions (ROIs) into clusters based on learned features.
ROI Selection Layer:

e Automatically selects important brain regions contributing to the prediction.
Attention Mechanism:

* Highlights key functional connections between selected ROls.

A(t)
Temporal Length

T €=--=>

o w(t) =4
A AW : ::&
N WWMWMWW 1o
WVl
'\N"’WM 1=
\/\«./\/V\N\/NW\\,N Mig
S 3 VTN ANAAANYTN e YV S IV\/JIE%
2 MMWMWWV‘V“W |E§
1 M,,WL,\,‘N"‘ WA "V"‘V“w_/‘/:‘_) !ﬁ’\r\;io

e T - ——

ROI Template 12 3 Time (TR)
Dynamic Graph Transformer for Brain Disorder Diagnosis
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Application

Introduce a model that jointly learns spatial and temporal features from resting-state fMRI (rs-fMRI) using a combination of
graph convolution and recurrent neural networks (RNNs).

Model Highlights:
Spatial Graph Convolution:
* Models functional connectivity between brain regions at each time step, treating brain ROIs as graph nodes.
Temporal RNN:
 Captures the evolution of brain connectivity over time by applying an RNN (such as GRU) on node embeddings.
End-to-End Training:
* Learns both spatial (graph structure) and temporal (dynamic activity) representations directly from raw fMRI sequences.

= Our proposal: ST-GCN
> Consider both temporal dependency and functional connectivity
> Train on short sub-sequences
» Learns the importance of graph edges to the prediction

Edge-importance

4D BOLD
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Application

Total Activation (TA) is a method that deconvolves fMRI signals to recover the underlying neural activity-inducing signals by
applying spatio-temporal regularization.

Model Highlights:
*Temporal Regularization:

* Promotes piecewise constant activation patterns over time (temporal sparsity).
*Spatial Regularization:

* Enforces spatial smoothness across neighboring voxels (nearby brain regions).
*Solves an optimization problem balancing data fidelity with spatio-temporal priors. Total Activation el g

®

9990900
iy

Total activation: fMRI deconvolution through spatio-temporal regularization
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