
Deep Sequence Modeling and Spatio-temporal Modeling

Dr. Hongtu Zhu
University of North Carolina at Chapel Hill

URL: www.med.unc.edu/bigs2/

Content

2 Introduction to Recurrent Neural Networks (RNNs)

3 Extensions of RNN

1 Motivation to Sequence Modeling

5 Deep ST Models and Applications

4 Motivation to Spatio-temporal Modeling

Content

2 Introduction to Recurrent Neural Networks (RNNs)

3 Extensions of RNN

1 Motivation to Sequence Modeling

5 Deep ST Models and Applications

4 Motivation to Spatio-temporal Modeling

Recurrent Neural Networks (RNNs) are motivated by their ability to address challenges inherent in sequential data.

Weather
forecasting

Stock market
trends

Autocomplete
for texting

Genetic
sequencing

Speech
recognition

Video frame
prediction

Music
composition …

Motivation

Many real-world datasets are inherently sequential, where the order of data points is crucial.
v Time series: Stock prices, weather forecasts, and sensor data require capturing patterns over time.
v Text: The meaning of a sentence depends on word order (``The cat chased the dog'' vs. ``The dog chased the cat'').
v Speech: Phonemes and intonation must be processed sequentially to understand spoken language.
v Video: Frames in a video sequence have temporal relationships that determine the flow of events.

Examples:
• Letters (words)
• Words (sentences)
• Sentences (documents)
• Frames (video)
• Amino-acids (genetic code)
• fMRI/ECG signals

Sequences

Why Are Sequences Important?
Unlike independent data points, sequences contain temporal or contextual dependencies:
• Future values depend on past values (e.g., predicting tomorrow’s weather).
• Words in a sentence rely on context (e.g., in "bank deposit" vs. "river bank").
• Biological sequences determine genetic functions.

A sequence is an ordered list of elements, where the order of the elements
matters. They are fundamentally different from unordered data because each
element is dependent or influenced by the previous elements.

e.g., "ACGTAGCTAGT" represents a biological sequence.
e.g., A security camera capturing a person walking.
"Hello, how are you?" (chatbot input).

Challenges in modeling sequential data

§ Infinite number of possible sequences:
v Sequences can vary in length (short vs. long sequences).
v Sequences can have variable patterns (e.g., DNA sequences, language models).
v Order matters, meaning different orders of the same elements can have different meanings.
§ Need for Probability Distributions Over Sequences:
Ø Since an infinite number of sequences exist, we cannot store all possible sequences explicitly.
Ø Instead, we model a probabilistic function that assigns a likelihood to each possible sequence.
Ø Example: Given a sequence S=(x1,x2,...,xT), we want to learn a probability distribution P(S).

Sequences

RNNs are designed for modeling sequences
• Sequences of any length in the input, in the output, or in both
• They can remember past information
• Apply the same weights on each step

Different Categories of Sequence Modeling

Source: https://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sentiment Analysis and Video Analytics

Sentiment Analysis is a NLP technique used to determine the
emotional tone of a given text. It helps identify whether the
sentiment of the text is positive, negative, or neutral. Video analytics enable machines to recognize

actions, objects, and scenes in videos.
https://imerit.net/blog/using-neural-networks-for-video-classification-blog-all-pbm/

https://www.gosmar.eu/machinelearning/2020/08/23/recurrent-neural-networks-for-sentiment-analysis/

Machine Translation
Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a
sentence y in another language (the target language).

Goal: Produce translations that are both fluent and faithful to the meaning of the source text.

Applications: Global communication, localization cross-lingual information retrieval, etc.

x: L'homme est né libre, et partout il est dans les fers

y:
English:
Man is born free, but everywhere he is in chains

9

Chinese:
“人生而自由，但无处不在被枷锁束缚。”
Japanese:
「人間は自由に生まれるが、どこにいても鎖に縛られてい
る。」

Not trivial to model!

1519年600名西班牙人在墨西哥登陆，去征服几百万人口
的阿兹特克帝国，初次交锋他们损兵三分之二。
In 1519, six hundred Spaniards landed in Mexico to conquer the Aztec Empire with a
population of a few million. They lost two thirds of their soldiers in the first clash.

translate.google.com (2009): 1519 600 Spaniards landed in Mexico, millions of people to
conquer the Aztec empire, the first two-thirds of soldiers against their loss.
translate.google.com (2013): 1519 600 Spaniards landed in Mexico to conquer the Aztec
empire, hundreds of millions of people, the initial confrontation loss of soldiers two-thirds.
translate.google.com (2015): 1519 600 Spaniards landed in Mexico, millions of people to
conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash. StanfordCS224n

NMT: the first big success story

• This was amazing!
• SMT systems, built by hundreds of engineers over many years, were outperformed by NMT systems trained by

small groups of engineers in a few months

Neural Machine Translation (NMT): Uses deep learning and end-to-end training to model translation and
offers improved fluency and the ability to capture complex dependencies.

Neural Machine Translation went from a fringe research attempt in 2014 to the leading standard method in 2016

• 2014: First seq2seq paper published [Sutskever et al. 2014]

• 2016: Google Translate switches from SMT to NMT – and by 2018 everyone had
• https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

StanfordCS224n

http://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Deepseek v.s. OpenAI

Modern NLP Systems

https://huggingface.co/blog/large-language-models
https://ai.plainenglish.io/deepseek-r1-vs-chatgpt-01-my-experience-ddbe09e80aa9

Challenges
• Standard NN models (MLPs, CNNs) are not able to handle sequences of data
v They accept a fixed-sized vector as input and produce a fixed-sized vector as output.
v The weights are updated independently, meaning there is no memory of past computations.
v The models do not have recurrence, so they cannot learn patterns across time steps.

• Many real-world problems require capturing context over time:
v Speech Recognition – Words depend on previous words.
v Time-series Prediction – Future values depend on past observations.
v DNA Sequencing – Genetic patterns unfold over long sequences.
v Natural Language Processing (NLP) – Meaning depends on word order.

• Example: Simple Context-Dependent Problem: Output YES if the number of 1s in the sequence is
even; otherwise, output NO.

• Input: 1000010101 → YES; Input: 100011 → NO

Challenges
High Dimensionality and Complexity - Sequential data often involves high-dimensional inputs with complex
interdependencies:
v Text: Words and phrases have semantic and syntactic relationships across sentences.
v Time Series: Multivariate time series data (e.g., temperature, humidity, and pressure) exhibit interdependencies

between variables over time.
v Biological Data: DNA sequences and protein structures involve intricate, sequential patterns.
Solution: RNNs address this by learning hierarchical representations through their recurrent structure, encoding both
local and global patterns.

Noise and Missing Data - Sequential data often contains noise or missing values:
Ø Noise: Sensor readings and time series data may have irregularities or anomalies.
Ø Missing values: Gaps in sequences arise from interruptions in data collection.
Solution: RNNs aggregate information over time, making them robust to noise and capable of interpolating missing
values using contextual information.

Challenges
Temporal Dependencies
v Short-term dependencies: In text, the current word depends on immediately preceding words (e.g., ``I want to eat

a...’’).
v Long-term dependencies: Distant elements in the sequence can influence the current state (e.g., in a paragraph, the

topic sentence affects subsequent sentences).
Solution: RNNs maintain memory through hidden states, enabling them to model temporal dependencies. Variants like
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) address challenges such as vanishing gradients,
allowing effective modeling of long-term dependencies.

Variable-Length Inputs and Outputs - Many real-world tasks involve sequences of varying lengths, which
traditional models struggle to handle. RNNs process inputs dynamically, making them ideal for tasks with variable-
length data.
Examples:
v Natural Language Processing (NLP): Sentences have varying word counts, and RNNs can process each word

without requiring fixed input dimensions.
v Speech Recognition: Audio recordings vary in duration depending on the speaker or content.
v Time Series: Data collected over irregular time intervals often results in sequences of differing lengths.

Content

2 Recurrent Neural Networks (RNNs)

3 Extensions of RNN

1 Motivation to Sequence Modeling

5 Deep ST Models and Applications

4 Motivation to Spatio-temporal Modeling

Text Processing for RNN

Word Embeddings
Word embeddings are a fundamental technique in NLP. They
convert words into dense, continuous vector representations. Word
embeddings place similar words closer in vector space. Unlike
traditional one-hot encoding, embeddings preserve:
v Semantic relationships between words.
v Contextual meaning of words in sentences.
v Word similarity and analogies.

Types of Word Embeddings
Ø Frequency-Based Methods
§ TF-IDF (Term Frequency-Inverse Document Frequency)
§ LSA (Latent Semantic Analysis)
Ø Prediction-Based Methods (Neural Networks)
ü Word2Vec (CBOW & Skip-gram)
ü GloVe (Global Vectors for Word Representation)
ü FastText (Subword Embeddings)
ü Transformer-Based (BERT, GPT)

Word Embeddings Dimensions
Word

Embeddings
Dimensio

n Key Features

Word2Vec 50-300
Trained on large corpora like Google

News
GloVe 50-300 Uses word co-occurrence statistics

FastText 50-300 Handles subword information

ELMo 1024
Contextual embeddings from
bidirectional LSTMs

BERT (base) 768 Transformer-based, context-aware
BERT (large) 1024 More parameters than BERT base

GPT-2 (small) 768 Transformer-based generative model

GPT-2 (medium) 1024 More layers and parameters
GPT-3 12288 High-dimensional transformer model

from transformers import BertTokenizer, BertModel
import torch

Load BERT model
tokenizer = BertTokenizer.from_pretrained("bert-base-
uncased")
model = BertModel.from_pretrained("bert-base-uncased")

Tokenize and get embedding
text = "Hello world"
tokens = tokenizer(text, return_tensors="pt")
with torch.no_grad():
 output = model(**tokens)

print("BERT Embedding Dimension:",
output.last_hidden_state.shape[-1])

🔹 For small models or mobile applications →
Use 50-300 dimensions (Word2Vec, GloVe).
🔹 For NLP applications with context-awareness →
Use 512-1024 dimensions (BERT, ELMo).
🔹 For large-scale generative AI →
Use 1024+ dimensions (GPT-3, Transformers).

More formally: given a sequence of words
compute the probability distribution of the next word

,
:

where can be any word in the vocabulary

Formulation: Language Modeling (LM)
A language model (LM) is a statistical or machine learning model
that predicts the next word in a sequence or assigns
probabilities to sequences of words.

20

the students opened their

Books
Laptops

Lunch Boxes

Exams

Example:
Ø Input: "I am going to the"
Ø Model prediction: "store" (80%), "beach" (15%), "moon" (5%)
Ø The model assigns probabilities and selects the most likely next word.

✅ Predicts the likelihood of a sequence of words
✅ Generates human-like text (e.g., GPT models)
✅ Understands context and meaning
✅ Enables AI systems to process and generate natural language

Language Modeling
• You can also think of a Language Model as a system that assigns a probability

to a piece of text

• For example, if we have some text , then the probability of this text
(according to the Language Model) is:

This is what our LM provides

21

StanfordCS224n

History of Deep RNNs
The Rise of Deep RNNs (2010s - Present)

🔹 RNNs in NLP and AI
•2013 – Google used LSTM for speech recognition.
•2014 – Seq2Seq Models (Sutskever et al.) used LSTMs for machine translation.
•2015 – Google Translate adopted LSTMs for neural machine translation (NMT).

🔹 Attention and Transformers Change the Game
•2015 – Bahdanau et al. introduced Attention Mechanisms, improving Seq2Seq models.
•2017 – Vaswani et al. introduced Transformers, replacing RNNs with a more parallelizable model.

🔍Key Concept:
Transformers like BERT (2018), GPT-3 (2020), and ChatGPT (2022) outperformed RNNs, leading to their decline in NLP.

StanfordCS224n

Recurrent Neural Networks (RNN)
A family of neural architectures

hidden
states

input sequence
(any length)

…

…

…

Core idea: Apply the same
weights𝑊 repeatedly

outputs
(optional)

23

nn.RNN(input_size, hidden_size, num_layers, batch_first=True)

StanfordCS224n

A Simple RNN Language Model

the students opened theirwords / one-hot vectors

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could be much
longer now!

hidden states

is the initial hidden state

StanfordCS224n

RNN Language Models

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length input
• Computation for step t can (in

theory) use information from many
steps back

• Model size doesn’t increase for longer
input context

• Same weights applied on every
timestep, so there is symmetry in how
inputs are processed.

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access

information from many steps back More on
these later

25

StanfordCS224n

Training an RNN Language Model

v Prepare the dataset (tokenize text into words) and convert words to numerical tensors (word embeddings).

for every step t.

v Loss function on step t is cross-entropy loss between predicted probability distribution
and the true next word (one-hot for):

v Average this to get the overall loss for entire training set:

26

v Build an RNN-LM and compute output distribution

StanfordCS224n

= negative log prob
of “students”

Loss

Predicted
prob dists

…

Corpus the students opened their exams …

27

Training an RNN Language Model

StanfordCS224n

Loss

Predicted
prob dists

…

= negative log prob
of “opened”

Corpus the students opened their exams …

28

Training an RNN Language Model

StanfordCS224n

Loss

Predicted
prob dists

…

= negative log prob
of “their”

Corpus the students opened their exams …

29

Training an RNN Language Model

StanfordCS224n

Loss

Predicted
prob dists

…

= negative log prob
of “exams”

Corpus the students opened their exams …

30

Training an RNN Language Model

StanfordCS224n

+ + + + … =

…

Loss

Predicted
prob dists

“Teacher forcing”

Corpus the students opened their exams …

31

Training an RNN Language Model

Embedding Layer

RNN Layer

FC Layer

StanfordCS224n

• Memory Constraints: Storing all word embeddings, gradients, and activations requires enormous memory.
• Computational Cost: Performing backpropagation over the entire dataset in a single step is impractical.
• Batching is Required: Instead of processing all data at once, models use mini-batches to update weights

efficiently.

32

Training Challenges

Challenges Solution
Too much memory usage ✅Mini-batch training

Long sequences overflow
memory ✅ Truncated BPTT (TBPTT)

Exploding gradients ✅ Gradient clipping

Slow training ✅ Efficient batching and
parallelization

Truncate the sequence into smaller sub-sequences
(e.g., 20 time steps at a time).

Divide the entire dataset into mini-batches
(e.g., batch size = 32).

Clip gradients to a maximum norm (e.g., 5).

Backpropagation for RNNs

……

Question: What’s the derivative of w.r.t. the repeated weight matrix ?

Answer:
“The gradient w.r.t. a repeated weight

is the sum of the gradient
w.r.t. each time it appears”

33

Why?

StanfordCS224n

Backpropagation for RNNs

43

……

Question: How do we calculate this?

Answer: Backpropagate over timesteps
i = t, … ,0, summing gradients as you go.
This algorithm is called “backpropagation
through time” [Werbos, P.G., 1988, Neural
Networks 1, and others]

equals

equals

equals

equals

equals

Apply the multivariable chain rule:
= 1

In practice, often
“truncated” after ~20
timesteps for training
efficiency reasons

StanfordCS224n

RNNs greatly improved perplexity

n-gram model

Increasingly
complex RNNs

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

35

StanfordCS224n

Content

2 Recurrent Neural Networks (RNNs)

3 Extensions of RNN

1 Motivation to Sequence Modeling

5 Deep ST Models and Applications

4 Motivation to Spatio-temporal Modeling

Vanishing gradient intuition

?

37

▶ This decay makes it difficult for RNNs to learn long-term dependencies.
▶ Empirical evidence shows rapid gradient norm decay.

StanfordCS224n

Why is vanishing gradient a problem?

Ø Short-Range vs. Long-Range: Imagine a long chain of dominos where each domino represents a layer or time step. If
the force transferred from one domino to the next diminishes (say by a constant factor each time), then after a long chain,
the force reaching the first domino becomes nearly zero. This means the first few dominos (or layers) barely "feel" the
impact of the initial force (or error), and thus they do not adjust effectively based on long-term dependencies.

Ø Resulting Behavior: The model ends up "paying attention" only to the parts of the sequence that are immediately
relevant (the nearby gradient signals) while ignoring distant context. This leads to challenges such as:

v Inability to learn relationships or dependencies that span many time steps.
v Poor performance on tasks that require integrating information over long sequences.

38

Long Short-Term Memory RNNs (LSTMs)

3
9

Ø At each time step t, the LSTM maintains a hidden state h(t) and a cell state c(t), both vectors of length n.

Ø The cell state stores long-term information, while the hidden state represents the immediate output.

Ø Three gates—the forget gate, input gate, and output gate—dynamically control the erasing, reading, and
writing of information in the cell state.

Ø Each gate is computed as a vector with values between 0 and 1, where values indicate the proportion of
information to keep or update.

Ø This gating mechanism allows the LSTM to selectively maintain important information over long
sequences, effectively addressing the vanishing gradient problem encountered in traditional RNNs.

This dynamic gating system is a key innovation that makes LSTMs powerful for tasks requiring long-term memory, such as
language modeling, speech recognition, and time-series prediction.

A sequence of inputs 𝑥(t). Compute a sequence of hidden states ℎ(t) and cell states 𝑐(t). On timestep t:

Long Short-Term Memory (LSTM)

Al
lt

he
se

ar
e

ve
ct

or
so

fs
am

e
le

ng
th

n

Forget gate: controls what is kept vs
forgotten, from previous cell state

Input gate: controls what parts of the
new cell content are written to cell

Output gate: controls what parts of
cell are output to hidden state

New cell content: this is the new
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

Hidden state: read (“output”) some
content from the cell

Sigmoid function: all gate
values are between 0 and 1

Gates are applied using element-wise
(or Hadamard) product:⊙

⊙

⊙

⊙

StanfordCS224n

You can think of the LSTM equations visually like this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

StanfordCS224n

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ct-1

ht-1

ct

ht

ft
it ot

ct

tc~

Long Short-Term Memory (LSTM)
You can think of the LSTM equations visually like this:

Compute the
forget gate

Forget some
cell content

Compute the
input gate

Compute the
new cell content

Write some new cell content

Output some cell content
to the hidden state

The + sign is the secret!

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

#𝑦!

Compute the
output gate

StanfordCS224n

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Preserving Long-Term Dependencies

4
3

LSTMs vs. Vanilla RNNs

• LSTM Advantage:
The LSTM architecture makes it much easier for an RNN to preserve information over many
timesteps. Example: If the forget gate is set to 1 and the input gate to 0 for a cell dimension, the
corresponding cell state is preserved indefinitely.

• Vanilla RNN Limitation:
A vanilla RNN must learn a recurrent weight matrix that preserves information in the hidden state. In
practice, vanilla RNNs typically manage to preserve information over only about 7 timesteps.

• Extended Memory with LSTMs:
LSTMs can effectively preserve information for around 100 timesteps, greatly enhancing the model's
ability to capture long-term dependencies.

• Alternative Approaches:
There are other methods to create direct, linear pass-through connections that capture long-distance
dependencies.

Bidirectional RNNs

was terribly exciting !the movie

Forward RNN

Backward RNN

Concatenated
hidden states

This contextual representation of “terribly”
has both left and right context!

StanfordCS224n

Bidirectional RNNs

Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean
“compute one forward step of the
RNN” – it could be a simple RNN or
LSTM computation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Generally, these
two RNNs have
separate weights

On timestep t:

StanfordCS224n

Stacked RNNs
Stacked RNNs (also known as deep RNNs): multiple recurrent layers are placed on top of each other.

▶ The output of each RNN layer serves as the input to the next, creating a hierarchical representation of the sequential
data. The lower RNNs should compute lower-level features and the higher RNNs should compute higher-level features.

▶ This architecture is used to capture complex, abstract temporal patterns. Hierarchical layers can learn more abstract
features. Better capture complex temporal dependencies.

▶ Improved Performance: Often achieve higher accuracy on tasks such as language modeling, speech recognition, and
time series prediction.

▶ However, they also introduce challenges such as increased training complexity and computational cost.

▶ With careful design and tuning, stacked RNNs are a powerful tool for sequence modeling.

4
6

Three-layer RNNs

was terribly exciting !the movie

RNN layer 1

RNN layer 2

4
7

RNN layer 3

StanfordCS224n

Multi-layer RNNs in practice

v Stacked RNNs allow for more complex, hierarchical representations: Lower layers capture basic, low-
level features, while higher layers integrate these into more abstract, high-level features.’

v Performance improvements are observed with moderate stacking: Empirical results (e.g., from Britz et
al., 2017) indicate that 2–4 layers can be optimal for tasks such as machine translation.

v Deep RNNs require architectural innovations: For very deep RNNs (e.g., 8 layers or more), skip-
connections or dense connections are necessary to maintain gradient flow and facilitate training.

v Transformers push depth further with built-in residual connections: Models like BERT, which can
have 12–24 layers, offer a different approach to capturing long-range dependencies via self-attention and deep
stacking.

GRU (Gate Recurrent Unit)

4
9

• Gate Recurrent Unit is one of the ideas that has enabled RNN to
become much better at capturing very long-range dependencies and has
made RNN much more effective.

• The GRU is like a LSTM with a gating mechanism to input or forget
certain features, but lacks a context vector or output gate, resulting in
fewer parameters than LSTM. Proposed as a simpler alternative to
LSTM, the GRU merges the forget and input gates into a single update
gate.

• GRUs are known for having fewer parameters than LSTMs, which can
lead to faster training and similar performance in many tasks.

Each GRU cell has two main gates:

▶ Reset Gate (r(t)): Controls how much of the previous hidden state to forget.
▶ Update Gate (z(t)): Decides how much of the candidate activation to use.
▶ The GRU combines these gates to update its hidden state without a separate cell state.

5
0

1. Update Gate (𝑧%): Determines how much of the past hidden state ℎ%&' should be
retained and how much of the new candidate state #ℎ%&' should be added to form
the current hidden state.

2. Reset Gate (𝑟%): Determines how much of the past hidden state ℎ%&' contributes to
the computation of the new candidate state #ℎ%&'.

3. Candidate State (#ℎ%): New information computed at the current time step.

4. Hidden State Update: Combines contributions from the past hidden state ℎ%&' and
the new candidate state #ℎ%&' using the update gate 𝑧%.

StanfordCS224n

Content

2 Recurrent Neural Networks (RNNs)

3 Extensions of RNN

1 Motivation to Sequence Modeling

5 Deep ST Models and Applications

4 Motivation to Spatio-temporal Modeling

Spatio-temporal Data
Spatiotemporal data, however, are data derived from measurements, which take into
account both the parameters of space and time.

• Time series is a sequence of data points collected or recorded at specific time intervals,
showing how a variable changes over time

•Multivariate time series is a typical spatio-temporal data

Spatio-temporal Data – Time series

With recent advances in sensing technologies, a myriad of Time Series (TS) Data
has been collected and contributed to various disciplines

Climate Epidemiology Environment

Social Science Transportation Sports Analysis

Spatio-temporal Data – Time series

Spatio-temporal Tasks

Wang, Y., Wu, H., Dong, J., Liu, Y., Long, M. and Wang, J., 2024. Deep time series models: A comprehensive survey and benchmark. arXiv preprint arXiv:2407.13278.

• Predictive learning:
 Prediction; Forecasting
• Classification
• Estimation and Inference
• Anomaly detection

Content

2 Recurrent Neural Networks (RNNs)

3 Extensions of RNN

1 Motivation to Sequence Modeling

5 Deep ST Models and Applications

4 Motivation to Spatio-temporal Modeling

Problem formulations

Benidis, K., et. al., Deep learning for time series forecasting: Tutorial and literature survey. ACM Computing Surveys

A set of N correlated time series, where each i-th time series is associated with:

• an observation vector 𝒙!" ∈ 𝑅#" at each time step 𝑡;
• a vector of exogenous variable 𝒖!" ∈ 𝑅## at each time step 𝑡;
• a vector of static (time-independent) attributes 𝒗!" ∈ 𝑅#$.

Cini, A., Marisca, I., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.

Setup of multivariate time series

Matrices denote the stacked 𝑁 observations at time 𝑡,

e.g., 𝑿" ∈ 𝑅#×%", 𝑼" ∈ 𝑅#×%#.

We consider a setup where observations have been generated by a time-invariant spatiotemporal
stochastic process such that

𝑿!:!#$: the sequence of observations within time interval [𝑡, 𝑡 + 𝑇);

𝑿&": observations at time steps up to 𝑡 (excluded)

Note that the time series:

• can be generated by different processes,

• can depend on each other,
• are assumed homogenous, synchronous, regularly sampled.

Setup of multivariate time series

Cini, A., Marisca, I., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.

• Pairwise relationships existing among the time series at time step 𝑡
can be encoded by a adjacency matrix 𝑨! ∈ 0, 1 $×$.

• 𝑨! can be asymmetric and dynamic (can vary with 𝑡).

• optional edge attributes 𝒆!
"& ∈ ℝ#% can be associated to each non-

zero entry of 𝑨!.

• ℇ! ≐ : the set of attributed
edges encoding all the available relational information

• Tuple indicates all the available information at
time step 𝑡.

Relational information

Cini, A., Marisca, I., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.

• The term spatial refers to the dimension of size 𝑁, that spans
the time series collection; in the case of fMRI, the term spatial
reflects the fact that each time series might correspond to a
different physical location.

• We use the terms node and sensor to indicate the N entities
generating the time series.

• We assume the existence of functional dependencies between
the time series.

 → e.g., forecasts for one time series can be improved by
accounting for the past values of other time series.

Relational information

Cini, A., Marisca, I., Zambon, D. and Alippi, C., 2023. Graph deep learning for time series forecasting. arXiv preprint arXiv:2310.15978.

Kumar, R., Bhanu, M., Mendes-Moreira, J. and Chandra, J., 2024. Spatio-Temporal Predictive Modeling Techniques for Different Domains: a Survey.
ACM Computing Surveys, 57(2), pp.1-42.

16

Spatio-temporal Modeling

16

Applications

Understanding and Coding the Self-Attention Mechanism of Large
Language Models From Scratch

16

Application - Transportation

With the rapid growth of transportation data from sensors (e.g., loop detectors, cameras, GPS), there is an urgent need to use
deep learning to model the complex spatiotemporal correlations for tasks like:
• Traffic flow prediction
• Traffic incident detection
• Traffic congestion prediction
Transportation data can appear in various spatiotemporal forms:
• ST Raster: Traffic flow matrices (sensor × time)
• Graphs: Sensor networks modeled by road connections
• Time Series: Single-road traffic histories
Modeling Approaches:
• GraphCNNs for sensor network graphs
• RNN/LSTM for single-road time series
Additionally, transportation data is influenced by external factors (e.g., weather, holidays, events), so models must effectively
fuse external features with traffic data for better prediction accuracy.

Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic
Forecasting

16

Application - Transportation

Introduce a novel framework that decouples traffic data into diffusion and inherent components to better model complex
spatial-temporal dependencies in traffic forecasting.
• Decoupled Spatial-Temporal Framework (DSTF): Separates traffic data into diffusion signals (capturing spatial dependencies)

and inherent signals (capturing temporal patterns).
• Dynamic Graph Learning Module: Learns dynamic characteristics of traffic networks over time.
• Residual Decomposition Mechanism: Enhances the model's ability to capture complex patterns by decomposing residuals.

16

Application - On-Demand Service

With the rise of on-demand service plaQorms (e.g., Uber, DiDi, Mobike, GoGoVan), a large volume of spaTotemporal (ST) data
is generated, involving customer locaTons and service Tmes.
To beUer meet real-Tme demand and opTmize services, accurate demand-supply predicTon across locaTons and Tmes is
crucial.

Deep Learning Approaches:
• Dockless bike-sharing: Deep learning methods predict demand-supply distribuTons.
• Bike-sharing systems: Graph CNN models forecast hourly bike demand at staTons by modeling bike flow as a graph.
• Taxi services: LSTM models predict area-specific taxi demand.
• Ride-hailing plaQorms: ResNet models predict supply-demand paUerns.
🛠 Modeling Strategy:
• Represent demand-supply across city regions as spaTal maps or raster tensors.
• Apply CNNs, RNNs, or hybrid deep models for feature extracTon and future predicTon.

ST-MGCN: Spatiotemporal Multi-Graph Convolution Network:

Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand
Forecasting

Application - On-Demand Service

Forecast

Spatio-temporal
ForecastingGraph

Generation
Incorporating
multi-
relationship

RNN
Contextual-

gated
temporal
modeling

Non-euclidean
spatial modeling

Temporal: CGRNN

Spatio-MGCN

Incorporating
multi-
relationship

Contextual-gated
temporal modeling

Non-euclidean
spatial modeling

History

ST-MGCN: Spatiotemporal Multi-Graph Convolution Network:
Key Idea:
Model non-Euclidean spatial dependencies and global temporal dynamics simultaneously for
accurate region-level ride-hailing demand forecasting.
Model Architecture:
• Multi-Graph Construction:
 Build three graphs to capture different spatial relationships:
 Neighborhood Graph (adjacent regions)
 Functional Similarity Graph (similar POI surroundings)
 Transportation Connectivity Graph (road network links)
• Multi-Graph Convolution:
 Perform graph convolutions over multiple graphs to aggregate information
 from spatially correlated regions (both near and distant).
• Contextual Gated RNN (CGRNN):
 Augments RNN with global context-aware gating.
 Dynamically reweights different time steps based on global demand patterns.
• Prediction Head:
 Outputs future region-level ride-hailing demand after spatial and temporal
aggregation.

Application - On-Demand Service

Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand
Forecasting

ST-MGCN: Spatiotemporal Multi-Graph Convolution Network:

Application - On-Demand Service

Graph Generation

Neighborhood

𝐴!,#$ =)0,1,
𝑣# and 𝑣$ are adjacent

otherwise

POI similarity
𝐴%,#$ = sim(P&!, P&")

Road connectivity
𝐴',#$
= max(0, conn 𝑣#, 𝑣$ −𝐴!,#$)

Temporal modeling

CGRNN

• Use 1-layer GCN to invoke
context information

• Use spatial global pooling to
get temporal gate

• Apply gate to input signal
• Aggregate gated signal by

share-weight RNN

Spatial modeling

MGCN

• Use stacked GCN layer to
extract spatial information

• The locality is determined by
graph Laplacian and
convolution degree

• A proper way to extract
spatial information under
arbitrary relationship

Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand
Forecasting

ST-MGCN: Experiments

Application - On-Demand Service

Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand
Forecasting

OD-CED: Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing

Application - On-Demand Service

Challenges:

1. Scalability – OD matrices grow
exponentially with more spatial divisions.

2. Data Sparsity – Over 90% of fine-grained
OD flows have zero demand.

3. Semantic & Geographical
Dependencies – Travel demand is
influenced by both regional function (e.g.,
residential vs. commercial) and spatial
proximity.

Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices
with Applications in Ridesharing

OD-CED: Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing

Application - On-Demand Service

OD-CED Model: A Novel OD Prediction
Framework

● Space Coarsening Module: Merges fine-
grained cells into super-cells to mitigate
sparsity.

● Encoder-Decoder Architecture: Captures
semantic and geographical dependencies
effectively.

● Permutation-Invariant OD Embedding:
Learns robust representations of OD flows.

Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices
with Applications in Ridesharing

Application - On-Demand Service
OD-CED: Experiments
Dataset Performance Comparison (City-C & City-S):

● City-C:
○ RMSE reduced from 1.255 (GEML) → 0.905 (OD-CED)

(~28% improvement).
○ wMAPE reduced from 0.667 (GEML) → 0.411 (OD-CED)

(~39% improvement).
● City-S:

○ RMSE reduced from 1.146 (GEML) → 0.740 (OD-CED)
(~35% improvement).

○ wMAPE reduced from 0.605 (GEML) → 0.323 (OD-CED)
(~47% improvement).

Training Time Comparison (per epoch on V100 GPU):
● OD-CED: 22.12s
● STGCN: 28.81s
● GEML (state-of-the-art): 39.63s
● CSTN & MRSTN: 1200+ seconds
● OD-CED is 2x faster than GEML and over 50x faster than

CNN-based methods.

Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices
with Applications in Ridesharing

Application - Meso Level Supply-Demand Forecasting

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided Ride-Hailing Markets

Goal: Predicting supply and demand in ride-hailing platforms using a causal, interpretable, and scalable
forecasting framework
Algorithm 3:, A collaborative causal spatio-temporal fusion transformer (CausalTrans).
Authors: Wang et al.,
Journal: ACM Transactions on Spatial Algorithms and Systems, 2024

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided
Ride-Hailing Markets

Application - Meso Level Supply-Demand Forecasting

Collaborative Problem

𝑃 𝑥& 𝑡 + 1: 𝑡 + 𝜏()* 𝑥&(: 𝑡), 𝑧&(: 𝑡 + 𝜏()*))
𝑃 𝑦& 𝑡 + 1: 𝑡 + 𝜏()* 𝑦&(: 𝑡), 𝑥&(: 𝑡 + 𝜏()*), 𝑧&(: 𝑡
+ 𝜏()*))

Where:
𝑥&(𝑡): demand at time t in grid v;
𝑦&(𝑡): supply at time t in grid v;
𝑧&(𝑡): external covariates (e.g., weather, holiday) at
time t in grid v;
𝜏()* : pre-specified time length
𝑣	 ∈ 	𝑉.

Probabilistic Forecasting

• Given 𝑞 ∈ 𝑄 = {10%, 50%, 90%}, then quantile loss 𝑄𝐿+
at each point q is:

 𝑄𝐿% 𝑥! , &𝑥!&'
% = {𝑞 − 𝐼 𝑥! 	 ≤ 	 &𝑥!

% } ∗ (𝑥! −
&𝑥!
%)

• Then final quantile loss is:

 𝐿𝑜𝑠𝑠(= 	 Σ)!∈+ Σ%∈(Σ',-
'"#$ (.%)! , 0)!&'

%

1	∗	'"#$

• We introduce quantile risk as a key metric:

 Risk% =
4 ∑(!∈*+

∑',-
'./((.%)! , 0)!&'

%

∑(!∈*+
∑',-
'./(|)!|

 where ;Ω is the best dataset.

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided
Ride-Hailing Markets

Application - Meso Level Supply-Demand Forecasting

The overview of CausalTrans framework:
(a). The framework consists of three essenAal
components: Fast S.F. (fast graph spa*al fusion),
C.A. (causal a1en*on), and T.A. (temporal
a1en*on). Demand and supply are trained
separately in sequence.
(b). The Fast S.F. consists of self-clustering with
GAT and fast aIenAon.
(c). The C.A. applies offline trained causal weights
𝜽 to online treatments evaluaAons.
(d). The T.A. aims to keep ordering self-aIenAons.

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided
Ride-Hailing Markets

Application - Meso Level Supply-Demand Forecasting
CausalTrans - Causal Attention Mechanism
We transfer the weights of external covariates to causal weights by HTE methods (e.g. double machine learning).

(a) causal attention algorithm
step 1: external covariates: weather, holidays and subsidy;
step 2: build various of control groups and treat groups;
step 3: do DML and get causal attention or weights.

(b) how to work in ConvTrans
step 1: offline training causal attention;
step 2: add above weights in multi-head attention

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided
Ride-Hailing Markets

Application - Meso Level Supply-Demand Forecasting
CausalTrans - Causal Attention Visualization

•“AA group 1” and “AA group 2” are regarded as comparable contexts;
•“AB group 1” and “AB group 2” is control group and treatment group;
•Do DML and get causal attention weights.

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided
Ride-Hailing Markets

Application - Meso Level Supply-Demand Forecasting
CausalTrans - Experiment

(a) Risk_(50%) losses on the retail and ride-hailing datasets.

(b) Risk_(90%) losses on the retail and ride-hailing datasets.

•Use grid search to optimize hyperparameters;
•DeepAR outperforms Seq2Seq and MQRNN
because of Poisson and weather covariates;
•CausalTrans outperforms other methods
primarily due to causal estimator DML;
•CausalTrans achieves lower losses on supply
than demand based on both causal
relationship;
•Long-term prediction focuses on unbiased
distribution estimation.

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided
Ride-Hailing Markets

Understanding and Coding the Self-Attention Mechanism of Large
Language Models From Scratch

16

Application - Climate & Weather

Weather and climate data capture atmospheric and oceanic conditions (e.g., temperature, wind, pressure, precipitation, air
quality) via sensors at fixed or mobile locations.
Due to strong spatiotemporal correlations in climate data, spatiotemporal deep modeling (STDM) techniques are widely used
for short-term and long-term forecasting.

Deep Learning Approaches:
• Air quality inference: Predict urban air pollution.
• Precipitation prediction: Forecast rain using remote sensing.
• Wind speed prediction: Model anemometer readings.
• Extreme weather detection: Identify severe weather events.
Data Types:
• Spatial maps: e.g., radar reflectivity images
• Time series: e.g., wind speed readings
• Event data: e.g., extreme weather occurrences
Example Models:
•Attention models for air quality prediction
•CNNs for detecting extreme weather and precipitation forecasting

Understanding and Coding the Self-Attention Mechanism of Large
Language Models From Scratch

16

Application - Neuroscience
Various brain imaging technologies — such as fMRI, EEG, MEG, and fNIRS — are widely used in neuroscience research.
These technologies differ significantly in spaTal and temporal resoluTon:
• fMRI: Millions of spaTal locaTons, lower temporal resoluTon (~2 seconds per measurement)
• EEG: Tens of locaTons, very high temporal resoluTon (~1 millisecond)

Data RepresentaNon:
• Brain imaging data (fMRI, EEG) are naturally represented as spaNal maps or rasters, making them suitable for DL analysis.

Deep Learning ApplicaNons:
• Disease classificaNon and diagnosis: e.g., AuTsm Spectrum Disorder, amnesTc Mild CogniTve Impairment, Schizophrenia
• Brain funcNon network classificaNon
• Brain acNvaNon paRern classificaNon

Example Models:
• LSTM for AuTsm Spectrum Disorder detecTon
• CNN for diagnosing amnesTc Mild CogniTve Impairment
• FNN for classifying Schizophrenia

BrainGNN is a graph neural network (GNN) specifically designed for analyzing functional MRI (fMRI) brain data.
It predicts cognitive states or disease status while providing interpretability by identifying important brain regions and
connections.

Model Highlights:
Node-Level Pooling:

• Groups similar brain regions (ROIs) into clusters based on learned features.
ROI Selection Layer:

• Automatically selects important brain regions contributing to the prediction.
Attention Mechanism:

• Highlights key functional connections between selected ROIs.

Dynamic Graph Transformer for Brain Disorder Diagnosis
16

Application 1: BrainGNN

Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis

Application
Introduce a model that jointly learns spatial and temporal features from resting-state fMRI (rs-fMRI) using a combination of
graph convolution and recurrent neural networks (RNNs).

Model Highlights:
Spatial Graph Convolution:

• Models functional connectivity between brain regions at each time step, treating brain ROIs as graph nodes.
Temporal RNN:

• Captures the evolution of brain connectivity over time by applying an RNN (such as GRU) on node embeddings.
End-to-End Training:

• Learns both spatial (graph structure) and temporal (dynamic activity) representations directly from raw fMRI sequences.

Total activation: fMRI deconvolution through spatio-temporal regularization
16

Application
Total Activation (TA) is a method that deconvolves fMRI signals to recover the underlying neural activity-inducing signals by
applying spatio-temporal regularization.

Model Highlights:
•Temporal Regularization:

• Promotes piecewise constant activation patterns over time (temporal sparsity).
•Spatial Regularization:

• Enforces spatial smoothness across neighboring voxels (nearby brain regions).
•Solves an optimization problem balancing data fidelity with spatio-temporal priors.

How to succeed in this course?

Practice

Explore

Visualize

Ask
Discuss

