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1 Introduction



Definition: Generative models learn to generate new data samples resembling a given dataset.

What are Generative Models? 

Major Generative Models:

 Explicit Density Models: Estimate probability distributions  (e.g., Gaussian Mixture Models, VAEs).

 Implicit Density Models: Generate samples without explicit  density estimation (e.g., Generative Adversarial Network 

(GAN)s, Diffusion Models).



▸ Data: X — Just data, no labels

▸ Goal: Learn some underlying hidden structure or distribution of the data

▸ Examples: clustering, dimension reduction, feature learning, density estimation, etc.

Unsupervised Learning

▸ Generative models are a subset of unsupervised learning, but not all unsupervised learning 

techniques are generative (e.g., k-means, PCA)

PCA



GenAI on Face Generation

• Better Quality

• High Resolution

1024*1024 Images generated by a GAN created by NVIDIA. (source, 2018)

(source)

https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf
https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en
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Emerging Generative Models in 2022-
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Fashion Design

Additional Applications
Text to Image



Deep Generative Models

Deep generative models are neural network-based models designed to learn complex data distributions and 

generate realistic synthetic samples that resemble the original training data. These models leverage deep learning to 

approximate the true underlying data distribution.



Taxonomy of  Deep Generative Models

Diffusion
Models
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Evaluation Metrics

Metric Measures Best for Limitations

Inception Score (IS) Quality & diversity Image GANs
Doesn't compare to real 
data

Fréchet Inception 
Distance (FID)

Realism & diversity Image GANs
Requires feature 
extraction

Precision & Recall Fidelity & coverage Any model
Computationally 
expensive

Log-Likelihood Probability assignment VAEs, Flows
Doesn't match human 
perception

Human Evaluation Subjective quality Any model Expensive and subjective

Downstream Task 
Performance

Utility in real tasks Task-driven models Domain-dependent



Applications of  Generative Models in AI

• Understanding Probability Distributions

• Generative models help represent and manipulate high-dimensional probability distributions across various 
fields.

• Role in Reinforcement Learning (RL)
• Used in model-based RL to simulate possible futures for planning & decision-making.

• Enables learning in imaginary environments, reducing risks of real-world errors.

• Guides exploration by tracking visited states & attempted actions.

• Supports inverse RL for learning from expert demonstrations.

• Handling Missing Data & Semi-Supervised Learning
• Can train with missing data and predict missing inputs.

• Enables semi-supervised learning, reducing the need for labeled data.

• Multi-Modal Learning & Sample Generation
• Allows multiple correct outputs for a single input (e.g., video frame prediction).

• GANs excel in generating realistic samples for various AI applications.
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What are Autoencoders?

Autoencoders are neural networks designed for dimensionality 

reduction and feature extraction by compressing and 

reconstructing data. 

They consist of two main components:

❖ Encoder (e): Maps input x to a low-dimensional latent 

space z, where similar inputs have similar latent 

representations.

       e: X→Z,  z=e(x)  with dim(X)≫dim(Z)
❖ Decoder (d): Reconstructs x from its latent representation z, 

mapping back to the original input space.

       d: Z→X and ො𝑥 = 𝑑 𝑧  = 𝑑(𝑒 𝑥 ). 

Illustration of autoencoder (source)

https://avandekleut.github.io/vae/


What are Autoencoders?

Reconstructed

input data

Want features to capture meaningful 

factors of variation in data

Train such that features can be used to 

reconstruct original data “Autoencoding” -

encoding input itself



Autoencoder Latent Space and Its Limitations

Illustration of example latent vectors using the MNIST 
dataset (source)

•Trained on MNIST, the autoencoder clusters 

similar digits in the latent space.

•Decoder can reconstruct images from latent 

vectors, but gaps in the latent space cause issues.

•Generative models aim to produce new samples, 

but disjoint latent spaces in autoencoders make 

some sampled latent vectors meaningless.

•Illustration: In the top-left corner of the latent 

space, unseen regions result in unrealistic 

reconstructions.

•Solution: Variational Autoencoders 

(VAEs) introduce structured latent spaces to ensure 

continuity and improve generative performance.

Key Issue: Autoencoders are great for 

representation learning but struggle as generative 

models due to fragmented latent spaces.

https://avandekleut.github.io/vae/


VAE = Autoencoder + Generative Modeling
• Same structure as a traditional autoencoder:

❖ Encoder: Compresses input into a latent space 

representation, but instead of a single point, outputs a 

probability distribution (Gaussian).

❖ Decoder: Samples from this distribution and reconstructs 

the input.

Key Difference from Traditional Autoencoders

❖ Traditional autoencoders map inputs deterministically to a 

single latent vector z=e(x).

❖ VAEs introduce probabilistic encoding, ensuring smooth and 

structured latent spaces for better generative performance.

Benefit: Enables meaningful interpolation and sampling for 

generating new data! 

Illustration of VAE (source)

What is a Variational Autoencoder?

https://avandekleut.github.io/vae/


Variational Autoencoder as a DGM

VAEs define an intractable density function with latent

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data                        is generated from the distribution of unobserved (latent) representation z

Decoder

network

Choose prior p(z) to be simple, e.g. Gaussian.

Conditional p(x|z) is complex (generates 

image) => represent with neural network



How to train VGE?

Learn model parameters to maximize likelihood of training data

We want to estimate the true parameters

of this generative model given training data

Q: What is the problem with this?

Intractable!

Intractable to compute p(x|z) for every z! Monte Carlo estimation is too high variance

Data Likelihood

Posterior distribution

Solution: In addition to decoder network modeling ,    define additional encoder network

Will see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize.



Decoder network gives pθ(x|z), can

compute estimate of this term 

through sampling (need some trick 

to differentiate through sampling).

How to approximate VGE?

This KL term (between

Gaussians for encoder and 

z prior) has nice closed-

form solution!

pθ(z|x) intractable (saw earlier),

can’t compute this KL term. 

But we know KL divergence

always >= 0.



How to approximate VGE?

Tractable lower bound which we can take gradient of and optimize! 

(pθ(x|z) differentiable, KL term differentiable)

We want to

maximize the

data likelihood. 

Encoder: make approximate

posterior distribution. close to prior

Decoder: reconstruct 

the input data

Variational evidence lower bound (ELBO):

Training: Maximize lower bound



Stochastic Optimization of ELBO

Reparametrization Trick:



A Theoretical Example



Real Examples



Strengths & Limitations
Key Idea:

➢ Adds a probabilistic spin to traditional autoencoders, enabling data generation.

➢ Defines an intractable density, requiring variational inference to derive and optimize a lower bound 

(ELBO).

Pros:

Principled generative approach based on probabilistic modeling.

Interpretable latent space enables meaningful structure in representations.

Inference of q(z∣x) allows feature extraction for other tasks.

Cons:

Optimizes a lower bound on likelihood, which may not be an ideal evaluation metric.

Lower sample quality compared to PixelRNN/PixelCNN.

Blurry reconstructions compared to GANs, which generate sharper images.

Active Research Areas:

Flexible Approximate Posteriors: Moving beyond diagonal Gaussian assumptions to richer models 

like Gaussian Mixture Models (GMMs) or Categorical Distributions.

Disentangled Representations: Learning independent latent factors for better interpretability.

Improving Training Objectives: Hybrid models incorporating adversarial learning (VAE-GANs).

Future Directions: Enhancing sample quality while retaining VAE’s structured latent space!
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“This (GANS), and the variations that are now 
being proposed is the most interesting idea in the 

last 10 years in ML, in my opinion”

–Yann LeCun



What is GAN? 
Problem: 

❖ We want to sample from a complex, high-dimensional 

training distribution.

❖ There is no direct way to explicitly learn or model the data 

distribution.

Solution:

➢ Instead of learning the distribution explicitly, GANs learn a 

transformation.

➢ Start by sampling from a simple distribution (e.g., 

Gaussian noise).

➢ Train a neural network to transform the simple distribution 

into the training data distribution.

Key Idea:

✓ GANs learn to generate new samples indirectly through 

adversarial training.

✓ The model never explicitly estimates the probability 

density function of the data.

Output: Sample from

training distribution

Input: Random noise

Objective: generated

images should look “real”

Use a DN

to tell whether 

the generate image 

is within data

distribution 

(“real”) or not



Generative Vs Discriminative Models
Generative Models:

 Can generate new data samples resembling real data.
 Example: GANs generate realistic images that resemble real ones.

Discriminative Models:
 Focus on classification by distinguishing between different categories.
 Example: A decision tree can classify dogs and cats but cannot generate them.



Overview of  GAN Training
Discriminator Network: Tries to distinguish between real and  fake images.

Generator Network: Tries to fool the discriminator by generating  real-looking images.

Training Process: Both networks are trained jointly in a minimax  game.



GAN Training

Instead: Consider a different objective



GAN Algorithms



Alternating Training for GANs

GAN Training Process (Alternating Phases):
1. Discriminator Training: Trains for one or more epochs while the generator remains unchanged. It learns to 

differentiate real from generated data, adapting to the generator’s flaws.

2. Generator Training: Trains for one or more epochs while the discriminator remains unchanged. This 

prevents the generator from chasing a moving target.

Training Dynamics:
❖ As the generator improves, the discriminator struggles to distinguish real from fake data.

❖ A perfect generator results in a discriminator with 50% accuracy (random guessing).

❖ Overtraining can degrade performance, leading to unstable convergence where the generator receives 

meaningless feedback.



Challenges in GAN Training
 Hyperparameter Sensitivity: GANs are sensitive to learning rates, batch sizes, and architectural choices.

 Mode Collapse: The generator produces limited diversity.

 Training Instability: The minimax optimization is difficult to balance.

 Vanishing/Exploding Gradients: The discriminator can become too strong or weak, leading to poor gradients.

 Non-Convergence: The model oscillates instead of converging.



Hyperparameter Sensitivity
1. Adjust Learning Rates Carefully

❖ Learning Rate (α): Too high → instability, Too low → slow convergence.

❖ Two-Timescale Update Rule (TTUR): Use a smaller learning rate for the generator than the discriminator to 

balance training.

2. Tune Adam Hyperparameters
➢ Standard settings (β1=0.9, β2=0.999) can lead to oscillations.

➢ For GANs, reducing β1​ to 0.5 improves stability. 

3. Normalize Inputs and Use Spectral Normalization
✓ Normalize training images between [−1,1] instead of [0,1] (for Tanh activation).
✓ Use Spectral Normalization on the discriminator to control weight magnitudes.

4. Improve Loss Functions
o Wasserstein Loss (WGAN): Uses Earth-Mover distance for better gradient behavior.
o Gradient Penalty (WGAN-GP): Adds stability and prevents exploding gradients:

5. Use Progressive Training
❑ Start with low-resolution images, gradually increasing resolution (used in Progressive Growing GANs).
❑ Helps GAN learn simple features first before complex details.



Hyperparameter Sensitivity
6. Apply Regularization Techniques

•Batch Normalization: Helps control variance, but can cause mode collapse in GANs.

•Instance Normalization: Often more stable than batch normalization.

•Dropout in Discriminator: Helps prevent overfitting.

7. Monitor Convergence and Use Early Stopping

•Track GAN metrics (FID, Inception Score) instead of just loss values.

•Avoid overtraining: If the discriminator gets too strong, freeze it temporarily.

8. Use Larger Batch Sizes
•GANs often benefit from larger batch sizes (e.g., 128–512) to stabilize updates.

•Gradient accumulation can be used if GPU memory is limited.

9. Data Augmentation

•Apply transformations (rotation, flipping, color jitter) to make training more robust.

•Prevents the discriminator from memorizing training data.

10. Experiment with Alternative Architectures
•Self-Attention GANs (SAGAN): Improves global structure modeling.
•BigGAN: Uses larger batch sizes and orthogonal regularization for stability.



Mode Collapse

Mode Collapse in GANs refers to a common failure mode where 

the generator fails to capture the full diversity of the data distribution 

and produces limited variations of samples. Instead of generating a 

wide range of outputs, it collapses to generating a few or even a single 

type of sample repeatedly.

Why Does Mode Collapse Occur?

❖ Imbalanced Generator-Discriminator Learning

❖ Training Instability

❖ Lack of Diversity-Promoting Mechanisms

1.  

Illustration of example monotonous output. 
(source)

Effects of Mode Collapse

❖ Reduced Sample Diversity → Poor representation of the real dataset.

❖ Low-Quality Generation → Outputs look repetitive and lack variety.

❖ Unreliable Model → The generator fails to generalize.

https://neptune.ai/blog/gan-loss-functions


Techniques to Mitigate Mode Collapse

1.Minibatch Discrimination

Encourages diversity by comparing samples in each batch.

2.Feature Matching

Instead of just fooling the discriminator, the generator learns to match feature statistics of real data.

3.Wasserstein GAN (WGAN)

Uses the Earth Mover (Wasserstein) distance to stabilize training and avoid collapsing to few modes.

4.Unrolled GANs

Allows the generator to anticipate discriminator updates, preventing it from getting stuck in mode collapse.

5.Mutual Information Regularization

Forcing the generator to learn meaningful latent representations that generate diverse outputs.

.

More details of example GAN suffering mode collapse: https://neptune.ai/blog/gan-failure-modes 

https://neptune.ai/blog/gan-failure-modes
https://neptune.ai/blog/gan-failure-modes
https://neptune.ai/blog/gan-failure-modes
https://neptune.ai/blog/gan-failure-modes
https://neptune.ai/blog/gan-failure-modes


The taxonomy of  the recent GANs



Different GANs 

Model Stability Mode Collapse Convergence
Sample 

Quality

Special 

Features

GAN Low High Unstable Medium Baseline

LSGAN Medium Medium More stable Medium
Least squares 

loss

WGAN High Low More stable High
Wasserstein 

distance

WGAN-

GP
Very High Very Low Very stable Very High

Gradient 

Penalty

cGAN Medium Medium Stable High
Class 

conditioning

StyleG

AN
High Low Stable Very High Style control



Timeline of  GAN architectures

Complexity in blue stream refers to size of the architecture and computational cost such as batch size. Mechanisms 

refer to the number of types of operations (e.g., convolution, deconvolution, self-attention) used in the architecture (e.g., 

FCGAN uses fully connected layers for both discriminator and generator. In this case, the value for mechanisms is 1).



Loss-variant GANs



GAN-related Loss Functions
GANs aim to approximate the real data distribution                      using a generator network               , where      

                               is drawn from a simple prior distribution.

 The training process is driven by a discriminator D(x), which distinguishes real from generated samples.

 The loss function should measure the divergence between                      and  , where                is the 

distribution of generated samples

Minimax Loss: In the original GANs, the generator tries to minimize the following function while the discriminator 

tries to maximize it:

 min
 𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥 log 𝐷 𝑥 + 𝐸𝑧[log(1 − 𝐷(𝐺 𝑧 ))] 

The formula derives from the cross-entropy between the real and generated distributions. 

For a given x, the optimal discriminator is given by

Thus, minimizing the GAN objective is equivalent to minimizing the Jensen-Shannon divergence as follows:



Minimax Loss

The Standard GAN loss function can further be categorized into two parts: Discriminator loss and Generator 

loss. The diagram below summarizes how we train the discriminator and the generator using the corresponding 

gradient.

Non-Saturating GAN Loss



Wasserstein GAN (WGAN)

For the special case of p = 1, the p-Wasserstein metric is also known as the Monge-Rubinstein metric, or the 

earth mover distance.

The 1-Wasserstein metric can be expressed as (Villani, 2008),

This expression of 1-Wasserstein metric is computationally convenient, which is used in the construction 

of Wasserstein generative adversarial networks (WGAN) (Arjovsky et al., 2017).



Training  WGAN

Critic (Discriminator) Loss:

Generator Loss:

Training Process:

1. Update the critic D multiple times per generator update.

2. Compute Wasserstein distance using the critic’s output.

3. Update generator G to minimize the critic’s output.

Methods to Enforce Lipschitz Constraint:

Weight Clipping (Original WGAN): Gradient Penalty (WGAN-GP):



WGAN vs WGAN-NP



Tips to improve GAN performance

• Change the cost function for a better optimization goal.

• Add additional penalties to the cost function to enforce constraints.

• Avoid overconfidence and overfitting.

• Better ways of optimizing the model.

• Add labels (Conditional GAN).

• More details and other implementation tips: https://towardsdatascience.com/gan-ways-to-improve-

gan-performance-acf37f9f59b 

https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
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General Goal



High Dimensional Data



Normalizing Flow



A Simple Illustration: X->N(0, 1)



Normalizing Flow



NF – Deriving p(x) Explicitly



NF – Deriving p(x) Explicitly



NF – Remarks



RealNVP



RealNVP – affine coupling layers



RealNVP – affine coupling layers



RealNVP – important of  good masking



RealNVP – important of  good masking



Generative Images



Flow-Based Models Summary
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EFFICIENT MULTI-MODAL SAMPLING VIA 
TEMPERED DISTRIBUTION FLOW

68

Reference:

Qiu, Y. and Wang, X. (2024). Efficient Multimodal Sampling via Tempered Distribution 
Flow. JASA, 119, 1446-1460.



• Background

• Sampling via Measure Transport

• Tempered Distribution Flow

• Experiments and Summary

69

❑ Tempered Distribution Flow



A Familiar Problem

• Given an unnormalized density function 𝑝 𝑥 ∝ exp −𝐸 𝑥

• Generate a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 ∼ 𝑝(𝑥)

70

Video: https://colindcarroll.com/2018/11/24/animated-
mcmc-with-matplotlib



Why Sampling?

•Question 1: Why do we care about it?

• It lies at the heart of statistics and machine learning

• Bayesian models

• Monte Carlo methods

• Numerical integration

• Deep generative models, e.g., energy-based models

71



Textbook Solution and Challenges

•Question 2: Is it a trivial task?
• Existing methods face great challenges for complicated distributions

• Inverse c.d.f. method → Only for univariate distribution

• Rejection sampling → Hard to find upper bound

• Importance sampling → Variance control in high dimensions

• MCMC → Hard to test convergence, computational efficiency

Sampling and simulation is a fundamental yet challenging task

72



Different but Similar to GenAI

• Given training data, generate new samples from the same 
distribution

• Training data ~𝑃𝑑𝑎𝑡𝑎(𝑥), generated samples ~𝑃𝑚𝑜𝑑𝑒𝑙(𝑥); 
Want to learning 𝑃𝑚𝑜𝑑𝑒𝑙(𝑥) similar to 𝑃𝑑𝑎𝑡𝑎(𝑥).

73

1024X1024 images 
generated using the 
CELEBA-HQ dataset.
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❑ Tempered Distribution Flow



The Framework

• Marzouk et al. (2016) proposed sampling based on measure 
transport

• Essentially it means “transformation of random variables”

• Suppose 𝑋 = 𝑇(𝑍), 𝑍 ∼ 𝑁(0, 𝐼𝑑)

• Use the distribution of 𝑋 to approximate the target distribution 
𝑝(𝑥)

75



Recap

• Let 𝑍 ∼ 𝑝𝑧(𝑧) be a 𝑑-dimensional random vector

• 𝑇: R𝑑 → R𝑑  is an invertible and differentiable mapping

• Set 𝑋 = 𝑇(𝑍), and then 𝑋 has the density function

𝑝𝑥 𝑥 = 𝑝𝑍(𝑇−1(𝑥)) det
𝜕𝑇−1

𝜕𝑥

76



Transport Map

• But the transport map 𝑇 needs to satisfy some conditions

1.  Invertible and differentiable

2.  𝑇−1 and det(𝜕𝑇−1/𝜕𝑥) are easy to compute

3.  𝑇 is flexible enough to characterize sophisticated 
nonlinear mappings

• Is it easy, or even possible, to construct such a 𝑇?

• E.g., Marzouk et al. (2016) uses polynomials

But not very flexible; computation is hard

77



Normalizing Flows

• The normalizing flow framework (Rezende & Mohamed, 2015) 
is one possible solution

• It constructs 𝑇 via composition 𝑇 = 𝑇𝐾 ∘ 𝑇𝐾−1 ∘ ⋯ ∘ 𝑇1

• Each 𝑇𝑖  is relatively simple, but satisfies the requirements 

78

𝑇𝑖 𝑇𝑖+1𝑇1



Example: Real NVP

• One popular class of 𝑇 is called Real NVP (Dinh et al., 2016)

79

• Some elements are unchanged, e.g.,
𝑌1:𝑟 = 𝑍1:𝑟

• Remaining components are modified 
with
𝑌 𝑟+1 :𝑑 = 𝜇 𝑍1:𝑟 + 𝜎 𝑍1:𝑟 ⊙ 𝑍 𝑟+1 :𝑑

• 𝜇 and 𝜎 are neural networks



Why Real NVP Works

• 𝑇 can be easily inverted

80



Why Real NVP Works
• 𝜕𝑇/𝜕𝑧 is lower triangular

• det(𝜕𝑇/𝜕𝑧) is the product of diagonal elements

• Some recent theoretical works such as Teshima et al. (2020) 
show that Real NVP flows are universal approximators for 
invertible functions

• All three requirements are satisfied

81



Summary

• Overall, normalizing flows are distributional models that

1. Have a computable density function

2. Easily generate random samples

3. Can approximate virtually all continuous distributions

• If we can estimate 𝑇 accurately, sampling is trivial

Simulate 𝑍1, … , 𝑍𝑛 ∼ 𝑁(0, 𝐼𝑑), and set 𝑋𝑖 = 𝑇(𝑍𝑖)

82



Measure Transport vs MCMC

83

Measure Transport MCMC

Training Required No training

Generation Extremely fast
Requires many density/gradient 
evaluations

Convergence test Easy Hard

Parallelization Trivial Nontrivial

Resulting data points Independent
Correlated (unless running 
multiple independent chains)

• In practice, they complement each other
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❑ Tempered Distribution Flow



The First Try

• Assume 𝑇 = 𝑇𝜃  is characterized by neural network parameters 𝜃

• Then 𝑋 has an explicit density function 𝑝𝜃(𝑥)

• We minimize some “distance” between 𝑝(𝑥) and 𝑝𝜃(𝑥), e.g.,

min
𝜃

 KL(𝑝𝜃‖𝑝) = min
𝜃

 E𝑝𝜃
log 𝑝𝜃 𝑥 − E𝑝𝜃

log 𝑝(𝑥)

• Expectations can be approximated by Monte Carlo estimators

• 𝜃 is optimized using stochastic gradient descent

85



Demo

• Left: evolution of estimated density. Right: transformation function.

86



Problem

• The previous demo looks not bad, but…

• What about distributions with many isolated modes?

87



Multi-modal Distribution

• Left: evolution of estimated density. Right: transformation function.

88



Issues and Challenges

• For unimodal densities, the method converges very fast and approximates 
the target density well.

• For multimodal distributions, the method has little progress after certain 
iterations.

• We need to carefully analyze the dynamics of the optimization process to 
uncover the reason of failure.

89



Explanation

• The evolution of 𝑝𝜃(𝑥) approximates a continuous-time 
differential equation (a.k.a. the continuity equation, Ambrosio et 
al., 2018)

𝜕

𝜕𝑡
𝑝𝑡 + ∇ ⋅ v𝑡𝑝𝑡 = 0

• v𝑡 is the vector field determined by a function ℱ

• The time-indexed distribution 𝑝𝑡 is called a Wasserstein gradient 
flow, which decreases the functional ℱ ⋅ = KL(⋅ ‖𝑝) through 
time, i.e., dℱ 𝑝𝑡 /d𝑡 ≤ 0

• But the convergence speed can vary a lot for different target 
densities 𝑝

90



Theoretical Analysis 

91

Theorem (informal)

If 𝑝(𝑥) is log-concave, then

1.  ℱ 𝑝𝑡  decreases to 0 exponentially fast

2.  𝐻2 𝑝𝑡 , 𝑝 ≤ 𝐶 ⋅ dℱ 𝑝𝑡 /d𝑡 , 𝐻2(⋅,⋅) is the squared Hellinger distance

• For log-concave densities, the difference between the sampler 
distribution and the target distribution decays exponentially fast 
along the gradient flow

• Gradient does not vanish unless 𝑝𝑡 is already close to 𝑝, which we 
call the nonvanishing gradient property



Theoretical Analysis 
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Theorem (informal)

If 𝑝 𝑥 = 𝛼ℎ 𝑥 + 1 − 𝛼 ℎ(𝑥 − 𝜇) is a mixture of two log-concave 
distributions, then there exists some 𝑝𝑡∗  such that

lim
𝜇 →∞

ℱ 𝑝𝑡∗ > 0, lim
𝜇 →∞

dℱ 𝑝𝑡 /d𝑡 𝑡=𝑡∗ = 0

• There exists a configuration of 𝑝𝑡∗  such that it is different from the 
target distribution, but meanwhile the gradient vanishes.

• The vanishing gradient implies an extremely slow convergence 
speed.



The Proposed Method

Two core ideas:

1. Evolve the distribution flow 𝑝𝑡 through the tempering curve

2. Replace the KL functional with the 𝐿2 distance
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The Tempering Curve

• Instead of directly minimizing the KL divergence, let 𝑝𝑡 move 
along the tempering curve

𝑝𝛽𝑡
𝑥 =

1

𝑍(𝛽𝑡)
𝑒−𝛽𝑡𝐸(𝑥)

• 𝛽𝑡 is an increasing function of 𝑡, 𝛽0 > 0, 𝛽𝑡 → 1

• 𝑝𝛽𝑡
𝑥  reduces to the target density 𝑝(𝑥) when 𝛽𝑡 = 1

• In practice, discretize the curve into a sequence of distributions 
𝑝𝛽𝑘

• 0 < 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑇 = 1
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The Tempering Curve

• 𝑝𝛽𝑡
𝑥  has the same modes as 𝑝(𝑥), but they are more 

connected
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Theoretical Analysis 

• To transport 𝑝𝛽𝑘
 to 𝑝𝛽𝑘+1

, we solve a Wasserstein gradient flow with respect 

to the (squared) 𝐿2 distance, 

𝒢 ⋅ = ∫ ⋅ −𝑝(𝑥) 2d𝑥

•   𝑚𝑖𝑛𝑔 ℒ 𝑔 = ∫ 𝑔𝑑𝑔 − 2 ∫ 𝑓𝑑𝑔 + ∫ 𝑓2𝑑𝜆 = 𝐸𝑋~𝑔(𝑥) 𝑔 𝑋 − 2𝑓 𝑋 + 𝐶

• Here, the target distribution is 𝑓 = 𝑝𝛽𝑘+1
and the source distribution is 𝑝𝛽𝑘

• The normalizing constant 𝑈 in 𝑓 𝑥 = 𝑒−𝐸(𝑥)/𝑈 can be efficiently 
estimated by importance sampling

𝑈 = ∫ 𝑒−𝐸(𝑥) 𝑑𝑥 = 𝐸𝑋~ℎ(𝑥)𝑒𝑥𝑝 −𝐸 𝑥 − log ℎ(𝑋)
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The 𝑳𝟐 Flow Sampler
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Theoretical Analysis 

• To transport 𝑝𝛽𝑘
 to 𝑝𝛽𝑘+1

, we solve a Wasserstein gradient flow 

with respect to the (squared) 𝐿2 distance, 

𝒢 ⋅ = ∫ ⋅ −𝑝(𝑥) 2d𝑥

• The gradient does not vanish as in the KL case
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Theorem (informal)

Under some regularity conditions on 𝑝(𝑥),

𝒢 𝑝𝑡 ≤ 𝐶 ⋅ d𝒢 𝑝𝑡 /d𝑡 1/2



Tempered Distribution Flow

• Left: evolution of estimated density. Right: transformation function.
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Adaptive Selection of 𝛽𝑡

100

Theorem

𝑝𝛽𝑡
𝑥  decreases the KL divergence ℱ ⋅ = KL(⋅ ‖𝑝) along the tempering curve, 

i.e., dℱ 𝑝𝛽𝑡
/d𝑡 ≤ 0.



• Background

• Sampling via Measure Transport

• Tempered Distribution Flow

• Experiments and Summary
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❑ Tempered Distribution Flow



Gaussian Mixture
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Gaussian Mixture
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Copula-Generated Distribution

• The target distribution is

      𝐹(𝑥1,…, 𝑥𝑑) = 𝐶(𝐹1 𝑥1 , … , 𝐹𝑑 𝑥𝑑 )

• The first s marginals are Gaussian mixtures; the remaining are 
normal distributions

• C is the Clayton copula

• The target distribution has 2𝑠 modes; every pair 𝑋𝑖 , 𝑋𝑗  is 

correlated
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Copula-Generated Distribution
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Copula-Generated Distribution
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Copula-Generated Distribution
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CelebA Data

• Colored face images 64X64X3

• We take a subset: female wearing glasses (2677 images), 
female without gasses (20000 images), male wearing glasses 
(10346 images), and male without glasses (20000 images)

• A Deep Generative Model:

           (E100, G100->12288)
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CelebA: Energy Based Models
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Summary

110

• Sampling is a fundamental yet challenging task in statistics and 
machine learning

• Modern deep learning techniques can help solve classical 
sampling problems

• Many interesting and open problems to be explored
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