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What are Generative Models?

Definition: Generative models learn to generate new data samples resembling a given dataset. J

f‘ learning sampling
:> pmodel :> 4

Training data ~ pyata (X

Objectives:

1. Learn ppoqel(X) that approximates pyata(X)
2. Sampling new x from pmogel(X)

Major Generative Models:
» Explicit Density Models: Estimate probability distributions (e.g., Gaussian Mixture Models, VAEs).

» Implicit Density Models: Generate samples without explicit density estimation (e.g., Generative Adversarial Network
(GAN)s, Diffusion Models).
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Unsupervised Learning

v

Data: X — Just data, no labels
Goal: Learn some underlying hidden structure or distribution of the data
» Examples: clustering, dimension reduction, feature learning, density estimation, etc.

v

» Generative models are a subset of unsupervised learning, but not all unsupervised learning
techniques are generative (e.g., k-means, PCA)
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GenAl on Face Generation

2014

* Better Quality
* High Resolution

2018

1024*1024 Images generated by a GAN created by NVIDIA. (source, 2018)
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https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf
https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en
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Emerging Generative Models in 2022-
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Additional Applications

Text to Image

The bird is A bird with a This small Eggs fruit A street sign
This bird isred  short and medium orange  black bird has A group of candy nuts on a stoplight
and brown in stubby with bill white body a short, slightly A picture of a people on skis and meat pole in the
color, with a yellow on its gray wings and  curved bill and very clean stand in the served on middle of a
stubby beak body webbed feet long legs living room snow white dish day

Fashion Design
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Deep Generative Models

Deep generative models are neural network-based models designed to learn complex data distributions and
generate realistic synthetic samples that resemble the original training data. These models leverage deep learning to
approximate the true underlying data distribution.

Let X ~ Px, where Px is the distribution of X. Let its density function be px.
There are two ways to learn the distribution of X:

@ The explicit modeling approach assumes px € Peg, or estimates px directly
nonparamtrically.

@ Generative models learn a generator function G : R™ — R” such that G(n) ~ Px,
where n ~ P, a known reference distribution.

o If a generator function G is known, then we know everything about Py,
since we can first sample 17 ~ Py, then G(1) ~ Px.

o We usually take the reference distribution to be N(0, 1) or uniform
distribution on [0, 1]™.
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Taxonomy of Deep Generative Models

Taxonomy of Generative Models

Generative models

4/\

Explicit density

T ——

Tractable density

Direct
GAN

Implicit density

Diffusion
Models

\

Fully Visible Belief Nets
-  NADE
- MADE
- PixelRNN/CNN
- OW
- Ffjord

Approximate density

Markov Chain

.

Variational

Variational Autoencoder

\

GSN

Markov Chain

Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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The Landscape of Deep Generative Models

. Normalizing
Autoregressive
Mogels HEES
Variational
Autoencoders
Generative - s Diffusion Models

Adyersarial Networks




Evaluation Metrics

Metric Measures Best for Limitations

. : : . D ' |
Inception Score (IS) Quality & diversity Image GANs d;)ti\sn tcompare to rea

Fréchet Inception Requires feature

Distance (FID) Realism & diversity Image GANs extraction
.. e Computationally
Precision & Recall Fidelity & coverage Any model .
expensive
oy . . D ' h h
Log-Likelihood Probability assignment VAEs, Flows oesn t.matc vman
perception
Human Evaluation Subjective quality Any model Expensive and subjective
Downstream Task Utility in real tasks Task-driven models Domain-dependent

Performance
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Applications of Generative Models in Al

Understanding Probability Distributions
. ?elrzierative models help represent and manipulate high-dimensional probability distributions across various
ields.
Role in Reinforcement Learning (RL)
* Used in model-based RL to simulate possible futures for planning & decision-making.
* Enables learning in imaginary environments, reducing risks of real-world errors.
* Guides exploration by tracking visited states & attempted actions.
* Supports inverse RL for learning from expert demonstrations.

Handling Missing Data & Semi-Supervised Learning
* (Can train with missing data and predict missing inputs.
* Enables semi-supervised learning, reducing the need for labeled data.

Multi-Modal Learning & Sample Generation
* Allows multiple correct outputs for a single input (e.g., video frame prediction).
* GANs excel in generating realistic samples for various Al applications.
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What are Autoencoders?

Autoencoders are neural networks designed for dimensionality
reduction and feature extraction by compressing and
reconstructing data.

They consist of two main components:

“* Encoder (e): Maps input x to a low-dimensional latent
space z, where similar inputs have similar latent
representations.

e: X—Z, 7=e(x) with dim(X)>»dim(Z)
¢ Decoder (d): Reconstructs x from its latent representation z,
mapping back to the original input space.

d: Z—»Xand X = d(z) =d(e(x)).

[cNeNeFek

o S

Illustration of autoencoder (source)
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https://avandekleut.github.io/vae/

What are Autoencoders?

L2 Loss function: Reconstructed data
ENL&aES

Train such that features can be used to T n.aﬂn
reconstruct original data “Autoencoding” - Reconstructed 4 b ' &
encoding input itself input data 1: -EET .-
Decoder Encoder: 4-layer conv
Decoder: 4-layer upconv
Want features to capture meaningful Features " f e
factors of variation in data

Input
o PR
P B
USRS [
e arl R | T

Z
| Encoder
J

=

Input data
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Autoencoder Latent Space and Its Limitations

*Trained on MNIST, the autoencoder clusters
similar digits in the latent space.
*Decoder can reconstruct images from latent

: : FEEY;
vectors, but gaps in the .latent space cause 1ssues. . 177 77
*Generative models aim to produce new samples, /17777
but disjoint latent spaces in autoencoders make °] 1 . ;; f,
some sampled latent vectors meaningless. 5] / 3888 Y
Illustration: In the top-left corner of the latent , ; *PEESE S
. . . . 10 v 2 O D
space, unseen regions result in unrealistic 77772000055 %
reconstructions. _15] 7777200 005
. . o [ ] 7 / 2 /" 0 L rJ
*Solution: Variational Autoencoders 27 22200 5O 0O
. -20 : . . . . .
(VAEs) introduce structured latent spaces to ensure 1005 0 5 10 15 -50 -25 00 25 50 75 100

continuity and improve generative performance.
» Key Issue: Autoencoders are great for
representation learning but struggle as generative

models due to fragmented latent spaces. lllustration of example latent vectors using the MNIST
dataset (source)
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https://avandekleut.github.io/vae/

What is a Variational Autoencoder?

# VAE = Autoencoder + Generative Modeling
* Same structure as a traditional autoencoder:

% Encoder: Compresses input into a latent space
representation, but instead of a single point, outputs a
probability distribution (Gaussian).

“* Decoder: Samples from this distribution and reconstructs
the input.

# Key Difference from Traditional Autoencoders

¢ Traditional autoencoders map inputs deterministically to a
single latent vector z=e(x).

¢ VAEs introduce probabilistic encoding, ensuring smooth and
structured latent spaces for better generative performance.

%> Benefit: Enables meaningful interpolation and sampling for

generating new data!

Illustration of VAE (source)
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https://avandekleut.github.io/vae/

Variational Autoencoder as a DGM
VAEs define an intractable density function with latent

po(x) = [ po(z)ps(al2)dz
Probabilistic spin on autoencoders - will let us sample from the model to generate data!
Assume training data {:U(i) }iV: 1 18 generated from the distribution of unobserved (latent) representation z
Sample from

true conditional T mm Conditional p(x|z) is complex (generates
¥ image) => represent with neural network

po-(z | 29)

Decoder

Sample from network

true prior > Choose prior p(z) to be simple, e.g. Gaussian.
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How to train VGE?

Learn model parameters to maximize likelihood of training data , , ,
Q: What is the problem with this?

We want to estimate the true parameters { p(OVN Intractable!
of this generative model given training data =

Data Likelihood
pe(z) = [ po(2)pe(x|2)dz % logp(z) ~ log% Zle p(z|2), where 29 ~ p(2)

Intractable to compute p(x|z) for every z! Monte Carlo estimation is too high variance

Posterior distribution

po(z|x) = po(@|2)pe(2)/pe(z)
Solution: In addition to decoder network modeling  Pg (SE | Z )_, define additional encoder network

qo(z|x) = pp(z|x)
Will see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize.
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How to approximate VGE?

log pg(z\V) = E, g, (z2) {log pg(a:(i))] (po () Does not depend on 2)

i (1)
—E, |log De (3: | z)pa(z)] (Bayes’ Rllle)
po(z | z(¥))

(1) (4)
po(z™" | 2)po(2) go(x | )] (Multiply by constant)

=E, |lo .
STz [20)  go(z [ 2W)

[ i ' gy (% | m(i)) nel m(i)) ,
=E, |logpg 2D )| - E, [10 +E, |lo . Logarithms
i g ( ’ )_ g p@(z) g p@(z | m(z)) ( g )

=E, |logps(2"” | 2)| — Dkr(ge(z | 2) || pe(2)) + Dcr(as(z | 21" || po(2 | 217))

1 L)

Decoder network gives p0(x|z), can This KL term (between pB(z[x) intractabl-e (saw earlier),
compute estimate of this term Gaussians for encoder and can’t compute this KL term. ®®
through sampling (need some trick z prior) has nice closed- But we know KL divergence -
to differentiate through sampling). form solution! always >= 0.
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How to approximate VGE?

Decoder: reconstruct Encoder: make approximate
the input data posterior distribution. close to prior
)\ . ) ; ) . .
log pg(¢V) = [E. [logps(a® | 2)| = Drcras(= | 2D) || po(2))|+ Dicrlao(z | 27) || po(z | 2))
We want to £(x(i3j 0, %) >0
maximize the
data likelihood. Tractable lower bound which we can take gradient of and optimize!

(pO(x|z) differentiable, KL term differentiable)

Variational evidence lower bound (ELBO):

E(.’L‘,@, (;b) < logpﬁ' (.’L‘)

Training: Maximize lower bound

0, = arg rgéx?;ﬁ(%@,aﬁ)
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Stochastic Optimization of ELBO

Algorithm 1: Stochastic optimization of the ELBO. Since noise
originates from both the minibatch sampling and sampling of p(e),
this is a doubly stochastic optimization procedure. We also refer
to this procedure as the Auto-Encoding Variational Bayes (AEVB)

algorithm.
Data:
D: Dataset £9a€b(x) - EQ¢(Z|X) [Ingg(X, Z) — log Q¢(Z|X)]
e VoLo¢(x) = VoEq, (alx) [log pe(x, 2) — log g4 (z[x)]
po(x,2z): Generative model
Result: vqb‘CG,qﬁ(X) - vquE:qq;,(z|x) log pg(x,2z) — log q¢(Z|X)J

0, @: Learned parameters

o) Reparametrization Trick: zZ — g(e, Q. X)

while SGD not converged do EQ¢(Z|X) [f(z)] e Ep(e) [f(z)]
M ~ D (Random minibatch of data)
e ~ p(€e) (Random noise for every datapoint in M) V¢EQ¢(Z|X) [f (Z)] — vqup(f) [f (Z)]
Compute Lg 4(M, €) and its gradients Vg 4Lg (M, €) —E, . [Vef(2)]
Update 8 and ¢ using SGD optimizer pe 2
end = vqﬁf (Z)
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A Theoretical Example

Sample z from z|a: Pl N ,uz|m, z|:1:) L
/ \ Sample xjz from 2z ~ N ( s S5l
T -~ \
| z E K|z a:Iz
Encoder network Decoder network \/
4s(2|2) po(al2)
(parameters ¢) <
T Sample z from z ~ N(0,1)

/qg(z) log p(z) dz = /N z: ., 0°)log N(2:0,1) dz log p(x|z) = log N'(x: ., 1)
. where p = Wjh + by
1 . 2
= —5 log(2m) — 5 ) (w5 +03) log 0? = W5h + b
= h = tanh(W3z + bg)

ﬁ C GILLINGS SCHOOL OF
L8 UI J GLOBAL PUBLIC HEALTH



Real Examples
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Strengths & Limitations

ﬁ Key Idea:
» Adds a probabilistic spin to traditional autoencoders, enabling data generation.
» Defines an intractable density, requiring variational inference to derive and optimize a lower bound
(ELBO).
ﬁ Pros:
v Principled generative approach based on probabilistic modeling.
v Interpretable latent space enables meaningful structure in representations.
v Inference of q(z|x) allows feature extraction for other tasks.
Cons:
¥ Optimizes a lower bound on likelihood, which may not be an ideal evaluation metric.
¥ Lower sample quality compared to PixeRNN/PixelCNN.
¥ Blurry reconstructions compared to GANSs, which generate sharper images.
ﬂ Active Research Areas:
@ Flexible Approximate Posteriors: Moving beyond diagonal Gaussian assumptions to richer models
like Gaussian Mixture Models (GMMSs) or Categorical Distributions.
@ Disentangled Representations: Learning independent latent factors for better interpretability.
@ Improving Training Objectives: Hybrid models incorporating adversarial learning (VAE-GANS).
£ Future Directions: Enhancing sample quality while retaining VAE’s structured latent space!

ﬁUNC GILLINGS SCHOOL OF
L8 GLOBAL PUBLIC HEALTH




Content

3 GANSs

I ]} I GILLINGS SCHOOL OF
8 GLOBAL PUBLIC HEALTH



“This (GANS), and the variations that are now
being proposed is the most interesting idea in the
last 10 years in ML, in my opinion”

—Yann LeCun
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What is GAN?

Problem:

¢ We want to sample from a complex, high-dimensional
training distribution.

¢ There is no direct way to explicitly learn or model the data

Objective: generated
images should look “real”

distribution. Output: Sample from Discriminator Real?
Solution: training distribution Network B Fake?
» Instead of learning the distribution explicitly, GANs learn a "
transformation. t
» Start by sampling from a simple distribution (e.g., Generator Use a DN
Gaussian noise). Network to tell whether
» Train a neural network to transform the simple distribution f the generate image
into the training data distribution. . 1s within data
Key Idea: distribution
v GANSs learn to generate new samples indirectly through Input: Random noise “real”) or not

adversarial training.
v The model never explicitly estimates the probability
density function of the data.
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Generative Vs Discriminative Models

Generative Models:

P Can generate new data samples resembling real data.

P Example: GANs generate realistic images that resemble real ones.
Discriminative Models:

P Focus on classification by distinguishing between different categories.

P Example: A decision tree can classify dogs and cats but cannot generate them.

Real or Fake o o .
y \ Discriminator learning signal &
0
ingsi T ; o Sample 0=
Generator learningsignal  , Discriminator Network Real images gg
)
g
Fake Images ’ Real Images
(from generator) « (from training set) Discriminator
’ 5
. a 0
Generator Network £l Generator J| Sample 03
A -g 0 8
g g
Random noise Z ¢
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Overview of GAN Training

Discriminator Network: Tries to distinguish between real and fake images.
Generator Network: Tries to fool the discriminator by generating real-looking images.
Training Process: Both networks are trained jointly in a minimax game.

Minimax objective function:

min max []Em,\,pdam log Do, (z) + E,p(2) log(1 — Dg, (G, (Z)))]

Pt %4 % l - ] ]
Generator : \ : Discriminator output Discrimina'torout ut for
objective Discriminator P D

objective for real data x generated fake data G(z)

» Discriminator (64) wants to maximize the objective such
that D(x) ~ 1 (real) and D(G(z)) = 0 (fake).

» Generator () wants to minimize the objective such that
D(G(z)) =~ 1 (fooling the discriminator).
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GAN Training

Alternate between:
1. Gradient ascent on discriminator

I%i'x [Em'vpdam log Do, (2) + Eznp(z) log(1 — Dy, (Go, (z)))]

2. Gradient descent on generator Instead: Consider a different objective
ngin ]Ezrvp(z) log(l - Dﬂd (GGQ (Z))) l’Itlga,X IE.erp(z) log(DOd (GGQ (z)))

Gradient signal g e~
dominated by region i Iy |
where sample is 2 —

already good /
\

When sample is likely: _ ?\ _

fake, want?o learn ') High grad”_lze?nt signal ? |

fromittoimprove ¥

generator. But /\ 1 '

gradient in this region- B TR VR T TR
L Low.gradient signal

is relatively flat! R R R R

=
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GAN Algorithms

for number of training iterations do

for £ steps do

e Sample minibatch of m noise samples {z(1),. .., z(™)} from noise prior p,(z).

e Sample minibatch of m examples {z(),..., (™)} from data generating distribution

Pdata(T).

e Update the discriminator by ascending its stochastic gradient:

1 <& . .
Vou > [10g Do, (z) + log(1 — Dy, (Go, (z1)))]
i=1

end for
e Sample minibatch of m noise samples {z(1), ..., (™)} from noise prior p,(2).

e Update the generator by ascending its stochastic gradient (improved objective):
1 «— .
V0, 0 3 108(Day (G, (=)
1=

end for
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Alternating Training for GANs

GAN Training Process (Alternating Phases):

1. Discriminator Training: Trains for one or more epochs while the generator remains unchanged. It learns to
differentiate real from generated data, adapting to the generator’s flaws.

2. Generator Training: Trains for one or more epochs while the discriminator remains unchanged. This
prevents the generator from chasing a moving target.

Training Dynamics:
\/

¢ As the generator improves, the discriminator struggles to distinguish real from fake data.
¢ A perfect generator results in a discriminator with 50% accuracy (random guessing).

X/

¢ Opvertraining can degrade performance, leading to unstable convergence where the generator receives
meaningless feedback.
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Challenges in GAN Training

» Hyperparameter Sensitivity: GANs are sensitive to learning rates, batch sizes, and architectural choices.
» Mode Collapse: The generator produces limited diversity.

» Training Instability: The minimax optimization is difficult to balance.

» Vanishing/Exploding Gradients: The discriminator can become too strong or weak, leading to poor gradients.
» Non-Convergence: The model oscillates instead of converging.

2

> 0

"1/,
/

/

'

"“‘\\\

-1

-2

~2

’ : 7
AR NN
1 S A AR S
;oo / :
= o ) sop VT e L
: ' « . « 4 4 1 f
ey . - A 4 4 4 ; 9 & 7
. t 4+ 4 4
vt vy 77
(e) Consensus optimization (f) Instance noise (g) Gradient penalty (h) Gradient penalty (CR)
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Hyperparameter Sensitivity

1. Adjust Learning Rates Carefully
% Learning Rate (a): Too high — instability, Too low — slow convergence.

% Two-Timescale Update Rule (TTUR): Use a smaller learning rate for the generator than the discriminator to
balance training.

2. Tune Adam Hyperparameters

» Standard settings (p1=0.9, 2=0.999) can lead to oscillations.
» For GANSs, reducing B1 to 0.5 improves stability.

3. Normalize Inputs and Use Spectral Normalization
v" Normalize training images between [-1,1] instead of [0,1] (for Tanh activation).
v’ Use Spectral Normalization on the discriminator to control weight magnitudes.

4. Improve Loss Functions
o Wasserstein Loss (WGAN): Uses Earth-Mover distance for better gradient behavior.
o Gradient Penalty (WGAN-GP): Adds stability and prevents exploding gradients:

5. Use Progressive Training

O Start with low-resolution images, gradually increasing resolution (used in Progressive Growing GANs).
[ Helps GAN learn simple features first before complex details.
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Hyperparameter Sensitivity

6. Apply Regularization Techniques

*Batch Normalization: Helps control variance, but can cause mode collapse in GANS.
Instance Normalization: Often more stable than batch normalization.
*Dropout in Discriminator: Helps prevent overfitting.

7. Monitor Convergence and Use Early Stopping
*Track GAN metrics (FID, Inception Score) instead of just loss values.
*Avoid overtraining: If the discriminator gets too strong, freeze it temporarily.

8. Use Larger Batch Sizes

*GANs often benefit from larger batch sizes (e.g., 128-512) to stabilize updates.
*Gradient accumulation can be used if GPU memory is limited.

9. Data Augmentation

*Apply transformations (rotation, flipping, color jitter) to make training more robust.
*Prevents the discriminator from memorizing training data.

10. Experiment with Alternative Architectures
*Self-Attention GANs (SAGAN): Improves global structure modeling.
*BigGAN: Uses larger batch sizes and orthogonal regularization for stability.
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Mode Collapse

Mode Collapse in GANSs refers to a common failure mode where

the generator fails to capture the full diversity of the data distribution
and produces limited variations of samples. Instead of generating a
wide range of outputs, it collapses to generating a few or even a single
type of sample repeatedly.

Why Does Mode Collapse Occur?

¢ Imbalanced Generator-Discriminator Learning

¢ Training Instability

% Lack of Diversity-Promoting Mechanisms

Effec]t's of Mode Collapse

01* Reduced Sample Diversity — Poor representation of the real dataset.
* Low-Quality Generation — Outputs look repetitive and lack variety.

*2* Unreliable Model — The generator fails to generalize.

Illustration of example monotonous output.
(source)
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https://neptune.ai/blog/gan-loss-functions

Techniques to Mitigate Mode Collapse

1.Minibatch Discrimination

Encourages diversity by comparing samples in each batch.
2.Feature Matching

Instead of just fooling the discriminator, the generator learns to match feature statistics of real data.
3.Wasserstein GAN (WGAN)

Uses the Earth Mover (Wasserstein) distance to stabilize training and avoid collapsing to few modes.
4.Unrolled GANs

Allows the generator to anticipate discriminator updates, preventing it from getting stuck in mode collapse.
S5.Mutual Information Regularization

Forcing the generator to learn meaningful latent representations that generate diverse outputs.

More details of example GAN suffering mode collapse: https://neptune.ai/blog/gan-failure-modes
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https://neptune.ai/blog/gan-failure-modes
https://neptune.ai/blog/gan-failure-modes
https://neptune.ai/blog/gan-failure-modes
https://neptune.ai/blog/gan-failure-modes
https://neptune.ai/blog/gan-failure-modes

The taxonomy of the recent GANs

;LAPGAN, 2015 (Laplacian pyramid coding))\

_/l'JCGAN, 2016 (Transposed convolution in generator)\,

[BEGAN, 2017 (Autoencoder as dlscrlmlnatory

-[Network architecture

;PROGAN. 2017 (Progressive manner during tralning))—(AutoGAN. 2019 (multi-level architecture search))
e ‘[‘(BigGAN, 2019 (Deeper net and larger batch size})

'SAGAN, 2018 (Self-attention module)

/

.:./YLG, 2020 (A local sparse attention layer?)

, _ /AC-GAN, 2017 (Auxiliary classifier) )
{CGAN, 2014 (Label Info Into discriminator and generator) —[\f

(InfoGAN, 2016 (Classifier for labels)

Latent space

Architecture

(BiGAN, 2016 (Encoder for learning inverse mapping)\/:

SGAN, 2016 (Multi-headed layer in dlscrlmlnatorﬂ

CycleGAN, DiscoGAN, DualGAN, 2017 _—{Image style transfer)
—-{\/SRGAN, 2016:—Omage super-resolution)
o R
[StyleGAN, 2019"—(::::;& face generation )
{Application focused | Face Gompletion GaN, 2017~ Face compietion) » Architecture-variant GANs: Modify network structures
H AlphaGAN, 2018 Image matting )
\ ) e.g., CNN-based, RNN-based models).
Proposed GANs Taxonomy H Moco-GAN , 2018 \~(DVD-GAN, 2019 )—(Vldeo generatlon\) ( . . ) . .
Py W Fr———— » Loss-variant GANs: Modify loss functions to improve

stability (e.g., WGAN, LSGAN, f-GAN).

RGAN, 2018 (Integral probability metric\)\]

WGAN, 2017 (Wasserstein distance)

Geometric GAN, 2017 (Hinge Ioss\))—x\Sphere GAN, 2019 (Riemannian manifolds)

Loss Types

FCGAN, 2014 (JS divergence) | LSGAN, 2016 (Pearson divergence))—{%—GAN, 2016 (f-divergence)

\UGAN. 2016 (Second order gradient Ioss):l

Non-IPM based

Ls- )
GAN, 2017 (Designated margin between real and fake samples) ‘
0SS 5

—’\WGAN-GP, 2017 (Gradient penalty on WGAN) /‘

-f\{NGAN—CT. 2018 (Soft consistency on WGAN) \\)

I/ WGAN-LP, 2017 (Lipschitz penalty on WGAN, less sensitive))

-‘ Regularization }'—’\ MRGAN, 2016 (Penalize missing modes))

- SN-GAN, 2018 (Spectral normalization) )

|(SS-GAN, 2019 (Self-
supervision avoid discriminator forgetting)
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Different GANSs

Model
GAN

LSGAN

WGAN

WGAN-
GP

cGAN

StyleG
AN

Stability
Low

Medium

High

Very High

Medium

High

GILLINGS SCHOOL OF
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Mode Collapse
High

Medium

Low

Very Low

Medium

Low

Convergence
Unstable

More stable

More stable

Very stable

Stable

Stable

Sample
Quality

Medium

Medium

High

Very High

High

Very High

Special
Features

Baseline

Least squares
loss

Wasserstein
distance

Gradient
Penalty

Class
conditioning

Style control



Timeline of GAN architectures

Complexity and Mechanisms Quality and Diversity

g Goodfellow et al.(Original GAN) Fully-connected network
c —

Cascade of CNN within a

Denton et al.(LAPGAN) Laplacian pyramid framework /'

Mo

9pOIA 3|8uls

Radford et al.(DCGAN) Deconvolutional CNN

I

Karras et al.(PROGAN) Progressive growing neural network
—

Han Zhang et al. (SAGAN) Self-Attention CNN
I

Orthogonal regularization to generator.
By using deeper SAGAN with larger

Brock et al. (BigGAN) training batch size.
e

Latent space of the generator and the
discriminator are connected to share
Karnewar et al. (MSG-GAN) more information

=

Complexity in blue stream refers to size of the architecture and computational cost such as batch size. Mechanisms
refer to the number of types of operations (e.g., convolution, deconvolution, self-attention) used in the architecture (e.g.,
FCGAN uses fully connected layers for both discriminator and generator. In this case, the value for mechanisms is 1).
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Loss-variant GANs

@ Jointly training two networks is challenging, can be unstable. Choosing objectives
with better loss landscapes helps training, and is an active area of research.

e X ~ Px vs. G(Z) ~ Pg with Z ~ N(0,1)|

@ Training GAN is equivalent to minimizing Jensen-Shannon divergence between
generator and data distributions.

o D(Px,Pa) = supser {Exry $1(f(X)) - Evorada(f(V))}

GAN DISCRIMINATOR LOSS GENERATOR LOSS

MM GAN L™ = =Eznp, [log(D(2))] = Egnp, [log(l — D(£))] L™ = Egmp, [log(l — D(2))]
NS GAN Ly = —Eznp, [log(D(z))] — Egnp, [log(l — D(£))) Lg™ = —Egnp, [log(D(%))]
WOAN L3O = _E,.,. [D(2)] +Esnpy [D(2)] L3 = _Egopy [D(2)
WGANGP  LNOASOP — g¥os L 3R, o [(I[VD(az + (1 — ag)|lz — 1)?]  LESMO = _E,., [D(2)]
LSGAN L5 = —E,np, [(D(@) — 1)°] + Esp, [D(2)7) L5 = —Egp, [(D(2 — 1))?)
DRAGAN  LOMO% = L3 L X, . xi0.0)[(IVD(®)]lz — 1)?) LZ = By, [log(1 — D())
BEGAN Lo = Eznpylllz — AE()||1]) — keEsnpg [ll# — AE(2)|l1] L5 = Esnp, [lI2 — AE(2)]]1]
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GAN-related Loss Functions

GANs aim to approximate the real data distribution Pdata (X ) using a generator network G(n) , where
n ~ pz(n) isdrawn from a simple prior distribution.
P The training process is driven by a discriminator D(x), which distinguishes real from generated samples.
P‘ The lqss function should measure the divergence between P4, ( x) and Pg ( X) where pg( X ) is the
distribution of generated samples

Minimax [Loss: In the original GANs, the generator tries to minimize the following function while the discriminator
tries to maximize it:

m(i;n max V(D,G) = Ey|log(D(x))] + E,[log(1 — D(G(2)))]

The formula derives from the cross-entropy between the real and generated distributions.
max V(D, G) = mgx{]ExNPdata [log D(x)] + Ex~p,[log(1 — D(x))]}
For a given X, the optimal discriminator is given by o

D* (X) _ Pdata (X)

Pdata(x) + Pg(x)
Thus, minimizing the GAN objective 1s equivalent to minimizing the Jensen-Shannon divergence as follows:

mGin V(G,D*) = mGin JS(Pyata|| Pg)+log4 = mGin KL(Pgata||M) + KL(Pz||M)
M(x) = 3(Pdata(x) + Pg(x))
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Minimax lL.oss

The Standard GAN loss function can further be categorized into two parts: Discriminator loss and Generator
loss. The diagram below summarizes how we train the discriminator and the generator using the corresponding
gradient.

m

0 55 o (6) g (1 2 (0 (=)

Real image

» cost f------- |

O
@
)
3,
=
o
o
W
\ 4
w)

1

z~ N(O,1) ] E
” Generator J |

~ . N - 1
.- " =Y 10g(1-D (6 (29))) or Ve, =3 1o (D (a (=)

Non-Saturating GAN Loss
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Wasserstein GAN (WGAN)

Let Q be a subset of R?. Let 53,(Q) be the set of Borel probability measures on Q with
finite pth moment. The p-Wasserstein metric is defined as

1/p
W (1, v) = ( inf )/Ix—yl”d’y(x,y)> , i and v € B,(Q).

yel (e,

For the special case of p = 1, the p-Wasserstein metric is also known as the Monge-Rubinstein metric, or the
earth mover distance.

The 1-Wasserstein metric can be expressed as (Villani, 2008),

W) = sup { [ £6dn) ~ [ FGavia ]
feky
This expression of 1-Wasserstein metric is computationally convenient, which is used in the construction

of Wasserstein generative adversarial networks (WGAN) (Arjovsky et al., 2017).

KDE . - -
Wasserstein GAN
Standard GAN : N_critic=5

e \ | ~ N Samples %
Samples ‘ - ’ -

Epoch 0 Epoch 1 Epoch5  Epoch10  Epoch20 Epoch50 Epoch 100
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Training WGAN

Critic (Discriminator) Loss:

Lp = ExnPypy [D(X)] = Eznp,[D(G(2))]

Methods to Enforce Lipschitz Constraint:
Weight Clipping (Original WGAN): Gradient Penalty (WGAN-GP):

—c<w<c Lgp = )\EQNP,?[(“VQD()?)”? o 1)2]

VooLlp = Vo, (Bxnpyy, [D(X)] = Bz, [D(G(2))])

0p < Op + UDVGD Lp

Generator Loss:

Lc = _EZNPZ [D(G(Z))] Vocle = =V E.np,[D(G(2))]

0c < 06 +n6Voe.Lc

Training Process:

1. Update the critic D multiple times per generator update.
2. Compute Wasserstein distance using the critic’s output.
3. Update generator G to minimize the critic’s output.

GILLINGS SCHOOL OF
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WGAN vs WGAN-NP

Wasserstein GAN (WGAN)

WGAN with Gradient Penalty
(WGAN-GP)

Gulrajani et al, “Improved Training of
Arjovsky, Chintala, and Bouttou, “Wasserstein GAN”, 2017 Wasserstein GANs”, NeurlPS 2017
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Tips to improve GAN performance

* Change the cost function for a better optimization goal.
* Add additional penalties to the cost function to enforce constraints.
* Avoid overconfidence and overfitting.

* Better ways of optimizing the model.

e Add labels (Conditional GAN).

e More details and other implementation tips: https://towardsdatascience.com/gan-ways-to-improve-

gan-performance-acf37f9f59b
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https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
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https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
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General Goal

e Fit a density model pp(x) for a continuous random variable X € R”

e Good fit to the training data (really, the underlying distribution!)
e For new x, ability to evaluate pg(x)
o
o

Ability to sample from pg(x)
And, ideally, a latent representation that's meaningful
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High Dimensional Data

f (mference) /\
«E. —
\_

f! (sampling)

x and z must have the same dimension
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Normalizing Flow

fl(zﬂ)l fi(z;—q) fiv1(2i)

@ - ODEED, - @-
’f" -“'.\\ f}f, “"1\\ L =~

f A i %
I
'A
]

i

-
_-——-
T S—
-‘_.-lll-l-_‘.
‘-
",“; #
-
T

e Normalizing Flow (NF): a flow of invertible transformations that takes

zo ~ N(0, 1) and outputs x following a complex distribution
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A Simple Illustration: X->N(0, 1)

AUNC|

Before training

After training
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Normalizing Flow

. f1(zo) @ .ft(ztl) . fiv1(zi) N I’-T .

.‘,-'-'q
\H_"
p--..,
#
#
f
A
v ¥
el
Sem="
Pl
-
r
I
r
| —
Y
Y
~ ¥
~
-

-
—_— -

zig ~ P (ZK)

— -

Zzo ~ po(2o) z; ~ pi(z;)

e A flow-based generative model takes samples of x and learns
fi ', f ', ---f ' such that

Zo — fl_l o fz_lo-”o ﬁ_(_l(x)
e Once the functions are learned, it uses
X :ﬁccﬁc_lc---oﬁ(zn)

to approximate the distribution of x
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NF - Deriving p(x) Explicitly

e Change of Variables Theorem:

Let z ~ m(z) and x = f(z), where f is invertible. Then

p(x) = m(z) r:ietﬁ — 7(f'(x)) |det

df ~(x)
dx ’

dz

. df 71(x) - —1
where we call the matrix — the Jacobian of




NF - Deriving p(x) Explicitly

B Flow Inverse ;
| ) . IEC IR

e Applying the change of variables theorem recursively and taking the log,

we obtain the log-likelihood:

df;

det
© dzi_1

K
log p(x) = log mo(z0) — Z log
i=1
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NF — Remarks

e With NF architecture, the objective function arises naturally. For samples
xD x@ .o x (V)

N
1 .
1) @2 ., Ny (7)
/i Ol SRR i B N ;Zl log p(x*")

e [he key is in finding a suitable class of the transformations f;.

e Challenges: Ideally, the transformations are
— capable of growing arbitrarily complex

—- yet their inverse and Jacobian are easy to compute
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RealNVP

e Short for " Real-valued non-volume preserving” model

e Each transformation f; : R” — R for some i € {1,2,--- K} used in this
model is termed an affine coupling layer
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RealNVP — affine coupling layers

Say f(x) = y is an affine coupling layer. Then for some d < D and some
functions s : RY — RP=9 and ¢t : R — RP—9

Vi1:d =X1:d

Yd+1:0 =Xd+1:0 © exp(s(x1:q)) + t(x1:d).

The inverse is

X1:d — V1:d

Xd+1:D0 = (Yd+1:0 — t(y1.d)) © exp(—s(y1.4))-
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RealNVP — affine coupling layers

e [ he Jacobian of f is

I, Odx (D—d)

OYd+1: :
232 g (et

e [hus

det(J) = Dl:fexp (S(Xl:d)i) = exp (DZE’ S(Xl;d)f)

i=1

e Remark: s and t does not contribute to the complexity of the inverse or
the Jacobian matrix

e s and t can be arbitrarily complex — deep neural nets
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RealNVP — important of good masking

e Each affine flow involves partitioning the elements of the input vector into
two groups

e Termed masking by the original paper

e Let b be a binary mask, a vector with d ones and D — d zeros. Then we

can rewrite y as

y=bOx+(1-b)O(x®exp(s(b®x))+ t(b® x))
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RealNVP — important of good masking

Checkerboard x4; channel squeeze;

channel x3; channel unsqueeze;
checkerboard x3
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(Mask top half; mask bottom half;
mask left half; mask right half) x2
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Generative Images
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Flow-Based Models Summary

e [he ultimate goal: a likelihood-based model with

e fast sampling

e fast inference

e fast training

e good samples

e good compression

e Flows seem to let us achieve some of these criteria.

e But how exactly do we design and compose flows for great performance?

That is an open question.
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S Application: TemperFlow
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EFFICIENT MULTI-MODAL SAMPLING VIA
TEMPERED DISTRIBUTION FLOW

Reference:

Qiu, Y. and Wang, X. (2024). Efficient Multimodal Sampling via Tempered Distribution
Flow. JASA, 119, 1446-1460.
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A Familiar Problem

* Given an unnormalized density function p(x) < exp{—E(x)}

* Generate a random sample X, X5, ..., X;; ~ p(x)

Video: https://colindcarroll.com/2018/11/24/animated-
mcmc-with-matplotlib

7 =) PURDUE  sepmeat s
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Why Sampling?

*Question 1: Why do we care about it?
* |t lies at the heart of statistics and machine learning
* Bayesian models
* Monte Carlo methods
 Numerical integration

 Deep generative models, e.g., energy-based models

7 =) PURDUE  sepmeat s
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Textbook Solution and Challenges

eQuestion 2: Is it a trivial task?

* Existing methods face great challenges for complicated distributions
* Inverse c.d.f. method — Only for univariate distribution
* Rejection sampling = Hard to find upper bound
* |Importance sampling — Variance control in high dimensions
e MCMC — Hard to test convergence, computational efficiency

Sampling and simulation is a fundamental yet challenging task

7 =) PURDUE  sepmeat s
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Different but Similar to GenAl

* Given training data, generate new samples from the same
distribution

* Training data ~P;,+,(x), generated samples ~Py,,,ge1(X);
Want to learning Py, 41 (X) similar to Pyg4(X).

1024X1024 images
generated using the
CELEBA-HQ dataset.

/
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The Framework

* Marzouk et al. (2016) proposed sampling based on measure
transport

* Essentially it means “transformation of random variables”
*Suppose X =T(Z),Z ~N(0,1,)

e Use the distribution of X to approximate the target distribution
p(x)

7 =) PURDUE  sepmeat s
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*Let Z ~ p,(z) be a d-dimensional random vector
e T:R% = R%is an invertible and differentiable mapping

*Set X = T(Z), and then X has the density function

T—l
P (x) = pz (T~ (x))

det
© dx
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Transport Map

e But the transport map T needs to satisfy some conditions
1. Invertible and differentiable
2. T Yanddet(dT~1/0x) are easy to compute

3. T is flexible enough to characterize sophisticated
nonlinear mappings

* |s it easy, or even possible, to construct sucha T?
* E.g., Marzouk et al. (2016) uses polynomials

But not very flexible; computation is hard
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Normalizing Flows

* The normalizing flow framework (Rezende & Mohamed, 2015)
is one possible solution

* [t constructs T via composition T = T o Tyy_q 0 +--0 T}

* Each T; is relatively simple, but satisfies the requirements

[ 1 \1
\ A source g! }, , target

\ distribution K . .
e S po=N . <_dlstrlbutlon

Zy ~ Po(zo) j sz( z) Zg ™~ PK
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Example: Real NVP

* One popular class of T is called Real NVP (Dinh et al., 2016)

(z\ [ Y1 =2
it Yo =24
/3 Y3 = py,(Z£1:2) + oy (212
\Zs)  \Ya=py,(Z12) +0ov,(Z

(
(Z1.

(Y1\ /Xl = px;(Y3:4) + 0x, (Y34
(

Y2 n = ux,(Y34) + 0x,(Y34
Y, Xs = Y
\Y4/ \ X4 =Yy

7 =) PURDUE  sepmeat s
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) Z
2) - 24/

)

) - \
). Y

/

* Some elements are unchanged, e.g.,
Yl:r = Zl:T‘

* Remaining components are modified
with
Y(r+1):d - H(Z1:r) + U(Zm) © Z(r+1):d

e uand o are neural networks
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Why Real NVP Works

* T can be easily inverted

@ (0 xea
LH| T Xo = 2o
=
/3 X3 = pux,(Z12) + ox,(Z12) - Z3

KZ4) \Xa = 11x,(Z12) + 03 (Z1:2) - Zu)

( 21 = X1 \ 2.0

£y = X3 7-1 | X2
“—
Z3 = [ X3 — pxy(X1:2)] Jox, (X1:2) X3

\Zs = [Xas — e (X12)] Joxe (X12))  \Xa
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UNIVERSITY 8/3/2025 80




7 =) PURDUE  sepmeat s

UNIVERSITY 8/3/2025

Why Real NVP Works

* dT /0z is lower triangular

4 X1 =24
| T Xo =245
—
Z3 X3 = px,(Z12) + ox,(Z12) - Z3
Zy Xo = pux,(Z12) + 0x,(Z1:2) - Zs
1 0 0 0
aT(z) o1 o 0
J p— p—
82 * % O’X3(Zl;2) 0
ko ok 0 UX4(21;2)

* det(dT /0z) is the product of diagonal elements

* Some recent theoretical works such as Teshima et al. (2020)
show that Real NVP flows are universal approximators for
invertible functions

* All three requirements are satisfied

81




Summary

e Overall, normalizing flows are distributional models that
1. Have a computable density function
2. Easily generate random samples

3. Can approximate virtually all continuous distributions

* If we can estimate T accurately, sampling is trivial

Simulate Z4, ..., Z,, ~ N(0,1;), and set X; = T(Z;)

7 =) PURDUE  sepmeat s
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Measure Transport vs MCMC

Training Required No training

Generation Extremely fast E\?glti;;so?sany el gt
Convergence test Easy Hard

Parallelization Trivial Nontrivial

Resulting data points | Independent ;Ourlrteiﬁzeigc(ll;;l:rfzga?zag%ns)

* In practice, they complement each other
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The First Try

* Assume T = Ty is characterized by neural network parameters 6
* Then X has an explicit density function pg (x)

* We minimize some “distance” between p(x) and pg(x), e.g.,

min KL(pyllp) = min Ep, logpg(x) — Ep, logp(x)

* Expectations can be approximated by Monte Carlo estimators

* 0 is optimized using stochastic gradient descent
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e Left: evolution of estimated density.

—— True density
Estimated density

0.2 1 k /\
0.0 T ‘/ T T T T
-1 0 1 2
X
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Right:

Tix)

transformation function.

Transformation

Function
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* The previous demo looks not bad, but...

* What about distributions with many isolated modes?
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Multi-modal Distribution

e Left: evolution of estimated density. Right: transformation function.

1.4 - — True density Transformation
Estimated density 4 Function
1.2 -
1.0 2
2081 _
b
& £ o
0.6
0.4 =2 7
0.2
L
0-0 T /I T T T
-4 -2 0 2 4 '
% 0
X
E P URDUE Department of Statistics
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Issues and Challenges

* For unimodal densities, the method converges very fast and approximates

the target density well.

e For multimodal distributions, the method has little progress after certain

iterations.

* We need to carefully analyze the dynamics of the optimization process to

uncover the reason of failure.

Iter O Iter 10 Iter 50

Iter 100

Iter 500

N

[epouwun

0.3 1
0.2 1
0.1+

OO-

[epowniy

0.4+
0.3-
0.2-
0.1-

2

.G 0.0+

c

[]
D 044_
05 0 5 105 0 5 10
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5 0 5 10-

Distribution
Target

— Estimated
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Explanation

* The evolution of pg(x) approximates a continuous-time
differential equation (a.k.a. the continuity equation, Ambrosio et
al., 2018)

d
57 Pt +V-(vp) =0

* v, is the vector field determined by a function F

* The time-indexed distribution p; is called a Wasserstein gradient
flow, which decreases the functional F(-) = KL( [|p) through
time, i.e., dF(p,)/dt <0

e But the convergence speed can vary a lot for different target
densities p

7 =) PURDUE  sepmeat s

UNIVERSITY 8/3/2025 90




Theoretical Analysis

If p(x) is log-concave, then
1. F(p,) decreases to 0 exponentially fast
2. H4%(pg,p) <C-|dF(p,)/dt|, H*(:,") is the squared Hellinger distance

* Forlog-concave densities, the difference between the sampler
distribution and the target distribution decays exponentially fast

along the gradient flow
* Gradient does not vanish unless p; is already close to p, which we

call the nonvanishing gradient property

8/3/2025 91
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Theoretical Analysis

If p(x) = ah(x) + (1 — a)h(x — w) is a mixture of two log-concave
distributions, then there exists some p;+ such that

| llm T(Pt ) >0, | llilm |[dF (pe)/dt]|i=¢» = 0
ull- ull—oco

* There exists a configuration of p;+ such that it is different from the
target distribution, but meanwhile the gradient vanishes.

* The vanishing gradient implies an extremely slow convergence
speed.
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The Proposed Method

Two core ideas:
1. Evolve the distribution flow p; through the tempering curve

2. Replace the KL functional with the L? distance

7 =) PURDUE  sepmeat s
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The Tempering Curve

* Instead of directly minimizing the KL divergence, let p; move
along the tempering curve

* B; is an increasing function of t, 5, > 0, ; = 1
. pﬁt(x) reduces to the target density p(x) when 5y = 1

* In practice, discretize the curve into a sequence of distributions

Py
0<p <Br < <Pr=1
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The Tempering Curve

* pg,(x) has the same modes as p(x), but they are more
connected

Densify Function, § =0.10

0.6

0.5

0.4 1

Density
=]
[*5]

0.2 1

0.1 1 M
0.0 A
T T T T T T T
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Theoretical Analysis

* To transport pg, to pg, .., we solve a Wasserstein gradient flow with respect
to the (squared) L? distance,

GO = J (¢ —p(x))?dx
+ ming L(g) = [gdg —2 [ fdg+ [f?dA=Ex_gulg(X) —2f(X)] +C
* Here, the target distribution is f = pg, , . and the source distribution is pg,

* The normalizing constant U in f(x) = e F®) /U can be efficiently
estimated by importance sampling

U= [eE® dx =Ex_puexp[—E(x) —log h(X)]
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The L? Flow Sampler

Algorithm 3 The L? sampler.

27

Input: Target distribution f with energy function E(x), invert-

ible neural network Ty with initial parameter value 6,
batch size M, step sizes {o}

Output: Neural network parameters § such that Tgyrro ~ f

1:

2:

10:
11:
12:

Let h(x) be the density function of JPTORYZN

id
Generate Z1,. .. ,BM ~ o and set X; < Ty (Zi), i =
l,...,.M

Set U «~ M~1 "M exp{—E(X;) — log h(X;)}

for k=1,2,... do
Let go (x) be the density function of Tyg /g

Generate Z,...,Zy id o and define X; = Typ(Z;), i =
1,....M
Define L(6) = M~ "M [gg (X)) — 2 eXp{—E(X;)}/fJ]
Set 00« g*=D _ o, Vo L(8)|g—g-1)
if L(6) converges then
return 6 = 9%
end if
end for

PURDUE
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Theoretical Analysis

* To transport pg, to pg, .., we solve a Wasserstein gradient flow
with respect to the (squared) L? distance,

G() =J ¢ —p(x))?dx

Under some regularity conditions on p(x),

G(py) < C-|dG(py)/de|*/?

* The gradient does not vanish as in the KL case
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Tempered Distribution Flow

e Left: evolution of estimated density. Right: transformation function.

—— True densit Transformation
1.4 1 > Y ) 4 - Function
Estimated density
1.2
2 .
1:0:5
2 0.8 ;
e =z 0
8
0.6
_2 -
0.4
02 | /\ \ 4 i
0.0 , / . : . |
-4 =5 0 2 4
& X
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Adaptive Selection of [3;

pﬁt(x) decreases the KL divergence F(:) = KL(: ||p) along the tempering curve,

i.e., dF (pg,)/dt < 0.

£L
N
* Select 54, B>, ... to smoothly reduce T(pﬁk) el .\
* For example, pick [ 41 based on 35, such ol L)
thatT(pﬁkﬂ) ~ 0.8 - T(pﬁk)
E P URDUE Department of Statistics -
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27

1 Tempered Distribution Flow

* Experiments and Summary
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Gaussian Mixture

MH HMC Parallel Tempering TemperFlow TemperFlow + Rej. True
5 4
2 f., £ e
0 - i 7 ; o
S
A [0}
S #
W =5.768 W =4.901 W =1.603 W =0.385 W =0.269
5 7 3, )
%
0- - Q
d : A _ @
i » i % - :
s :
W =4.050 W=2813 W =1.503 W =0.430 W =0.401
5 -
=5 4
0 s # @
* - > - =
-5 1 p 1
W =4.790 W =4.365 W =1.286 W =0.521 W =0.333
T 0 4 4 T o 4 % A
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Gaussian Mixture

Circle Cross Grid
61 z
=
m
A - O
T
2 ' I ] hod
s & Metho
g H = - ;
L 0- . MH = Metropolis-Hastings
d =
-4 HMC = Hamiltonian Monte Carlo
= 8- = PT = Parallel tempering
£ » TF = TemperFlow
o 0.6 %: TF+R = TermperFlow with rejection
0.4 . i)
b =
- 2
02 — — — =
0.0+

MH HMC PT TF TF+R MH HMC PT TF TF+R MH HMC PT TF TF+R
Method
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Copula-Generated Distribution

27

The target distribution is
F(x1,0r Xq) = C(F1(x1), .., Fg(xg))

The first s marginals are Gaussian mixtures; the remaining are
normal distributions

Cis the Clayton copula

The target distribution has 2° modes; every pair (Xl-,Xj) is

correlated

PURDUE
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Copula-Generated Distribution

2
Density
et
| & W
o~ 3 o~ g B8 o5
c c
0 R
z e 0
Q 2 Qo
E E
(&) (]
3 1 -1
-2
-2 1 0 1 2
Dimension 1 Dimension 1
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Copula-Generated Distribution
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Copula-Generated Distribution

Dim=8 Dim =16 Dim =32 Dim = 64
84
»
=
& g
o
a
a R
. = §
5 1 = = 2
5 ° = T 2 | Method
= . - =
o e —_ - ° S MH = Metropelis-Hastings
5 HMC = Hamiltonian Monte Carlo
= 100 £2 PT = Parallel tempering
g 10 = TF = TemperFlow
a 075 > TF+R = TemperFlow with rejection
! o
= — =
0.50 — N g
o S
0.25+ . —t— Qo
N ]
= - =~
0.00 s

\1‘—1 HI\I/WC :‘IT TIF TFI-R N‘H HI\I‘1C P‘T T‘F TFIIR Ml—i HPIJ1C JI'I' TIF TFI‘R NIH HI:AC PIT TIF TFIIR
Method
Table S1: Computing time for different sampling methods and dimensions. The first row
shows the training time of TemperFlow, and the number in the paranthesis is the number
of adaptive 3’s used in Algorithm 2. Remaining rows show the time to generate 10,000
points by each algorithm. All timing values are in seconds.

p=28 p=16 p =232 p =064
(TemperFlow Training)  133.7 (17) 309.9 (21) 598.6 (22) 1475.5 (30)
TemperFlow /104 0.00206 0.00449 0.00899 0.0169
TemperFlo‘w—Re_],J..f"l[]"1 0.0148 0.0263 0.0547 0.0928
MH/10* 11.8 16.0 15.8 15.6
HMC/10* 80.9 133.0 131.0 130.0
Parallel tempering/10* 24.9 32.2 32.5 31.9
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CelebA Data

27

Colored face images 64X64X3

We take a subset: female wearing glasses (2677 images),
female without gasses (20000 images), male wearing glasses
(10346 images), and male without glasses (20000 images)

A Deep Generative Model:
(E100, G100->12288)

P URDUE Department of Statistics
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(e) Hamiltonian Monte Carlo

(f) Parallel tempering
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Summary

* Sampling is a fundamental yet challenging task in statistics and
machine learning

* Modern deep learning techniques can help solve classical
sampling problems

* Many interesting and open problems to be explored
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GAN, VAE, Flow, and DM

GAN: Adversarial / Discrimina Generator

training 1 D) G(z) x

VAE: maximize x m h. .| Decoder J %’
variational lower bound g¢(z]x) po(x|z)

Inverse
Flow-based models: X —» Flow :. - P .| x’
Invertible transform of f(x) [ (=)
distributions
Diffusion models:
- X » X =

Gradually add Gaussian X X1 ¥ R e
noise and then reverse
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Denoising Diffusion Models

Fixed forward diffusion process

Noise

Generative reverse denoising process
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Forward Diffusion Process

e [he latent dimension is exactly equal to the data dimension

e [he structure of the latent encoder at each timestep is not learned; it is
pre-defined as a linear Gaussian model. In other words, it is a Gaussian

distribution centered around the output of the previous timestep

e [he Gaussian parameters of the latent encoders vary over time in such a
way that the distribution of the latent at final timestep T is a standard
Gaussian
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Forward Diffusion Process

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data Noise

Xt—1 v N(\/ 1 — ,Bt Xt—l,ﬂt’)

Xt

§
q0xa.7x0) = [ | qlxelxe—1)
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Diffusion Kernel

o Define @ = []._,(1 — 53s)

o x¢|xo ~ N(v/@: xo, (1 — @:)l)

e For sampling: x: = v/&: xo + V/1 — @: €, where € ~ N(O, 1)
® [3: is designed such that ar — 0 and x7|xo~N(0, /)

e Marginally, g(x:) = [ q(x0)q(x¢|x0)dxo

Diffused Data Distributions
Data Noise

alxg) alx) alxy)  alxy) q(xp)
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Reverse Denoising Process

Formal definition of reverse processes in T steps:

 Reverse denoising process (generative)

Data Noise
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Learning Denoising Model

e For training, we can form the ELBO

po(x0.T) o
CI(XLT\XG)] =t

e It is shown (Sohl-Dickstein et al. 2015 and Ho et al. 2020 )that

Eqxo) [ log po (x0)] < Eqxo)a(a.1x0) [ l0g

L=E, [ — log po(xolx1) + > _ D (q(xe—1|xe, 0)||pe (Xe—1/xc))
t>1

+ D (q(xr bo)lp(xr))]

= Lo +ZLt—1 +Lr

t>1
where
Xe|Xxt—1, x0)q(xt—1|x
Q(Xt—l‘xhxﬂ) _ q( tl t—1 U)q( t 1| U)
a0x1%0)
and
Xt—l‘xt-; Xo ~~ N(ﬁt(xtgxﬂ);ﬁut!)
- VO — v1-— 1 — ~ 1— o
,U:t(Xt,XO) — t—_l,Bth + 5t( S 1)Xt, Bt = —El,@t
1-— Xt 1-— Xt 1-— Xt
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Learning Denoising Model

o Ky . [—logpe(xo|x1)] can be interpreted as a reconstruction term; like its
analogue in the ELBO of a vanilla VAE, this term can be approximated
and optimized using a Monte Carlo estimate.

 Dki(q(xT|x0)||p(xT)) represents how close the distribution of the final
noisified input is to the standard Gaussian prior. |t has no trainable

parameters, and is also equal to zero under our assumptions.

® Fgixeixo) [Dre(q(xe—1|xt, %0)|| po(xt—1|xt))] is a denoising matching term. We
learn desired denoising transition step pg(x:—1|x:) as an approximation to
tractable, ground-truth denoising transition step q(x:—1|x¢, X0)-
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Reparameterizing the Denoising Model

e Due to the normal distributions, the KL divergence has a simple form:

Le1 = Dre(q(xe—1lxe, x0)llPo (xe-1]%)) = Eq | 5 llie(xe, x0)—ho (xe, £)]* | +C

Ll
2072
e Ho et al. (2020) observe that:

fie(Xes o) = e (e — —oe)
’ Vv1-7: V1—a;

e Ho et al. (2020) propose to represent the mean of the denoising model

using a noise-prediction network:

(1) = (e — 2
poe ) = T—B, '~ J/i-a,

ﬁ C GILLINGS SCHOOL OF
L8 UI J GLOBAL PUBLIC HEALTH




Reparameterizing the Denoising Model

e With this reparametrization

ﬁﬂ
Li1= ]EXUNQIX{}]:ENN{DJ}[ 2(1 — ﬁt)(l — ﬂfr) ”E — Eﬂ(xfz t)“ ] - C

where x; = Va;: xo + V1 — Q€

e Ho et al. (2020) observe that simply setting the time dependent
coefficient being 1 improves sample quality. So, they propose to use:

meple — Lixgp~q(xgp),e~N(0,1),t~Unif[1,T] HE - EH( Var xo +V1— Qe €, t)‘
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Algorithm

BUNC

Algorithm 1 Training Algorithm 2 Sampling

;1 repeat (o) I: xy ~N(0,I)

¢ Xo ™~ ¢ Xo 22fort="1T, ..,1d

3: ¢t~ Uniform({1,...,T}) 3 ‘:N N{ﬁ I]! °

4: e~ N(0,1 *

= M( A ) 4 wx = 1 X; — 1oy Eg(xt,tj + o &
5: Take gradient descent step on o o4 prpy
Vo |le — eo(vaxo + V1 — ayel t]||‘)' 3: end for
6: until converged 6: return x,

GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH

Fixed forward diffusion process

Generative reverse denoising process

Noise



Open Problems

e Sampling from diffusion model is still slow — How can one sample with

even fewer steps?

e How good is the latent space of diffusion model for downstream tasks?
— ResNet on ImageNet gives us great image features
— LLM gives great text features

— Can diffusion model beat imagenet feature?
— Can diffusion model help us in discriminative tasks?
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