
Generative AI

Dr. Xiao Wang

J.O. Berger and M.E. Bock Professor of Statistics
Purdue University

URL: https://www.stat.purdue.edu/~wangxiao/

Content

1 Introduction

3 GANs

2 Variational Autoencoder

4 Normalizing Flow

5. Application: TemperFlow

6 Diffusion Models (optional)

Content

1 Introduction

Definition: Generative models learn to generate new data samples resembling a given dataset.

What are Generative Models?

Major Generative Models:

 Explicit Density Models: Estimate probability distributions (e.g., Gaussian Mixture Models, VAEs).

 Implicit Density Models: Generate samples without explicit density estimation (e.g., Generative Adversarial Network

(GAN)s, Diffusion Models).

▸ Data: X — Just data, no labels

▸ Goal: Learn some underlying hidden structure or distribution of the data

▸ Examples: clustering, dimension reduction, feature learning, density estimation, etc.

Unsupervised Learning

▸ Generative models are a subset of unsupervised learning, but not all unsupervised learning

techniques are generative (e.g., k-means, PCA)

PCA

GenAI on Face Generation

• Better Quality

• High Resolution

1024*1024 Images generated by a GAN created by NVIDIA. (source, 2018)

(source)

https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf
https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en

Stanford cs231n

Emerging Generative Models in 2022-

Stanford cs231n

Fashion Design

Additional Applications
Text to Image

Deep Generative Models

Deep generative models are neural network-based models designed to learn complex data distributions and

generate realistic synthetic samples that resemble the original training data. These models leverage deep learning to

approximate the true underlying data distribution.

Taxonomy of Deep Generative Models

Diffusion
Models

Stanford cs231n

Evaluation Metrics

Metric Measures Best for Limitations

Inception Score (IS) Quality & diversity Image GANs
Doesn't compare to real
data

Fréchet Inception
Distance (FID)

Realism & diversity Image GANs
Requires feature
extraction

Precision & Recall Fidelity & coverage Any model
Computationally
expensive

Log-Likelihood Probability assignment VAEs, Flows
Doesn't match human
perception

Human Evaluation Subjective quality Any model Expensive and subjective

Downstream Task
Performance

Utility in real tasks Task-driven models Domain-dependent

Applications of Generative Models in AI

• Understanding Probability Distributions

• Generative models help represent and manipulate high-dimensional probability distributions across various
fields.

• Role in Reinforcement Learning (RL)
• Used in model-based RL to simulate possible futures for planning & decision-making.

• Enables learning in imaginary environments, reducing risks of real-world errors.

• Guides exploration by tracking visited states & attempted actions.

• Supports inverse RL for learning from expert demonstrations.

• Handling Missing Data & Semi-Supervised Learning
• Can train with missing data and predict missing inputs.

• Enables semi-supervised learning, reducing the need for labeled data.

• Multi-Modal Learning & Sample Generation
• Allows multiple correct outputs for a single input (e.g., video frame prediction).

• GANs excel in generating realistic samples for various AI applications.

Content

1 Motivating Applications

2 Variational Autoencoder

What are Autoencoders?

Autoencoders are neural networks designed for dimensionality

reduction and feature extraction by compressing and

reconstructing data.

They consist of two main components:

❖ Encoder (e): Maps input x to a low-dimensional latent

space z, where similar inputs have similar latent

representations.

 e: X→Z, z=e(x) with dim(X)≫dim(Z)
❖ Decoder (d): Reconstructs x from its latent representation z,

mapping back to the original input space.

 d: Z→X and ො𝑥 = 𝑑 𝑧 = 𝑑(𝑒 𝑥).

Illustration of autoencoder (source)

https://avandekleut.github.io/vae/

What are Autoencoders?

Reconstructed

input data

Want features to capture meaningful

factors of variation in data

Train such that features can be used to

reconstruct original data “Autoencoding” -

encoding input itself

Autoencoder Latent Space and Its Limitations

Illustration of example latent vectors using the MNIST
dataset (source)

•Trained on MNIST, the autoencoder clusters

similar digits in the latent space.

•Decoder can reconstruct images from latent

vectors, but gaps in the latent space cause issues.

•Generative models aim to produce new samples,

but disjoint latent spaces in autoencoders make

some sampled latent vectors meaningless.

•Illustration: In the top-left corner of the latent

space, unseen regions result in unrealistic

reconstructions.

•Solution: Variational Autoencoders

(VAEs) introduce structured latent spaces to ensure

continuity and improve generative performance.

Key Issue: Autoencoders are great for

representation learning but struggle as generative

models due to fragmented latent spaces.

https://avandekleut.github.io/vae/

VAE = Autoencoder + Generative Modeling
• Same structure as a traditional autoencoder:

❖ Encoder: Compresses input into a latent space

representation, but instead of a single point, outputs a

probability distribution (Gaussian).

❖ Decoder: Samples from this distribution and reconstructs

the input.

Key Difference from Traditional Autoencoders

❖ Traditional autoencoders map inputs deterministically to a

single latent vector z=e(x).

❖ VAEs introduce probabilistic encoding, ensuring smooth and

structured latent spaces for better generative performance.

Benefit: Enables meaningful interpolation and sampling for

generating new data!

Illustration of VAE (source)

What is a Variational Autoencoder?

https://avandekleut.github.io/vae/

Variational Autoencoder as a DGM

VAEs define an intractable density function with latent

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data is generated from the distribution of unobserved (latent) representation z

Decoder

network

Choose prior p(z) to be simple, e.g. Gaussian.

Conditional p(x|z) is complex (generates

image) => represent with neural network

How to train VGE?

Learn model parameters to maximize likelihood of training data

We want to estimate the true parameters

of this generative model given training data

Q: What is the problem with this?

Intractable!

Intractable to compute p(x|z) for every z! Monte Carlo estimation is too high variance

Data Likelihood

Posterior distribution

Solution: In addition to decoder network modeling , define additional encoder network

Will see that this allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize.

Decoder network gives pθ(x|z), can

compute estimate of this term

through sampling (need some trick

to differentiate through sampling).

How to approximate VGE?

This KL term (between

Gaussians for encoder and

z prior) has nice closed-

form solution!

pθ(z|x) intractable (saw earlier),

can’t compute this KL term.

But we know KL divergence

always >= 0.

How to approximate VGE?

Tractable lower bound which we can take gradient of and optimize!

(pθ(x|z) differentiable, KL term differentiable)

We want to

maximize the

data likelihood.

Encoder: make approximate

posterior distribution. close to prior

Decoder: reconstruct

the input data

Variational evidence lower bound (ELBO):

Training: Maximize lower bound

Stochastic Optimization of ELBO

Reparametrization Trick:

A Theoretical Example

Real Examples

Strengths & Limitations
Key Idea:

➢ Adds a probabilistic spin to traditional autoencoders, enabling data generation.

➢ Defines an intractable density, requiring variational inference to derive and optimize a lower bound

(ELBO).

Pros:

Principled generative approach based on probabilistic modeling.

Interpretable latent space enables meaningful structure in representations.

Inference of q(z∣x) allows feature extraction for other tasks.

Cons:

Optimizes a lower bound on likelihood, which may not be an ideal evaluation metric.

Lower sample quality compared to PixelRNN/PixelCNN.

Blurry reconstructions compared to GANs, which generate sharper images.

Active Research Areas:

Flexible Approximate Posteriors: Moving beyond diagonal Gaussian assumptions to richer models

like Gaussian Mixture Models (GMMs) or Categorical Distributions.

Disentangled Representations: Learning independent latent factors for better interpretability.

Improving Training Objectives: Hybrid models incorporating adversarial learning (VAE-GANs).

Future Directions: Enhancing sample quality while retaining VAE’s structured latent space!

Content

1 Introduction

2 Variational Autoencoder

3 GANs

“This (GANS), and the variations that are now
being proposed is the most interesting idea in the

last 10 years in ML, in my opinion”

–Yann LeCun

What is GAN?
Problem:

❖ We want to sample from a complex, high-dimensional

training distribution.

❖ There is no direct way to explicitly learn or model the data

distribution.

Solution:

➢ Instead of learning the distribution explicitly, GANs learn a

transformation.

➢ Start by sampling from a simple distribution (e.g.,

Gaussian noise).

➢ Train a neural network to transform the simple distribution

into the training data distribution.

Key Idea:

✓ GANs learn to generate new samples indirectly through

adversarial training.

✓ The model never explicitly estimates the probability

density function of the data.

Output: Sample from

training distribution

Input: Random noise

Objective: generated

images should look “real”

Use a DN

to tell whether

the generate image

is within data

distribution

(“real”) or not

Generative Vs Discriminative Models
Generative Models:

 Can generate new data samples resembling real data.
 Example: GANs generate realistic images that resemble real ones.

Discriminative Models:
 Focus on classification by distinguishing between different categories.
 Example: A decision tree can classify dogs and cats but cannot generate them.

Overview of GAN Training
Discriminator Network: Tries to distinguish between real and fake images.

Generator Network: Tries to fool the discriminator by generating real-looking images.

Training Process: Both networks are trained jointly in a minimax game.

GAN Training

Instead: Consider a different objective

GAN Algorithms

Alternating Training for GANs

GAN Training Process (Alternating Phases):
1. Discriminator Training: Trains for one or more epochs while the generator remains unchanged. It learns to

differentiate real from generated data, adapting to the generator’s flaws.

2. Generator Training: Trains for one or more epochs while the discriminator remains unchanged. This

prevents the generator from chasing a moving target.

Training Dynamics:
❖ As the generator improves, the discriminator struggles to distinguish real from fake data.

❖ A perfect generator results in a discriminator with 50% accuracy (random guessing).

❖ Overtraining can degrade performance, leading to unstable convergence where the generator receives

meaningless feedback.

Challenges in GAN Training
 Hyperparameter Sensitivity: GANs are sensitive to learning rates, batch sizes, and architectural choices.

 Mode Collapse: The generator produces limited diversity.

 Training Instability: The minimax optimization is difficult to balance.

 Vanishing/Exploding Gradients: The discriminator can become too strong or weak, leading to poor gradients.

 Non-Convergence: The model oscillates instead of converging.

Hyperparameter Sensitivity
1. Adjust Learning Rates Carefully

❖ Learning Rate (α): Too high → instability, Too low → slow convergence.

❖ Two-Timescale Update Rule (TTUR): Use a smaller learning rate for the generator than the discriminator to

balance training.

2. Tune Adam Hyperparameters
➢ Standard settings (β1=0.9, β2=0.999) can lead to oscillations.

➢ For GANs, reducing β1​ to 0.5 improves stability.

3. Normalize Inputs and Use Spectral Normalization
✓ Normalize training images between [−1,1] instead of [0,1] (for Tanh activation).
✓ Use Spectral Normalization on the discriminator to control weight magnitudes.

4. Improve Loss Functions
o Wasserstein Loss (WGAN): Uses Earth-Mover distance for better gradient behavior.
o Gradient Penalty (WGAN-GP): Adds stability and prevents exploding gradients:

5. Use Progressive Training
❑ Start with low-resolution images, gradually increasing resolution (used in Progressive Growing GANs).
❑ Helps GAN learn simple features first before complex details.

Hyperparameter Sensitivity
6. Apply Regularization Techniques

•Batch Normalization: Helps control variance, but can cause mode collapse in GANs.

•Instance Normalization: Often more stable than batch normalization.

•Dropout in Discriminator: Helps prevent overfitting.

7. Monitor Convergence and Use Early Stopping

•Track GAN metrics (FID, Inception Score) instead of just loss values.

•Avoid overtraining: If the discriminator gets too strong, freeze it temporarily.

8. Use Larger Batch Sizes
•GANs often benefit from larger batch sizes (e.g., 128–512) to stabilize updates.

•Gradient accumulation can be used if GPU memory is limited.

9. Data Augmentation

•Apply transformations (rotation, flipping, color jitter) to make training more robust.

•Prevents the discriminator from memorizing training data.

10. Experiment with Alternative Architectures
•Self-Attention GANs (SAGAN): Improves global structure modeling.
•BigGAN: Uses larger batch sizes and orthogonal regularization for stability.

Mode Collapse

Mode Collapse in GANs refers to a common failure mode where

the generator fails to capture the full diversity of the data distribution

and produces limited variations of samples. Instead of generating a

wide range of outputs, it collapses to generating a few or even a single

type of sample repeatedly.

Why Does Mode Collapse Occur?

❖ Imbalanced Generator-Discriminator Learning

❖ Training Instability

❖ Lack of Diversity-Promoting Mechanisms

1.

Illustration of example monotonous output.
(source)

Effects of Mode Collapse

❖ Reduced Sample Diversity → Poor representation of the real dataset.

❖ Low-Quality Generation → Outputs look repetitive and lack variety.

❖ Unreliable Model → The generator fails to generalize.

https://neptune.ai/blog/gan-loss-functions

Techniques to Mitigate Mode Collapse

1.Minibatch Discrimination

Encourages diversity by comparing samples in each batch.

2.Feature Matching

Instead of just fooling the discriminator, the generator learns to match feature statistics of real data.

3.Wasserstein GAN (WGAN)

Uses the Earth Mover (Wasserstein) distance to stabilize training and avoid collapsing to few modes.

4.Unrolled GANs

Allows the generator to anticipate discriminator updates, preventing it from getting stuck in mode collapse.

5.Mutual Information Regularization

Forcing the generator to learn meaningful latent representations that generate diverse outputs.

.

More details of example GAN suffering mode collapse: https://neptune.ai/blog/gan-failure-modes

https://neptune.ai/blog/gan-failure-modes
https://neptune.ai/blog/gan-failure-modes
https://neptune.ai/blog/gan-failure-modes
https://neptune.ai/blog/gan-failure-modes
https://neptune.ai/blog/gan-failure-modes

The taxonomy of the recent GANs

Different GANs

Model Stability Mode Collapse Convergence
Sample

Quality

Special

Features

GAN Low High Unstable Medium Baseline

LSGAN Medium Medium More stable Medium
Least squares

loss

WGAN High Low More stable High
Wasserstein

distance

WGAN-

GP
Very High Very Low Very stable Very High

Gradient

Penalty

cGAN Medium Medium Stable High
Class

conditioning

StyleG

AN
High Low Stable Very High Style control

Timeline of GAN architectures

Complexity in blue stream refers to size of the architecture and computational cost such as batch size. Mechanisms

refer to the number of types of operations (e.g., convolution, deconvolution, self-attention) used in the architecture (e.g.,

FCGAN uses fully connected layers for both discriminator and generator. In this case, the value for mechanisms is 1).

Loss-variant GANs

GAN-related Loss Functions
GANs aim to approximate the real data distribution using a generator network , where

 is drawn from a simple prior distribution.

 The training process is driven by a discriminator D(x), which distinguishes real from generated samples.

 The loss function should measure the divergence between and , where is the

distribution of generated samples

Minimax Loss: In the original GANs, the generator tries to minimize the following function while the discriminator

tries to maximize it:

 min
 𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥 log 𝐷 𝑥 + 𝐸𝑧[log(1 − 𝐷(𝐺 𝑧))]

The formula derives from the cross-entropy between the real and generated distributions.

For a given x, the optimal discriminator is given by

Thus, minimizing the GAN objective is equivalent to minimizing the Jensen-Shannon divergence as follows:

Minimax Loss

The Standard GAN loss function can further be categorized into two parts: Discriminator loss and Generator

loss. The diagram below summarizes how we train the discriminator and the generator using the corresponding

gradient.

Non-Saturating GAN Loss

Wasserstein GAN (WGAN)

For the special case of p = 1, the p-Wasserstein metric is also known as the Monge-Rubinstein metric, or the

earth mover distance.

The 1-Wasserstein metric can be expressed as (Villani, 2008),

This expression of 1-Wasserstein metric is computationally convenient, which is used in the construction

of Wasserstein generative adversarial networks (WGAN) (Arjovsky et al., 2017).

Training WGAN

Critic (Discriminator) Loss:

Generator Loss:

Training Process:

1. Update the critic D multiple times per generator update.

2. Compute Wasserstein distance using the critic’s output.

3. Update generator G to minimize the critic’s output.

Methods to Enforce Lipschitz Constraint:

Weight Clipping (Original WGAN): Gradient Penalty (WGAN-GP):

WGAN vs WGAN-NP

Tips to improve GAN performance

• Change the cost function for a better optimization goal.

• Add additional penalties to the cost function to enforce constraints.

• Avoid overconfidence and overfitting.

• Better ways of optimizing the model.

• Add labels (Conditional GAN).

• More details and other implementation tips: https://towardsdatascience.com/gan-ways-to-improve-

gan-performance-acf37f9f59b

https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b

Content

1 Introduction

2 Variational Autoencoder

4 Normalizing Flow

3 GANs

General Goal

High Dimensional Data

Normalizing Flow

A Simple Illustration: X->N(0, 1)

Normalizing Flow

NF – Deriving p(x) Explicitly

NF – Deriving p(x) Explicitly

NF – Remarks

RealNVP

RealNVP – affine coupling layers

RealNVP – affine coupling layers

RealNVP – important of good masking

RealNVP – important of good masking

Generative Images

Flow-Based Models Summary

Content

1 Introduction

2 Variational Autoencoder

5 Application: TemperFlow

3 GANs

4 Normalizing Flow

EFFICIENT MULTI-MODAL SAMPLING VIA
TEMPERED DISTRIBUTION FLOW

68

Reference:

Qiu, Y. and Wang, X. (2024). Efficient Multimodal Sampling via Tempered Distribution
Flow. JASA, 119, 1446-1460.

• Background

• Sampling via Measure Transport

• Tempered Distribution Flow

• Experiments and Summary

69

❑ Tempered Distribution Flow

A Familiar Problem

• Given an unnormalized density function 𝑝 𝑥 ∝ exp −𝐸 𝑥

• Generate a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 ∼ 𝑝(𝑥)

70

Video: https://colindcarroll.com/2018/11/24/animated-
mcmc-with-matplotlib

Why Sampling?

•Question 1: Why do we care about it?

• It lies at the heart of statistics and machine learning

• Bayesian models

• Monte Carlo methods

• Numerical integration

• Deep generative models, e.g., energy-based models

71

Textbook Solution and Challenges

•Question 2: Is it a trivial task?
• Existing methods face great challenges for complicated distributions

• Inverse c.d.f. method → Only for univariate distribution

• Rejection sampling → Hard to find upper bound

• Importance sampling → Variance control in high dimensions

• MCMC → Hard to test convergence, computational efficiency

Sampling and simulation is a fundamental yet challenging task

72

Different but Similar to GenAI

• Given training data, generate new samples from the same
distribution

• Training data ~𝑃𝑑𝑎𝑡𝑎(𝑥), generated samples ~𝑃𝑚𝑜𝑑𝑒𝑙(𝑥);
Want to learning 𝑃𝑚𝑜𝑑𝑒𝑙(𝑥) similar to 𝑃𝑑𝑎𝑡𝑎(𝑥).

73

1024X1024 images
generated using the
CELEBA-HQ dataset.

• Background

• Sampling via Measure Transport

• Tempered Distribution Flow

• Experiments and Summary

74

❑ Tempered Distribution Flow

The Framework

• Marzouk et al. (2016) proposed sampling based on measure
transport

• Essentially it means “transformation of random variables”

• Suppose 𝑋 = 𝑇(𝑍), 𝑍 ∼ 𝑁(0, 𝐼𝑑)

• Use the distribution of 𝑋 to approximate the target distribution
𝑝(𝑥)

75

Recap

• Let 𝑍 ∼ 𝑝𝑧(𝑧) be a 𝑑-dimensional random vector

• 𝑇: R𝑑 → R𝑑 is an invertible and differentiable mapping

• Set 𝑋 = 𝑇(𝑍), and then 𝑋 has the density function

𝑝𝑥 𝑥 = 𝑝𝑍(𝑇−1(𝑥)) det
𝜕𝑇−1

𝜕𝑥

76

Transport Map

• But the transport map 𝑇 needs to satisfy some conditions

1. Invertible and differentiable

2. 𝑇−1 and det(𝜕𝑇−1/𝜕𝑥) are easy to compute

3. 𝑇 is flexible enough to characterize sophisticated
nonlinear mappings

• Is it easy, or even possible, to construct such a 𝑇?

• E.g., Marzouk et al. (2016) uses polynomials

But not very flexible; computation is hard

77

Normalizing Flows

• The normalizing flow framework (Rezende & Mohamed, 2015)
is one possible solution

• It constructs 𝑇 via composition 𝑇 = 𝑇𝐾 ∘ 𝑇𝐾−1 ∘ ⋯ ∘ 𝑇1

• Each 𝑇𝑖 is relatively simple, but satisfies the requirements

78

𝑇𝑖 𝑇𝑖+1𝑇1

Example: Real NVP

• One popular class of 𝑇 is called Real NVP (Dinh et al., 2016)

79

• Some elements are unchanged, e.g.,
𝑌1:𝑟 = 𝑍1:𝑟

• Remaining components are modified
with
𝑌 𝑟+1 :𝑑 = 𝜇 𝑍1:𝑟 + 𝜎 𝑍1:𝑟 ⊙ 𝑍 𝑟+1 :𝑑

• 𝜇 and 𝜎 are neural networks

Why Real NVP Works

• 𝑇 can be easily inverted

80

Why Real NVP Works
• 𝜕𝑇/𝜕𝑧 is lower triangular

• det(𝜕𝑇/𝜕𝑧) is the product of diagonal elements

• Some recent theoretical works such as Teshima et al. (2020)
show that Real NVP flows are universal approximators for
invertible functions

• All three requirements are satisfied

81

Summary

• Overall, normalizing flows are distributional models that

1. Have a computable density function

2. Easily generate random samples

3. Can approximate virtually all continuous distributions

• If we can estimate 𝑇 accurately, sampling is trivial

Simulate 𝑍1, … , 𝑍𝑛 ∼ 𝑁(0, 𝐼𝑑), and set 𝑋𝑖 = 𝑇(𝑍𝑖)

82

Measure Transport vs MCMC

83

Measure Transport MCMC

Training Required No training

Generation Extremely fast
Requires many density/gradient
evaluations

Convergence test Easy Hard

Parallelization Trivial Nontrivial

Resulting data points Independent
Correlated (unless running
multiple independent chains)

• In practice, they complement each other

• Background

• Sampling via Measure Transport

• Tempered Distribution Flow

• Experiments and Summary

84

❑ Tempered Distribution Flow

The First Try

• Assume 𝑇 = 𝑇𝜃 is characterized by neural network parameters 𝜃

• Then 𝑋 has an explicit density function 𝑝𝜃(𝑥)

• We minimize some “distance” between 𝑝(𝑥) and 𝑝𝜃(𝑥), e.g.,

min
𝜃

 KL(𝑝𝜃‖𝑝) = min
𝜃

 E𝑝𝜃
log 𝑝𝜃 𝑥 − E𝑝𝜃

log 𝑝(𝑥)

• Expectations can be approximated by Monte Carlo estimators

• 𝜃 is optimized using stochastic gradient descent

85

Demo

• Left: evolution of estimated density. Right: transformation function.

86

Problem

• The previous demo looks not bad, but…

• What about distributions with many isolated modes?

87

Multi-modal Distribution

• Left: evolution of estimated density. Right: transformation function.

88

Issues and Challenges

• For unimodal densities, the method converges very fast and approximates
the target density well.

• For multimodal distributions, the method has little progress after certain
iterations.

• We need to carefully analyze the dynamics of the optimization process to
uncover the reason of failure.

89

Explanation

• The evolution of 𝑝𝜃(𝑥) approximates a continuous-time
differential equation (a.k.a. the continuity equation, Ambrosio et
al., 2018)

𝜕

𝜕𝑡
𝑝𝑡 + ∇ ⋅ v𝑡𝑝𝑡 = 0

• v𝑡 is the vector field determined by a function ℱ

• The time-indexed distribution 𝑝𝑡 is called a Wasserstein gradient
flow, which decreases the functional ℱ ⋅ = KL(⋅ ‖𝑝) through
time, i.e., dℱ 𝑝𝑡 /d𝑡 ≤ 0

• But the convergence speed can vary a lot for different target
densities 𝑝

90

Theoretical Analysis

91

Theorem (informal)

If 𝑝(𝑥) is log-concave, then

1. ℱ 𝑝𝑡 decreases to 0 exponentially fast

2. 𝐻2 𝑝𝑡 , 𝑝 ≤ 𝐶 ⋅ dℱ 𝑝𝑡 /d𝑡 , 𝐻2(⋅,⋅) is the squared Hellinger distance

• For log-concave densities, the difference between the sampler
distribution and the target distribution decays exponentially fast
along the gradient flow

• Gradient does not vanish unless 𝑝𝑡 is already close to 𝑝, which we
call the nonvanishing gradient property

Theoretical Analysis

92

Theorem (informal)

If 𝑝 𝑥 = 𝛼ℎ 𝑥 + 1 − 𝛼 ℎ(𝑥 − 𝜇) is a mixture of two log-concave
distributions, then there exists some 𝑝𝑡∗ such that

lim
𝜇 →∞

ℱ 𝑝𝑡∗ > 0, lim
𝜇 →∞

dℱ 𝑝𝑡 /d𝑡 𝑡=𝑡∗ = 0

• There exists a configuration of 𝑝𝑡∗ such that it is different from the
target distribution, but meanwhile the gradient vanishes.

• The vanishing gradient implies an extremely slow convergence
speed.

The Proposed Method

Two core ideas:

1. Evolve the distribution flow 𝑝𝑡 through the tempering curve

2. Replace the KL functional with the 𝐿2 distance

93

The Tempering Curve

• Instead of directly minimizing the KL divergence, let 𝑝𝑡 move
along the tempering curve

𝑝𝛽𝑡
𝑥 =

1

𝑍(𝛽𝑡)
𝑒−𝛽𝑡𝐸(𝑥)

• 𝛽𝑡 is an increasing function of 𝑡, 𝛽0 > 0, 𝛽𝑡 → 1

• 𝑝𝛽𝑡
𝑥 reduces to the target density 𝑝(𝑥) when 𝛽𝑡 = 1

• In practice, discretize the curve into a sequence of distributions
𝑝𝛽𝑘

• 0 < 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑇 = 1

94

The Tempering Curve

• 𝑝𝛽𝑡
𝑥 has the same modes as 𝑝(𝑥), but they are more

connected

95

Theoretical Analysis

• To transport 𝑝𝛽𝑘
 to 𝑝𝛽𝑘+1

, we solve a Wasserstein gradient flow with respect

to the (squared) 𝐿2 distance,

𝒢 ⋅ = ∫ ⋅ −𝑝(𝑥) 2d𝑥

• 𝑚𝑖𝑛𝑔 ℒ 𝑔 = ∫ 𝑔𝑑𝑔 − 2 ∫ 𝑓𝑑𝑔 + ∫ 𝑓2𝑑𝜆 = 𝐸𝑋~𝑔(𝑥) 𝑔 𝑋 − 2𝑓 𝑋 + 𝐶

• Here, the target distribution is 𝑓 = 𝑝𝛽𝑘+1
and the source distribution is 𝑝𝛽𝑘

• The normalizing constant 𝑈 in 𝑓 𝑥 = 𝑒−𝐸(𝑥)/𝑈 can be efficiently
estimated by importance sampling

𝑈 = ∫ 𝑒−𝐸(𝑥) 𝑑𝑥 = 𝐸𝑋~ℎ(𝑥)𝑒𝑥𝑝 −𝐸 𝑥 − log ℎ(𝑋)

96

The 𝑳𝟐 Flow Sampler

97

Theoretical Analysis

• To transport 𝑝𝛽𝑘
 to 𝑝𝛽𝑘+1

, we solve a Wasserstein gradient flow

with respect to the (squared) 𝐿2 distance,

𝒢 ⋅ = ∫ ⋅ −𝑝(𝑥) 2d𝑥

• The gradient does not vanish as in the KL case

98

Theorem (informal)

Under some regularity conditions on 𝑝(𝑥),

𝒢 𝑝𝑡 ≤ 𝐶 ⋅ d𝒢 𝑝𝑡 /d𝑡 1/2

Tempered Distribution Flow

• Left: evolution of estimated density. Right: transformation function.

99

Adaptive Selection of 𝛽𝑡

100

Theorem

𝑝𝛽𝑡
𝑥 decreases the KL divergence ℱ ⋅ = KL(⋅ ‖𝑝) along the tempering curve,

i.e., dℱ 𝑝𝛽𝑡
/d𝑡 ≤ 0.

• Background

• Sampling via Measure Transport

• Tempered Distribution Flow

• Experiments and Summary

101

❑ Tempered Distribution Flow

Gaussian Mixture

102

Gaussian Mixture

103

Copula-Generated Distribution

• The target distribution is

 𝐹(𝑥1,…, 𝑥𝑑) = 𝐶(𝐹1 𝑥1 , … , 𝐹𝑑 𝑥𝑑)

• The first s marginals are Gaussian mixtures; the remaining are
normal distributions

• C is the Clayton copula

• The target distribution has 2𝑠 modes; every pair 𝑋𝑖 , 𝑋𝑗 is

correlated

104

Copula-Generated Distribution

105

Copula-Generated Distribution

106

Copula-Generated Distribution

107

CelebA Data

• Colored face images 64X64X3

• We take a subset: female wearing glasses (2677 images),
female without gasses (20000 images), male wearing glasses
(10346 images), and male without glasses (20000 images)

• A Deep Generative Model:

 (E100, G100->12288)

108

CelebA: Energy Based Models

109

Summary

110

• Sampling is a fundamental yet challenging task in statistics and
machine learning

• Modern deep learning techniques can help solve classical
sampling problems

• Many interesting and open problems to be explored

Content

1 Introduction

2 Variational Autoencoder

5 Application: TemperFlow

3 GANs

4 Normalizing Flow

6 Diffusion Models

GAN, VAE, Flow, and DM

Denoising Diffusion Models

Forward Diffusion Process

Forward Diffusion Process

Diffusion Kernel

Reverse Denoising Process

Learning Denoising Model

Learning Denoising Model

Reparameterizing the Denoising Model

Reparameterizing the Denoising Model

Algorithm

Open Problems

References
Aggarwal, A., Mittal, M., & Battineni, G. (2021). Generative adversarial network: An overview of theory and applications. International Journal

of Information Management Data Insights, 1(1), 100004.
Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks. In International Conference on
Machine Learning.

Brophy, E., Wang, Z., She, Q., & Ward, T. (2023). Generative adversarial networks in time series: A systematic literature review. ACM
Computing Surveys, 55(10), 1-31.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative adversarial networks: An
overview. IEEE signal processing magazine, 35(1), 53-65.
Loaiza-Ganem, Gabriel, Brendan Leigh Ross, Rasa Hosseinzadeh, Anthony L. Caterini, and Jesse C. Cresswell. "Deep generative models

through the lens of the manifold hypothesis: A survey and new connections." arXiv preprint arXiv:2404.02954 (2024).
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative

adversarial nets. In Advances in neural information processing systems, pages 2672{2680.
Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2021). A review on generative adversarial networks: Algorithms, theory, and applications. IEEE
transactions on knowledge and data engineering, 35(4), 3313-3332.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017). Improved training of wasserstein gans.
arXiv:1704.00028.

Kingma, D.P. and Welling, M. (2019). An Introduction to variational autoencoders. Foundations and Trends® in Machine Learning 12 (4),
307-392
Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014).

Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., & Zheng, Y. (2019). Recent progress on generative adversarial networks (GANs): A survey. IEEE
access, 7, 36322-36333.

Yi, Xin, Ekta Walia, and Paul Babyn. "Generative adversarial network in medical imaging: A review." Medical image analysis 58 (2019):
101552.
Xu, Lei, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. "Modeling tabular data using conditional gan." Advances in

neural information processing systems 32 (2019).
Zhou, X., Jiao, Y., Liu, J., and Huang, J. (2023). A deep generative learning approach to conditional sampling. Journal of the. American

Statistical Association, 118(543):1837-1848.

How to succeed in this course?

Practice

Explore

Visualize

Ask

Discuss

	Slide 1
	Slide 2: Content
	Slide 3: Content
	Slide 4: What are Generative Models?
	Slide 5
	Slide 6: GenAI on Face Generation
	Slide 7
	Slide 8: Emerging Generative Models in 2022-
	Slide 9
	Slide 10: Deep Generative Models
	Slide 11: Taxonomy of Deep Generative Models
	Slide 12
	Slide 13: Evaluation Metrics
	Slide 14: Applications of Generative Models in AI
	Slide 15: Content
	Slide 16: What are Autoencoders?
	Slide 17: What are Autoencoders?
	Slide 18: Autoencoder Latent Space and Its Limitations
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Strengths & Limitations
	Slide 28: Content
	Slide 29: “This (GANS), and the variations that are now being proposed is the most interesting idea in the last 10 years in ML, in my opinion”
	Slide 30: What is GAN?
	Slide 31: Generative Vs Discriminative Models
	Slide 32: Overview of GAN Training
	Slide 33: GAN Training
	Slide 34: GAN Algorithms
	Slide 35: Alternating Training for GANs
	Slide 36: Challenges in GAN Training
	Slide 37: Hyperparameter Sensitivity
	Slide 38: Hyperparameter Sensitivity
	Slide 39: Mode Collapse
	Slide 40: Techniques to Mitigate Mode Collapse
	Slide 41: The taxonomy of the recent GANs
	Slide 42: Different GANs
	Slide 43: Timeline of GAN architectures
	Slide 44: Loss-variant GANs
	Slide 45: GAN-related Loss Functions
	Slide 46: Minimax Loss
	Slide 47: Wasserstein GAN (WGAN)
	Slide 48
	Slide 49: WGAN vs WGAN-NP
	Slide 50: Tips to improve GAN performance
	Slide 51: Content
	Slide 52: General Goal
	Slide 53: High Dimensional Data
	Slide 54: Normalizing Flow
	Slide 55: A Simple Illustration: X->N(0, 1)
	Slide 56: Normalizing Flow
	Slide 57: NF – Deriving p(x) Explicitly
	Slide 58: NF – Deriving p(x) Explicitly
	Slide 59: NF – Remarks
	Slide 60: RealNVP
	Slide 61: RealNVP – affine coupling layers
	Slide 62: RealNVP – affine coupling layers
	Slide 63: RealNVP – important of good masking
	Slide 64: RealNVP – important of good masking
	Slide 65: Generative Images
	Slide 66: Flow-Based Models Summary
	Slide 67: Content
	Slide 68: Efficient Multi-modal Sampling via Tempered Distribution Flow
	Slide 69
	Slide 70: A Familiar Problem
	Slide 71: Why Sampling?
	Slide 72: Textbook Solution and Challenges
	Slide 73: Different but Similar to GenAI
	Slide 74
	Slide 75: The Framework
	Slide 76: Recap
	Slide 77: Transport Map
	Slide 78: Normalizing Flows
	Slide 79: Example: Real NVP
	Slide 80: Why Real NVP Works
	Slide 81: Why Real NVP Works
	Slide 82: Summary
	Slide 83: Measure Transport vs MCMC
	Slide 84
	Slide 85: The First Try
	Slide 86: Demo
	Slide 87: Problem
	Slide 88: Multi-modal Distribution
	Slide 89: Issues and Challenges
	Slide 90: Explanation
	Slide 91: Theoretical Analysis
	Slide 92: Theoretical Analysis
	Slide 93: The Proposed Method
	Slide 94: The Tempering Curve
	Slide 95: The Tempering Curve
	Slide 96: Theoretical Analysis
	Slide 97: The L 2 Flow Sampler
	Slide 98: Theoretical Analysis
	Slide 99: Tempered Distribution Flow
	Slide 100: Adaptive Selection of t
	Slide 101
	Slide 102: Gaussian Mixture
	Slide 103: Gaussian Mixture
	Slide 104: Copula-Generated Distribution
	Slide 105: Copula-Generated Distribution
	Slide 106: Copula-Generated Distribution
	Slide 107: Copula-Generated Distribution
	Slide 108: CelebA Data
	Slide 109: CelebA: Energy Based Models
	Slide 110: Summary
	Slide 111: Content
	Slide 112: GAN, VAE, Flow, and DM
	Slide 113: Denoising Diffusion Models
	Slide 114: Forward Diffusion Process
	Slide 115: Forward Diffusion Process
	Slide 116: Diffusion Kernel
	Slide 117: Reverse Denoising Process
	Slide 118: Learning Denoising Model
	Slide 119: Learning Denoising Model
	Slide 120: Reparameterizing the Denoising Model
	Slide 121: Reparameterizing the Denoising Model
	Slide 122: Algorithm
	Slide 123: Open Problems
	Slide 124
	Slide 125: How to succeed in this course?

