
Deep Learning Methods in Advanced
Statistical Problems

JSM 2025 Short Course

Agenda
❏ Foundations of Deep Learning Methods (Hongtu)
❏ Computational Resources and Examples (Runpeng)
❏ Deep Generative Models (Xiao)
❏ Attention and Transformer (Xiao)
❏ Deep Sequence Modeling and Spatio-temporal Modeling (Hongtu)
❏ Large Language Models (Runpeng)
❏ Deep Learning in Advanced Statistical Problems (Hongtu)

Course Websites
https://bios740.github.io/ https://bios740.github.io/short/jsm2025

https://bios740.github.io/short/jsm2025

Key Modules

Introduction: Basics of deep learning, supervised/
unsupervised learning, and PyTorch fundamentals.

1. Neural Networks: Perceptrons, optimization
techniques, and activation functions.

2. Advanced Topics:
• CNNs.
• GNNs/GCNs
• RNNs and LSTMs
• GANs/ Diffusion Models
• Transformers
• BioBERT.

3. Applications: Segmentation, Registration, Tumor
localization, Disease spread prediction, Biomedical text mining,
and Drug discovery.

Foundations of Deep Learning Methods

Dr. Hongtu Zhu
Kenan Distinguished Professor

University of North Carolina at Chapel Hill
URL: www.med.unc.edu/bigs2/

Content
1 Introduction to Deep Learning

3 Modern DL Model Architectures

4 Loss Functions

2 Neural Network Basics

5 Optimization Techniques

6 Convolutional Neural Networks (CNN)

7 Graph Neural Networks (GNNs/GCNs)

8 Theoretical Properties

Content
1 Introduction to Deep Learning

3 Modern DL Model Architectures

4 Loss Functions

2 Neural Network Basics

5 Optimization Techniques

8 Theoretical Properties

6 Convolutional Neural Networks (CNN)

7 Graph Neural Networks (GNNs/GCNs)

Deep Learning
Many hidden layers Supervised, semi-supervised, unsupervised

Learn adaptive parameters

• Use a cascade of multiple layers of nonlinear processing units for feature extract and transformation

• Learn in supervised and/or unsupervised manner

• Learn representations in different level of abstraction

Deep Learning

Why popular?

• Chip processing ability
• Increased size of data for training
• Advances in machine learning and
 signal/information researches

Deep models to efficiently exploit complex,
compositional nonlinear functions to learn
distributed and hierarchical feature
representations, to make best use of the data.

Historical Summary

9

Deep Learning Explosion

Downloaded from the NSF website and the medium.com

Deep Learning Platforms

1
1

Applications - Vision

Applications - Vision

Disease Detection in Healthcare and Medicine
Deep learning can be utilized for early and more accurate
detection of diseases like cancer, Alzheimer's, and heart diseases
through image analysis.

High quality image generalization

Applications – Medical Imaging
Segmentation Annotation

Liu, Q., Xu, Z., Bertasius, G., & Niethammer, M. (2023). SimpleClick:
Interactive Image Segmentation with Simple Vision Transformers. ICCV.,
22290-22300. 2023.

U-Nets

Azad et al., “Medical Image Segmentation Review: The success of U-
Net.” arXiv, Nov. 27, 2022.
Minaee, Shervin, et al. "Image segmentation using deep learning: A
survey." IEEE PAMI 44.7 (2021): 3523-3542.

Application - Language

Language Translation in Natural Language Processing
Deep learning enhances real-time, accurate translation of languages, as seen in tools like Google Translate. The following picture
shows the translation of a webpage from English to Chinese.

Application - Language

Large language models

Large language models can perform
various tasks such as answering questions,
generating creative content, summarizing
text, translating languages, and engaging in
conversations. It’s designed to understand
and generate text in a coherent and
contextually relevant manner.

Application - Decision

March 2016, AlphaGo made
headlines by defeating Lee Sedol.

Reinforcement learning methods
have shown priority in video games.

Applications - more
Personalized Shopping Experience in Retail and E-
Commerce

Deep learning is leveraged to provide personalized
recommendations and targeted advertising to customers
based on their shopping behavior.

Predict the folding and 3D structure of protein

AlphaFold aims to solve the protein folding
problem, which involves predicting a protein's
three-dimensional structure based solely on its
amino acid sequence. Understanding protein
structures is crucial for biological research and
drug discovery.

Some Future Directions in DL for Biostatistics

Leveraging deep learning to integrate and
analyze data from genomics, proteomics,

metabolomics, and other omics fields for a
comprehensive understanding of biological

processes and disease mechanisms.

Integrative Analysis of
Multi-omic Data

Utilizing deep learning models to analyze
large-scale public health data for informed
decision-making and policy development.

Allowing better resource allocation, and more
effective epidemic control strategies.

AI-driven Public
Health Interventions

Using deep learning to model and
predict individual responses to drugs,
considering genetic, environmental,

and lifestyle factors. Developing more
effective personalized treatments.

Advanced Drug
Response Modeling

Generalist Medical Artificial Intelligence
• Foundation Models in Medicine: These models leverage large-scale datasets and generalizable architectures to address

diverse medical tasks, moving beyond task-specific AI systems.
• Generalist AI: Unlike traditional models, foundation models aim to function across multiple domains, such as imaging,

text, and genomics, enabling integration of multimodal data for holistic medical insights.
• Challenges:

• Data heterogeneity: Medical data comes in varied formats, requiring harmonization.
• Privacy and ethics: Ensuring secure, unbiased AI while maintaining patient confidentiality.
• Interpretability: Providing clinicians with actionable insights from AI outputs.

• Applications:
• Diagnostics: Detecting diseases across imaging modalities (e.g., radiology).
• Prognostics: Predicting patient outcomes using integrated data.
• Personalized medicine: Tailoring treatments based on multimodal patient profiles.

• Future Directions:
• Collaboration between AI experts and clinicians to co-design models.
• Development of robust validation frameworks for clinical adoption.
• Advancing explainability and trust in AI-driven medical decisions.

Moor, M., … ., Rajpurkar, P. (2023) Nature.

Content
1 Introduction to Deep Learning

3 Modern DL Model Architectures

4 Loss Functions

2 Neural Network Basics

5 Optimization Techniques

6 CNNs

7 GNNs/GCNs

8 Theoretical Properties

What Exactly is Deep Learning?

Key Terminologies Artificial Intelligence
Simulates human intelligence in machines for
tasks like decision-making and language
translation.

Machine Learning (ML)
A subset of AI where algorithms learn from
data to make predictions or decisions without
being explicitly programmed for each
scenario.

Deep Learning (DL)
A branch of machine learning using multi-
layered neural networks, effective in
processing large amounts of unstructured
data like images and speech.

Generative AI
AI algorithms that generate new, original
content (like text or images) based on existing
data, using techniques like Generative
Adversarial Networks (GANs).

Deep Learning

• Deep learning is a subset of machine learning that focuses on training algorithmic neural
networks to perform tasks. Its algorithms were inspired by the working of the human brain.

• It's characterized by the use of multiple layers (deep architectures) that allow networks to learn
hierarchical representations of data and to learn to complete specific tasks.

• In contrast to traditional machine learning/data models, which often requires manual feature
extraction, deep learning can automatically learn features from raw data, which you can think of as
patterns that occur within the data.

• Deep learning can be used for supervised, unsupervised, self-supervised, semi-supervised,
generative, contrastive, few-shot, as well as reinforcement learning.

Objective: teaching computer how to learn a task directly from raw data

Backbone of DL - Neural Networks
• Neural networks, also called artificial neural networks (ANNs) or simulated neural networks (SNNs),

are a subset of machine learning and are the backbone of deep learning algorithms.

• The neural network is inspired by the human brain’s interconnected neurons. They are called “neural”
because they mimic how neurons in the brain signal one another.

• It consists of layers: an input layer, one or more hidden
layers, and an output layer.

• The “deep” in deep learning refers to the depth of layers
in a neural network.

• Usually, a neural network of more than three layers,
including the inputs and the output, can be considered a
deep-learning algorithm.

Further details on neural networks will be in upcoming courses.

Deep Learning Basics
Neurons (Nodes) receive input signals and perform
computations and produce an output.

Channels (connections) are associated with a weight
value that determines the strength of the connection.

Bias is conceptually similar to the intercept in linear
regression, accounting for potential deviations from the
ideal relationship between inputs and outputs.

Activation function are threshold values that introduce
non-linearities into the neural network, determining if
the particular neuron will get activated or not.

Shallow Neural Network

Universal Approximation Theorem

A feed-forward network with a single
hidden layer containing a finite number
of neurons can approximate continuous
functions on compact subsets of ℝ!, under
mild assumptions on the activation function.

2
7

Cybenko (1989) and Hornik (1991)

Activation Function - The Gateway to Non-Linearity

• Introducing Non-Linearity: Activation functions introduce non-linear properties to the
network, enabling it to learn complex data patterns beyond the capability of linear models.

• Transforming Inputs to Outputs: It takes input from previous layers and converts it to some
form of input for the next layers.

• Essential Building Blocks: It decides what is to be fired to the next neuron.

• Beyond Linear Modeling: Without non-linearity, neural networks would be limited to linear
decision boundaries, similar to linear regression.

• Crucial for Performance: Non-linear functions allow neural networks to solve advanced
problems like image and speech recognition, and natural language processing.

Activation Functions

2
9

a) Logistic sigmoid and tanh
functions.

b) Leaky ReLU and parametric
ReLU with parameter 0.25.

c) SoftPlus, Gaussian error linear
unit, and sigmoid linear unit.

d) Exponential linear unit with
parameters 0.5 and 1.0.

e) Scaled exponential linear unit.
f) Swish with parameters 0.4, 1.0,

and 1.4.

Motivation for Deep Learning

3
0

Consider a piecewise linear function 𝑚 𝑥 = %
2𝑥, 	 𝑥 ∈ [0,0.5]
2 − 2𝑥, 𝑥 ∈ [0.5,1]
0 	 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Define 𝜎 𝑥 = max 0, 𝑥

𝒙

𝒛𝟏 = 𝝈(𝒙) 𝒛𝟐 = 𝝈(𝒙 − 𝟎. 𝟓)

𝒚 = 𝝈(𝟐𝒛𝟏 − 𝟒𝒛𝟐)𝒎 𝒙 	

-1 0 0.5 1 2

0.5

1

Motivation for Deep Learning

3
1

-1 0 0.25 0.5 0.75 1 2 -1 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 2

𝑚 𝑚(𝑥) 𝑚(𝑚 𝑚(𝑥))

-1 0

0.0625
0.125

0.1875
0.25

0.3125
0.375

0.4375 0.5

0.5625
0.625

0.6875
0.75

0.8125
0.875 1 2

𝑚(𝑚 𝑚 𝑚(𝑥))

3n+1 nodes to represent the 𝑚($)(𝑥)
with width of each layer ≤ 2

If we generate a shallow one, we need	 2$ nodes.

Generate a deep network:

Width
- additively

Depth
- Multiplicatively

Deep Neural Network

3
2

v The number of hidden units in each layer is referred to as the width of the
network, and the number of hidden layers as the depth. The total number of
hidden units is a measure of the network’s capacity.

Shallow vs deep networks
v both networks can approximate any function given

enough capacity,
v deep networks produce many more linear regions per

parameter,
v some functions can be approximated much more
efficiently by deep networks,
v in practice, the best results for most tasks are achieved

using deep networks with many layers.

v The depth version of the universal approximation theorem (Lu et al., 2017):
There exists a network with ReLU activation functions and at least Di +4
hidden units in each layer can approximate any specified Di-dimensional
Lebesgue integrable function to arbitrary accuracy given enough layers.

Define a set of functions/models

Find a criterion/measurement of goodness –

 loss(+ regularization)

Get the best model for the problem

AS=Applied Statistics

Define a set of functions/models

Find a criterion/measurement of goodness –

 loss(+ regularization)

Get the best model for the problem

Design the neural network

Fitting DL Models

AI=Artificial Intelligence

Fitting DL Models

Find a criterion/measurement of goodness

Get the best model for the problem

Design the neural network𝑿𝟏

𝑿𝟐

𝑿𝒏

…
…

"𝒚𝟏

…
…

"𝒚𝟐

"𝒚𝒏

…
…

𝒚𝟏

𝒚𝟐

𝒚𝒏

A loss function is needed here,
to measure the difference between the output and truth

Total loss: 𝑳 ='ℓ(*𝒚𝒊, 𝒚𝒊)

Find the network parameters to minimize the loss

Workflow of a Typical DL Project

Data Acquisition
• Public Datasets
• Databases
• Web-scraping
• Crowd Labeling

Cleaning Data

Scaling Numeric
Features

Handling
Categorical Data

& text

Data Preprocessing Training Dataset

Validation Dataset

Test Dataset

60% ~ 80%

Splitting Data

20%~10%

20%~10%

Modeling

Define model architecture and hyperparameter

Train on training dataset

Model Evaluation

Hyperparameter Tuning

Unsatisfactory

• Tune hyperparameters
• Tweak architecture
• Add regularization
• Study why the model is

struggling

Deployment

Ac
ce

pt
ab

le

Understand
Problem

Camera

Iphone

Monitor
Videos

Image
Acquisition Face Recognition

Face Detection

Feature
Extraction

Face Matching

Recognition
Results

Gabor, LBP etc.

Deep Learning

Model Training

Face Recognition System

Content
1 Introduction to Deep Learning

3 Modern DL Model Architectures

4 Loss Functions

2 Neural Network Basics

5 Optimization Techniques

6 CNNs

7 GNNs/GCNs

8 Theoretical Properties

Types of Deep Learning
Deep

Learning

Unsupervised
Learning

Supervised
Learning

Reinforcement
Learning

Neural network learns to make
predictions or classify data
based on the labeled datasets.

CNN

RNN

An agent learns to make decisions in
an environment to maximize a
reward signal. The agent interacts
with the environment by taking action
and observing the resulting rewards.

The neural network learns to
discover the patterns or to cluster the
dataset based on unlabeled datasets.
There are no target variables.

Autoencoders

Generative
Model

Deep Q
Network

DDPG

…

…

…

Modern DL Model Architectures

1
• Key Features: Utilizes convolutional layers to

process data in a grid pattern (like images).

• Key Components:
• Convolutional Layers: Extract features from

input images using filters.
• Pooling Layers: Reduce dimensions and

computational load, retaining key information.
• Fully Connected Layers: Classify images based

on extracted features.

• Example Models: LeNet-5, AlexNet, VGGNet.

Convolutional Neural Networks (CNNs)

• Applications in Biomedicine:
• Image classification in diagnostics

(e.g., cancer detection from scans).
• Image segmentation for identifying

regions of interest in medical images.

Figure. Basic CNN structure.

2
Modern DL Model Architectures

• Key Features: Processes sequences of data (time-
series data), with memory of previous inputs,
capturing temporal dynamics.

• Unique Feature: Loop-like architecture allowing
previous outputs to be used as inputs while having
hidden states, enabling information persistence.

• Challenges & Solutions: Problem of vanishing
gradients; solved by advanced RNNs, e.g. LSTM and
GRU.

• Example Models: LSTM (Long Short-Term
Memory), GRU (Gated Recurrent Unit).

Recurrent Neural Networks (RNNs)

• Applications in Biomedicine:
• Analysis of sequential patient data in

EHRs.
• Time-series analysis in physiological

signal processing.

3
Modern DL Model Architectures

• Key Features: U-shaped architecture with symmetric encoder
and decoder paths. Skip connections that concatenate feature
maps from encoder to decoder

• Structure: Encoder: Series of convolutional and max-pooling
layers that capture context. Bottleneck: Intermediate layer
connecting encoder and decoder. Decoder: Series of up-
convolution and concatenation layers that restore resolution.
Final Layer: Convolutional layer that maps features to the desired
output.

• Types: 2D/3D U-Net, Attention U-Net.

U-Net

• Applications in Biomedicine: Medical image segmentation.
Satellite image segmentation. Biomedical image analysis.
Autonomous driving. General image segmentation tasks.

U-Net for segmenting HeLa cells. The U-Net has an
encoder-decoder structure, in which the representation is
downsampled (orange blocks) and then re-upsampled (blue
blocks). The encoder uses regular convolutions, and the
decoder uses transposed convolutions. Residual
connections append the last representation at each scale in
the encoder to the first representation at the same scale
in the decoder (orange arrows).

4
Modern DL Model Architectures

• Key Features: Unsupervised learning models for
dimensionality reduction and feature learning.

• Structure: Composed of an encoder (compressing input)
and a decoder (reconstructing input).

• Types: Standard Autoencoders, Variational Autoencoders
(VAEs).

Autoencoders

• Applications in Biomedicine:
• Data denoising (e.g., removing noise from images).
• Anomaly detection in medical imaging (e.g., identifying

unusual patterns).

Figure 1. Visualization of an autoencoder

Figure 2. Autoencoders are a specific type of feedforward
neural networks where the input is the same as the output.

5
Modern DL Model Architectures

• Key Features: Ability to process graph-structured data. Utilizes
node features and graph topology for learning. Effective in
capturing dependencies between nodes. Supports inductive and
transductive learning.

• Structure: Nodes, Edges, Node Features, Graph Convolution,
and Readout Layer.

• Types: Graph Convolutional Networks (GCNs), Graph Attention
Networks (GATs), Graph Recurrent Networks (GRNs), Graph
Autoencoders, Graph U-Net

Graph Neural Network

• Applications in Biomedicine:
Social Network Analysis, Knowledge Graphs, Drug Discovery,
Recommender Systems, Network Security

Graph U-Net

GNN GAT

6
Modern DL Model Architectures

• Key Features: Comprises two neural networks, a
generator and a discriminator, competing against each
other.

• Mechanism:
• Generator creates images, trying to fool the

discriminator by generating data similar to those in
the training set.

• Discriminator evaluates them, trying to distinguish
between fake data and real data

• Example Models: DCGAN, Pix2Pix, CycleGAN.

Generative Adversarial Networks (GANs)

• Applications in Biomedicine:
• Generate high-resolution images from

low-resolution inputs, enabling
improved image quality.

• Data augmentation in medical
imaging for robust model training.

Figure. Visualization of the flow of GAN

Figure. Transformer architecture

7
Modern DL Model Architectures

• Key Features: Utilizes self-attention mechanisms,
excellent for handling sequences of data.

• Key Innovation: Following an encoder-decoder structure,
eliminating recurrence and convolutions.

• Example Models: BERT (adapted for biomedical
applications), AlphaFold.

Transformer Models

• Applications in Biomedicine:
• Genomic sequence analysis for personalized medicine.
• Protein structure prediction (e.g., AlphaFold's

breakthroughs).

8
Modern DL Model Architectures

• Key Features: DRL leverages neural networks to approximate
value functions and policies, enabling agents to learn complex
tasks from high-dimensional sensory inputs.

• Key Components: Agent, Environment, Reward, Policy, and
Value Function.

• Example Models: DQN (Deep Q-Network), A3C
(Asynchronous Advantage Actor-Critic), PPO (Proximal Policy
Optimization) ,SAC (Soft Actor-Critic)

Deep Reinforcement Learning

• Applications:
• Game Playing; Robotics
• Autonomous Vehicles; Healthcare

§ Key Features: Iterative forward noise ↔ learned reverse
denoising, Simple MSE loss via denoising score matching,
Exact or tractable likelihood bounds, Flexible conditioning & sampling control

§ Key Innovations: Score-based learning, Optimized noise schedules, Fast samplers (DDIM) & continuous-time
SDE/ODE formulations, Latent-space diffusion, Classifier-free guidance

§ Example Models: DDPM (discrete diffusion), DDIM (implicit sampler), Score SDE / ODE (continuous),
Stable Diffusion (latent), Imagen /DALL·E2 (text-to-image), WaveGrad / DiffWave (audio).

§ Applications: Unconditional & conditional image generation, Text-to-image & multimodal AIGC, Inpainting,
super-resolution, style transfer, Audio synthesis & denoising, Molecular structure generation, Video frame
interpolation & generation

Modern DL Model Architectures

9 Diffusion Models

Content

1 Introduction to Deep Learning

3 Modern DL Model Architectures

4 Loss Functions

2 Neural Network Basics

Loss Function
Definition: a measure of error between what your model
predicts and what the actual value is.
Purpose: quantifies how well the neural network matches
what we want to output and thus guides the optimization
process.
Importance: The choice of loss function directly impacts
how the weights of the model are adjusted.
Examples: Mean Squared Error (Regression), Cross-
Entropy (Classification).
Notation:

ℒ(𝑓 𝑿;𝑾 , 𝒚)
Prediction True

Recipe for Constructing Loss Functions

5
0

Loss Function for Classification

Binary Classification Task

Binary Cross-Entropy

Multi-Class Classification Task

Cross-Entropy Loss
Kullback Leibler Divergence Loss
Negative Log Likelihood Loss

Dice Loss Function

Dice Loss is derived from the Dice Coefficient, which is a statistical tool to measure the similarity or
overlaps between two sets.

Unlike cross entropy loss, dice loss is particularly effective when dealing with imbalanced datasets
and when the focus is on capturing fine details in the segmentation masks. It’s a very popular loss
function in medical image segmentation.

𝐷𝑖𝑐𝑒 =
2×|𝐴 ∩ 𝐵|
𝐴 + |𝐵|

To avoid division by zero, a small constant (smooth) is added to the numerator and denominator.

Dice coefficient:

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒!"##$%𝐷𝑖𝑐𝑒!"##$% =
2× 𝐴 ∩ 𝐵 + 𝑠𝑚𝑜𝑜𝑡ℎ
𝐴 + 𝐵 + 𝑠𝑚𝑜𝑜𝑡ℎ

and

Imbalanced Data-Loss Functions
v Consider Data Characteristics:

v Imbalanced Data: Use Weighted
Cross-Entropy or Focal Loss.
v Outliers: Use Huber Loss or
Mean Absolute Error.

Outliers-Loss Functions

Barron, J. T. (2019). A general and adaptive robust loss function. In CVPR.

Content
1 Introduction to Deep Learning

3 Modern DL Model Architectures

4 Loss Functions

2 Neural Network Basics

5 Optimization Techniques

6 CNNs

7 GNNs/GCNs

8 Theoretical Properties

Fitting DL Models

Find a criterion/measurement of goodness

Get the best model for the problem

Design the neural network𝑿𝟏

𝑿𝟐

𝑿𝒏

…
…

"𝒚𝟏

…
…

"𝒚𝟐

"𝒚𝒏

…
…

𝒚𝟏

𝒚𝟐

𝒚𝒏

A loss function is needed here,
to measure the difference between the output and truth

Total loss: 𝑳 ='ℓ(*𝒚𝒊, 𝒚𝒊)

Find the network parameters to minimize the loss

Loss Optimization
Goal: find the network weight that achieve the lowest loss.

ℒ(𝑓 𝑿;𝑾 , 𝒚)
Prediction True

Write this goal in mathematical format:

argmin
𝑾

9𝑊 =

𝑾 = [𝑾 𝟏 ,𝑾 𝟐 , …]

contains all the weight
vectors needed to be adjusted
in the neural network

The loss function is a
function of the network
weights 𝑾.

Find the value of the parameters that help the loss function reach the lowest value.

Gradient Descent

A first-order iterative optimization algorithm for finding the
minimum of a function.

Step 1. Compute the derivatives of the loss w.r.t. the
parameters

Step 2. Update the parameters according to the rule:

𝒘𝒏𝒆𝒘 	= 	𝒘	 − 	𝛼
𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚)

𝜕𝑾
where the positive scalar 𝛼	(learning rate) determines the
magnitude of the change.

𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚)
𝜕𝑾

?𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛	ℒ(𝑓 𝑿;𝑾 , 𝒚)

Multi-Dimension Optimization Process

1. Randomly pick an initial, a start point

(𝑤), 𝑤*) Go through the neural
network feed forward
propagation process to get a
prediction of the output, F𝑦.
Compute loss:

ℒ(F𝑦, 𝑦)
which is not satisfied.

Multi-Dimension Optimization Process

2. Compute gradient respect to
all the interested parameters:

𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚)
𝜕𝑾

The opposite direction of the gradient is
where we can decrease the loss.

Multi-Dimension Optimization Process

3. Take a small step in the opposite direction
of the gradient to get a new proposal of the
parameter values.(𝑤)+ , 𝑤*+)

The magnitude of this
step is determined by
learning rate.

4. Repeat steps 2 and 3 until the loss converges.

ℒ(𝑓 𝑿;𝑾& , 𝑦)

Check if it converges.

Compute loss with the new values:

Gradient Descent

3. Take a small step in the opposite direction
of the gradient to get a new proposal of the
parameter values.(𝑤)+ , 𝑤*+)

The magnitude of this
step is determined by
learning rate.

4. Repeat steps 2 and 3 until the loss converges.

ℒ(𝑓 𝑿;𝑾& , 𝑦)

Check if it converges.

Compute loss with the new values:

Gradient Computation: Backpropagation

𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚)
𝜕𝑤'

𝑥* 𝑧' J𝒚 ℒ(𝑓 𝑿;𝑾 , 𝒚)
𝑤* 𝑤,

=
𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚)

𝜕 F𝑦
K

𝜕 F𝑦
𝜕𝑤'

Chain rule

𝜕 F𝑦
𝜕𝑤'

=
𝜕F𝑦
𝜕𝑧'

K
𝜕𝑧'
𝜕𝑤'

Chain rule again

Gradient Computation: Backpropagation

𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚)
𝜕𝑤'

𝑥* 𝑧' J𝒚 ℒ(𝑓 𝑿;𝑾 , 𝒚)
𝑤* 𝑤,

=
𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚)

𝜕 F𝑦
K

𝜕 F𝑦
𝜕𝑧'

K
𝜕𝑧'
𝜕𝑤'

Backpropagation

Repeat this process for each layer, see the visual on the right:

Optimization Algorithms in PyTorch

Stochastic Gradient Descent (SGD)

Gradient Descent with Momentum

AdaGrad (Adaptive Gradient Algorithm)

Adam (Adaptive Moment Estimation)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

optimizer = torch.optim.Adagrad(model.parameters(), lr=0.01)

optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

Stochastic Gradient Descent (SGD)
Characteristics:
• Basic form of gradient descent used in neural networks.
• Fixed learning rate.
• In each iteration, randomly select a single data point (or a batch of data points) from the

training set to calculate the gradient of the loss function.
• Updates parameters for each training example, leading to frequent updates with high variance.

Advantages:
• Simple and easy to understand.
• Can escape local minima due to its inherent noise.

Disadvantages:
• Slow convergence on large datasets and high variance in updates.
• Sensitive to learning rate and other hyperparameters.

Batch Size:
Epoch:

Gradient Descent with Momentum
Characteristics:
• Builds upon SGD by considering past gradients to smooth out the updates.
• Uses a momentum factor to accelerate SGD in the relevant direction.

Advantages:
• Faster convergence than standard SGD.
• Reduces oscillations and improves stability.

Parameter update rule:

1. Update Velocity: 𝑣 = 𝛾𝑣 − 𝛼∇𝑓(𝑥).
2. Update Parameter: 𝑥 = 𝑥 + 𝑣

AdaGrad (Adaptive Gradient Algorithm)
Parameter update rule:
1. Update accumulation: 𝐺 = 𝐺 + 𝑔(, where 𝑔 is the gradient of the loss function with respect

to each parameter.
2. Adjust Learning Rate: Scale the learning rate for each parameter inversely proportional to

the square root of 𝐺.
3. Update Parameters: Update the parameters using the adjusted learning rate, 𝑥 = 𝑥 −

𝛼
𝐺 + 𝜖

U 𝑔

where 𝛼 is the initial learning rate, 𝜖 is a small constant added to improve numerical stability.

AdaGrad (Adaptive Gradient Algorithm)
Characteristics:
• Adjusts the learning rate to each parameter, decreasing it for parameters with large gradients.
• Each parameter has its own learning rate, which can be beneficial for datasets with features

of varying importance or scale.

Advantages:
• The effective learning rate decreases over time for each parameter. Eliminates the need to

manually tune the learning rate.
• Well-suited for dealing with sparse features or data with different scales.

Disadvantages:
• The continuously accumulating squared gradient can lead to an excessively reduced learning

rate, causing the algorithm to stop learning too early.

Adam (Adaptive Moment Estimation)
Parameter update algorithm:
1. Moving averages: two vectors 𝑚 and 𝑣 are used to store moving averages of the gradients

and squared gradients, both initialized to zero.
2. Hyperparameters: 𝛽' and 𝛽(, close to 1 (common defaults are 0.9 and 0.999).

3. Update Moving Averages: 𝑚 = 𝛽'𝑚 + 1 − 𝛽' 𝑔 and 𝑣 = 𝛽(𝑣 + 1 − 𝛽(𝑔(.

4. Correct Bias: J𝑚 = "
')*!"

and F𝑣 = +
')*#"

.

5. Adjust parameters: 𝑥 = 𝑥 − ,
-+./

J𝑚

where 𝛼 is the initial learning rate, 𝜖 is a small constant added to improve numerical stability.

Adam (Adaptive Moment Estimation)
Characteristics:
• Designed to combine the advantages of two other popular optimizers: the adaptive learning

rate feature of AdaGrad and the momentum feature of RMSprop.
• Different learning rates for different parameters and adjusts them throughout training.
• Corrects the bias in moving averages, especially important in the initial training phase.

Advantages:
• Combines the benefits of AdaGrad and RMSprop.
• Performs well in practice and across a wide range of non-convex optimization problems and large

dataset.

Disadvantages:
• Can be memory-intensive due to storing moving averages for each parameter.
• Might not converge to the optimal solution in certain theoretical cases.

Optimization

Ø Batch SGD

Ø Momentum

Ø Adaptive Moment Estimation (Adam)

Ø Backpropagation algorithm

Forward Pass Backward Passes

Efficient Gradient Calculation
 Why It’s Important:
• Neural networks often contain billions to trillions of parameters (e.g., models with ∼billions+parameters).
• During training, gradients need to be computed for every parameter at each iteration of the optimization process.

 Challenges:
• Computational Complexity: Calculating gradients for all parameters in large-scale models is computationally

intensive.
• Memory Constraints: Storing intermediate results for backpropagation in large models requires significant memory.

 Solutions:
• Backpropagation Algorithm: Efficiently calculates gradients by applying the chain rule of differentiation.
• Automatic Differentiation Libraries: Frameworks like TensorFlow, PyTorch, and JAX automate gradient

computation.
• Distributed Training: Parallelizing computations across multiple GPUs or TPUs helps handle large models.

Backpropagation Algorithm
2 Steps:

1. Forward Propagation

2. Backpropagation

• Forward propagation is how neural networks make predictions.
• Involves passing input data through the network layer by layer to the

output.

• Backpropagation is the process of adjusting the weights of the
network by propagating through the neural network backward.

• Involves calculating the gradient of the loss function with respect
to each weight by the chain rule.

• The weights are adjusted in the direction that reduces the loss.

Forward Propagation

Backpropagation

Both steps are iteratively repeated for several epochs to minimize the
loss and improve the model's accuracy.

Backpropagation Algorithm

Parameter Initialization
Proper initialization is critical because:
a) Convergence Speed: Poor initialization can slow down the training process.
b) Gradient Stability: Ensures gradients do not vanish or explode during backpropagation.
c) Optimization Performance: Facilitates better navigation of the loss landscape, avoiding saddle points and bad
 local minima.

Challenges in Parameter Initialization:
a. Vanishing Gradients: Occurs when the gradients become excessively small during backpropagation, leading to
negligible weight updates. This is typically caused by: Small initial weight values and Activation functions like Sigmoid
or Tanh that squash outputs to a narrow range.

b. Exploding Gradients: Occurs when gradients grow exponentially during backpropagation, causing instability and
divergence in the optimization process. This is typically caused by: Large initial weight values and Improper scaling of
weights in deep layers.

c. Symmetry Breaking: Initializing all weights to the same value (e.g., zero) causes symmetry in the network, preventing
neurons in the same layer from learning distinct features.

Initialization Techniques
Zero Initialization: All weights set to 0, leading to symmetry.
Random Initialization: Weights are initialized randomly (e.g., sampled from N(0, 1)). Issue: Without proper
scaling, it can lead to vanishing or exploding gradients.
Xavier Initialization (Glorot Initialization): Designed for Sigmoid and Tanh activation functions. Ensures
variance of activations remains consistent across layers:

He (Kaiming) Initialization: Designed for ReLU and its variants.

LeCun Initialization: Suitable for activation functions like SELU:

 Orthogonal Initialization: Ensures weights are orthogonal, maintaining variance stability across layers.
Effective for RNNs and deep networks with large dimensions.

Bias Initialization: Biases are often initialized to small positive values (e.g., 0.01).

Pretrained Initializations: Using weights from pretrained models (transfer learning).

Layer-Specific Initialization: Input layers: Focus on uniform weight distribution.
 Output layers: Smaller initialization to stabilize predictions.

Batch Normalization
• Definition: Batch Normalization (BN) is a technique used in

deep learning to normalize the inputs to each layer within a
neural network. It ensures that the inputs have a consistent
distribution, which stabilizes and accelerates training.

• Purpose: Reduce internal covariate shift: This occurs
when the distribution of inputs to a layer changes during
training.

• Benefits:
a) Improved Stability: Keeps activations in a stable range,

mitigating vanishing/exploding gradients.
b) Faster Convergence: Allows for higher learning rates and

reduces sensitivity to initialization.
c) Regularization Effect: Adds noise due to batch statistics,

reducing overfitting.
d) Enhanced Generalization: Produces better results on unseen

data.

https://kharshit.github.io/blog/2018/12/28/why-batch-normalization

Batch Normalization

https://e2eml.school/batch_normalization https://kharshit.github.io/blog/2018/12/28/why-batch-normalization

Regularization Methods
Four Mechanisms:
v Make the modeled function smoother.
v Increase the effective amount of data.
v Combine multiple models to mitigate uncertainty

in the fitting process.
v Encourages the training process to converge to

a wide minimum, where small errors in the
estimated parameters are less important.

Content
1 Introduction to Deep Learning

3 Modern DL Model Architectures

4 Loss Functions

2 Neural Network Basics

5 Optimization Techniques

6 Convolutional Neural Networks (CNN)

8 Theoretical Properties

6 Convolutional Neural Networks (CNN)

7 Graph Neural Networks (GNNs/GCNs)

Nature Image Data is Everywhere

StanfordCS231n

Major CV Tasks

StanfordCS231n

Self-driving Cars

Other CV Tasks

StanfordCS231n

Medical Image Data is Everywhere

Scenario Challenges

StanfordCS231n

High Dimensionality
• Key Feature:

• Images are inherently high-dimensional data. For example, a standard image in classification tasks with a
resolution of 224×224 and 3 color channels (RGB) has 224×224×3=150,528 input dimensions.

• Each pixel represents a separate input feature, and the number of features grows quadratically with image
resolution.

• Challenge:
• Fully connected networks scale poorly with such high-dimensional data. For even a shallow network, the

number of weights can exceed 150,5282^2 (~22 billion). This massive number of weights:
• Increases the risk of overfitting, as more parameters require a proportional increase in training data.
• Results in impractical memory and computational requirements, especially for larger images.
• Slows down the training process significantly, making optimization difficult.

• Real-World Implication:
• As image resolution increases (e.g., 512×512 or beyond for high-definition images), the dimensionality

becomes even more unmanageable for fully connected networks.

• Solution: CNNs reduce the number of parameters by using shared weights (convolutional filters) and
processing local regions of the image (kernels). This drastically decreases memory requirements and
computational complexity.

• Key Feature:
• Nearby pixels in an image are statistically correlated and form local patterns or textures (e.g., edges, corners,

and gradients). These local relationships are critical for understanding the content of an image.
• For example, in an image of a cat, nearby pixels may collectively form the texture of fur or the shape of an ear.

• Challenge:
• Fully connected networks ignore spatial relationships by treating all input pixels equally. They lack the notion

of "locality" and process the relationship between each pixel and every other pixel, regardless of their
proximity.

• This lack of spatial awareness means that a fully connected network cannot naturally exploit the structural
dependencies within an image.

• If the pixels of an image are randomly permuted in the same way for both training and testing, a fully
connected network can still learn, highlighting its disregard for spatial coherence.

• Real-World Implication:
• Without spatial awareness, models become inefficient and require a larger number of neurons to learn even

basic patterns.
• Solution:

• CNNs address this by using local receptive fields to capture spatial relationships. Filters (kernels) process
small, overlapping regions of an image, preserving spatial coherence and focusing on local patterns. This
makes CNNs particularly effective for tasks like object detection and image segmentation.

Spatial Relationships in Pixels

Stability Under Geometric Transformations
• Key Feature:

• Images maintain their interpretation under geometric transformations such as translation, rotation, scaling, or
flipping. For example:

• A tree remains recognizable as a tree even if shifted slightly to the left or rotated by a small angle.
• Similarly, a flipped or resized image of a cat does not change its underlying identity.

• This invariance is essential for real-world applications like autonomous driving or medical imaging, where
objects may appear in various positions or orientations.

• Challenge:
• Fully connected networks treat each pixel independently and do not account for geometric transformations. A

simple translation (e.g., shifting an image to the left by a few pixels) alters every pixel in the input vector,
forcing the network to relearn patterns for each possible position.

• This redundancy results in inefficient learning and requires significantly more data to cover all potential
transformations.

• Real-World Implication:
• Models that lack invariance to transformations are less robust in real-world scenarios where objects appear in

varying contexts.
• Solution:

• CNNs inherently address this issue by leveraging translation invariance through shared filters. These
filters recognize patterns (e.g., edges or textures) regardless of their position within the image.

• Data augmentation techniques, such as randomly rotating, flipping, or cropping images during training,
further improve the model's ability to handle transformations.

Major Considerations
• Noise in Images:

• Real-world images often contain noise (e.g., sensor artifacts, motion blur, or lighting
variations). Fully connected networks struggle to differentiate between noise and meaningful
patterns, further emphasizing the need for specialized architectures.

• CNNs are more robust to noise due to their focus on local features rather than individual pixel
values.

• Scale and Hierarchy:
• Images often contain hierarchical features at multiple scales:

• Low-level features: edges, corners.
• Mid-level features: textures, patterns.
• High-level features: objects or entire scenes.

• Fully connected networks cannot naturally represent this hierarchy, while CNNs achieve this
using multiple convolutional layers with increasing receptive fields.

• Conclusion The unique properties of unstructured image data pose significant challenges for fully
connected networks. These challenges necessitate specialized architectures like CNNs, which
leverage shared weights, local receptive fields, and hierarchical feature extraction to process
images efficiently. Additionally, techniques like data augmentation and multi-scale analysis enhance
the robustness of these models for real-world applications.

ImageNet
What is ImageNet?

• Definition: ImageNet is a large-scale visual database designed to advance research in object detection,
classification, and other computer vision tasks.
• Dataset Size: It contains over 14 million labeled images
spanning 20,000+ categories, with the most commonly used
subset having 1,000 object categories.

Key Features of ImageNet

a) Diversity of Classes:
Includes both broad categories (e.g., "dog,"
"car") and fine-grained subcategories (e.g., "golden retriever," "sports car").

b) Real-World Images:
Images collected from the internet represent real-world complexity, including cluttered backgrounds,
occlusions, and multiple objects.

c) Hierarchical Organization:
Based on the WordNet hierarchy, where classes are semantically related, providing meaningful
relationships between categories.

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

Introduction to CNN
What Are CNNs?
CNNs are specialized deep learning architectures designed to process data with grid-like structures, such as
images and videos. By leveraging the spatial structure of data, CNNs efficiently extract and learn hierarchical
features, making them particularly well-suited for computer vision tasks like image classification, object
detection, and segmentation.

In image and video processing, they are widely used for tasks such as classification, object detection,
segmentation, and face recognition.
In medical imaging, CNNs assist in detecting tumors and anomalies in X-rays and CT scans.
In natural language processing (NLP), they process data as 1D inputs for tasks like sentence classification and text
summarization.
In autonomous driving, they enable real-time object detection for pedestrians, vehicles, and road signs.

CNNs’ applications

Key Components of CNNs

Key Components of CNN

• Convolutional layers

• Rectified Linear Unit (ReLU)

• Pooling layers

• Fully connected layers

Illustration of architecture of CNNs applied to digit recognition (source)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Feature Extraction Using Convolution
• Input, kernel, and output

• Fully Connected Networks
• “fully connect” all the hidden units to

all the input units. Only
computationally feasible to learn
features on the entire image for
relatively small images.

• order of 106 parameters to learn for
96x96 images. The feedforward and
backpropagation computations
would also be about 100 times
slower, compared to 28x28 images.

• Locally Connected Networks

Prince (2023)

Feature Extraction Using Convolution
• Input, kernel, and output (right figure)

• Fully Connected Networks

• Locally Connected Networks
• A simple solution to this problem is to limit

connections between hidden and input units, allowing
each hidden unit to connect to only a small subset of
input units, such as a contiguous region of pixels. For
other data types different than images like audio,
hidden units can be connected to specific time spans.
This concept of local connections is inspired by the
visual cortex, where neurons respond to stimuli in
specific locations.

Illustration of Discrete 2D Convolution (source)

https://en.wikipedia.org/wiki/Convolution

Understanding the Convolution Operation

Whenever we have discrete objects, the integral turns into a sum. For instance, in CNN, we used
discrete convolution for vectors from the set of square-summable infinite-dimensional vectors
defined as:

For two-dimensional tensors, we have a corresponding sum with (a,b) for f (i-a,j-b) for g,
respectively:

What is convolution?

Mathematically, Convolution is defined as	𝑓, 𝑔:	ℝ0 → ℝ :

𝑓 ∗ 𝑔 𝒙 = Y𝑓 𝒛 𝑔 𝒙 − 𝒛 𝑑𝑧	

𝑓 ∗ 𝑔 𝑖 =\
-

𝑓 𝑖 𝑔 𝑖 − 𝑎

𝑓 ∗ 𝑔 𝑖, 𝑗 = \
-

\
.

𝑓 a, b 𝑔 𝑖 − 𝑎, 𝑗 − 𝑏

Padding, Stride, and Pooling

• Padding
• Zero-padding and why it's necessary (The pixels at the corner in the previous images are less

counted than those in the middle)

• How padding affects the dimensions of the output

Illustration of padding effects (source)

https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-neural-network-3607be47480

Padding
One tricky issue when applying convolutional layers is that we tend to lose pixels on the perimeter of our image.
The following figure depicts the pixel utilization as a function of the convolution kernel size and the position
within the image.
We can see that the pixels in the corners are hardly used at all.

Pixel utilization for convolutions of 1x1, 2x2, and 3x3 respectively.

Padding
One straightforward solution to this problem is to add extra pixels of filler around the boundary of our
input image, thus increasing the effective size of the image. Typically, we set the values of the extra
pixels to zero.

Example on padding 3x3 input to 5x5 matrix:

Padding, Stride, and Pooling
Stride

• Example with stride of 1 vs. 2

Illustration Convolution Operation with Stride Length = 1 Vs 2 (source)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Padding, Stride, and Pooling
• Pooling

• Types: Max pooling, average pooling

• Role in reducing dimensionality

• Example: Pooling on an image

Illustration of 3x3 pooling over 5x5 convolved feature (source)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Average Pooling
Average pooling is essentially as old as CNNs. The idea is akin to downsampling an image. Rather than just
taking the value of every second (or third) pixel for the lower resolution image, we can average over adjacent
pixels to obtain an image with better signal-to-noise ratio since we are combining the information from multiple
adjacent pixels.

https://blog.paperspace.com/a-comprehensive-exploration-of-pooling-in-neural-networks/

https://www.digitalocean.com/community/tutorials/pooling-in-convolutional-neural-networks

Maximum Pooling

Max-pooling was introduced in Riesenhuber and Poggio (1999) in the context of cognitive neuroscience to
describe how information aggregation might be aggregated hierarchically for the purpose of object recognition;
there already was an earlier version in speech recognition (Yamaguchi et al., 1990).
In almost all cases, max-pooling is preferable to average pooling.
Consider example:

https://www.digitalocean.com/community/tutorials/pooling-in-convolutional-neural-networks

AlexNet
• With high performance hardware (GPUs from

Nvidia) and sufficiently rich data-set, Krizhevsky
et al. proposed AlexNet (Alom et al. 2018), which
consists of five convolution layers and three
fully connected layers.

• Each convolution layer contains a convolution
kernel, a bias term, a ReLU activation function,
and a local response normalization (LRN)
module.

• In the 2012 ILSVRC, AlexNet won the
competition with a Top-5 classification error rate
of 16.4%, became the dividing line between
traditional and deep learning algorithms, and was
the first deep CNN model in modern times.

AlexNet Architecture

AlexNet

Visual Geometry Group (VGG) models
• To examine the impact of a CNN’s depth on its

accuracy, Karen Sengupta et al. (2019) conducted a
comprehensive evaluation of the performance of
network models with increasing depth, while using
smaller convolution filters (3 × 3) instead of the
previous 5 × 5 kernels and proposed a series of Visual
Geometry Group (VGG) models in 2014.

• The smaller kernel size lowers the computational
complexity and the number of training parameters.

• Simultaneously, VGG supports the hypothesis that
performance can be enhanced by continually
deepening the network topology.

• In the 2014 ILSVRC, VGG won the competition in
the Localization Task with a Top-5 classification
error rate of 7.3%, Sengupta et al. Front Neurosci (2019)

VGG Models
a) Increased Depth:

Depth allows VGG to learn hierarchical features, improving
accuracy.

b) Simple Design:
Stacks of identical convolutional layers make it easy to
scale the architecture.

c) Transfer Learning:
VGG models pretrained on ImageNet are widely used for
transfer learning in other tasks.

d) Small Filters:
Using 3×3 filters results in fewer parameters compared to
larger filters, while maintaining the receptive field size.

e) VGG-16:
16 layers: 13 convolutional layers and 3 fully connected layers.
Parameters: ~138 million.
f) VGG-19:
19 layers: 16 convolutional layers and 3 fully connected layers.
Parameters: ~143 million.

GoogLeNet
• GoogleNet, also known as Inception-v1, is a deep CNN

introduced by Szegedy et al. in 2014.
• It won the ILSVRC 2014 the Classification Task with a

top-5 error rate of 6.67%, outperforming other models.
• Main Innovations:
a) Inception Module enables the network to capture

features at multiple scales while reducing
computational cost.

b) Dimension Reduction. Uses 1×1 convolutions for
reducing dimensionality before applying larger
filters, significantly reducing parameters.

c) Auxiliary Classifiers: Two intermediate softmax
classifiers are added to help with gradient flow and
prevent vanishing gradients.

• Motivation: Despite having 22 layers, GoogleNet has
only ~5M parameters, significantly fewer than
AlexNet (~60M) and VGG-16 (~138M).This is
achieved using 1×1 convolutions for dimensionality
reduction.

Szegedy et al. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2015)

GoogleNet Architecture

•Input Layer: 224×224×224×3 RGB image.
•Convolutional Layers: Apply 7×7, 1×1, or 3×3 filters
to extract features.
•Inception Modules: Multi-scale processing
with 1×1, 3×3, 5×5, and pooling operations.
•Auxiliary Classifiers: Intermediate softmax layers
for training regularization.
•Global Average Pooling: Replaces fully connected
layers with spatial pooling across feature maps.
Output Sizes:
•The output size at each stage is shown,
demonstrating how spatial dimensions decrease
progressively.

Inception Module

• Multi-Scale Feature Extraction: Processes feature maps at multiple scales for rich. representations.

• Dimensionality Reduction: 1 × 1 convolutions reduce computational costs while preserving important
information.

• Efficiency: Deep networks can process large input data with fewer parameters compared to traditional
architectures.

• Improved Generalization: Captures features across different abstraction levels.

Inception Cell

Example architecture of inception
Zhao et al. Artificial Intelligence Review (2024)

Residual network (ResNet)
• Degradation Problem: Deeper networks (e.g., >20 layers) suffered from degradation of accuracy, not just

overfitting, but actual performance decline.

• Key Idea: Instead of learning the direct mapping (H(x)), ResNet learns the residual mapping (F(x)=H(x)−x).
This simplifies optimization and allows gradients to flow through skip connections, improving convergence.

• Impact:
• Ease of Optimization: Learning residuals is simpler than learning direct mappings.
• Deeper Architectures: ResNet-152 outperforms shallower networks while maintaining high accuracy.
• State-of-the-art Results: Top-5 error dropped to ~3.6% on ImageNet (ILSVRC).

• Connection to Highway Networks (Srivastava et al., 2015): ResNet can be seen as a special, simplified
case of highway layers where gates are mostly open.

• Residual connections enable building much deeper and more powerful networks by addressing gradient vanishing
and “degradation” issues.

Residual Block

Illustration of a residual block
Zhao et al. Artificial Intelligence Review (2024)

Building Block:
a) Input: x (feature map from the previous layer).
b) Path 1 (Residual Function):

i. 3×3 convolution -> Batch Normalization -> ReLU.
ii. 3×3 convolution -> Batch Normalization.

c) Path 2 (Skip Connection):
i. Identity mapping: Directly passes the input x.

d) Addition:
i. Output: F(x)+x (summation of the two paths).

e) Activation:
i. Apply ReLU to the combined output.

f) Output:
 Final feature map retains the same dimensions as the input.

CNN Optimization Techniques
CNN optimization involves techniques to improve the performance, efficiency, and generalization of
Convolutional Neural Networks during training and inference.
• Goals:

a) Reduce overfitting.
b) Improve convergence speed.

c) Optimize computational resources.

• Common Strategies:
a) Data Augmentation
b) Regularization (L1, L2, Elastic Net)
c) Dropout & Early Stopping
d) Transfer Learning

Data Augmentation
• Data augmentation is a strategy used to artificially increase the size and

diversity of a training dataset by applying transformations to the existing
data.

• Purpose: Improve model generalization. Prevent overfitting.
Compensate for limited training data.

• Why? Increases effective training set size without extra data collection.

• Common Methods:
• Color jittering, cropping, flipping, rotations, scaling.
• PCA‐based color augmentation (as in AlexNet) (Krizhevsky et

al., Commun. ACM, 2017).
• Transfer learning approach using well-known CNN models

(GoogleNet, AlexNet, VGG16, VGG19, DenseNet, etc.) along with
data augmentation techniques can be used to accelerate the training
and testing process while yielding good results and performance.

• He et al. implemented data augmentation along with regularization
techniques such as dropouts and weight decay (CVPR, 2016).

Teerath et al. IEEE Access (2024)

Data Augmentation

Example of using preprocessing techniques along with the
well-known CNN models for COVID-19 and Lungs

Pneumonia detection using transfer learning.
Latif et al. AIMS Mathematics (2024)

• Geometric Transformations:
 Flipping: Horizontal and vertical flips.
 Rotation: Rotates images by a specified angle.
 Scaling: Resizes images while preserving aspect ratio.
 Cropping: Extracts subregions from the image.
• Color Transformations:
 Brightness Adjustment: Alters image brightness.
 Contrast Adjustment: Modifies contrast levels.
 Saturation Adjustment: Changes color saturation.
 Hue Adjustment: Shifts color hues.
• Noise Injection: Adds random noise to images to improve
robustness.
• Affine Transformations: Applies scaling, shearing, or
translation to the images.

Regularization methods
• Definition: Regularization refers to techniques that

improve a model's generalization by reducing overfitting
to the training data.

• Why Regularization? Deep learning models are prone
to overfitting due to high capacity and complex
structures. Regularization helps balance the trade-off
between model complexity and performance.

• L2 Regularization (Weight Decay)
• Penalizes the square of weights → discourages

large weight values, helps smooth solutions.
• L1 Regularization (Lasso)

• Penalizes the absolute value of weights →
encourages sparsity (some weights become zero).

• Elastic Net
• Combines L1 and L2 → can both shrink weights

and promote sparsity.

Dropout & Early Stopping
• Dropout

• Randomly “drops” neurons during training.
• Reduces co-adaptations among neurons →

mitigates overfitting.

• Early Stopping
Monitors validation performance and
halts training before overfitting sets in.
Balances bias/variance by stopping at the
optimal point.

https://www.pinecone.io/learn/regularization-in-neural-networks/ https://www.comet.com/site/blog/4-techniques-to-tackle-overfitting-in-deep-neural-networks/

Transfer Learning
Train on ImageNet Bigger DatasetsSmall Datasets

Donahue et al, ICML
2014
Razavian et al, CVPR
Workshops 2014

Object Detection

What is Object Detection?

To determine: What objects are where?
-- Object bounding box: location and size
-- Object category.

By NIPS15-Faster RCNN

2001

VJ Det.
(P. Viola et al-01)

2006 2008

DPM
(P. Felzenszwalb et al-08, 10)HOG Det.

(N. Dalal et al-05）

Traditional Detection
Methods

Deep Learning based
Detection Methods

2004
…

201720162015

RCNN
(R. Girshick et al-14)

2014 2018

SPPNet
(K. He et al-14)

Fast RCNN
(R. Girshick-15)

Faster RCNN
(S. Ren et al-15)

Pyramid Networks
(T. Y. Lin et al-17)

YOLO (J. Redmon
et al-16,17)

SSD (W. Liu
et al-16)

Retina-Net
(T. Y. Lin et al-17)

Two-stage
detector

One-stage
detector

+ AlexNet

Wisdom of the cold weapon

Technical aesthetics of GPU

2012

Object Detection Milestones

2017201620152014 2018

2019

2019

124

Time: 14s/image on a GPU

• Object Proposal+CNN features
• Bounding Box Regression
• Fine tuning
• VOC07 mAP: 33.7à58.5

R-CNN: Regions with CNN features
Ross B. Girshick et al., (CVPR2014)

Drawbacks
• The redundant feature computations on a large number

of overlapped proposals (>2000 boxes/img) leads to an
extremely slow detection speed (14s per image with
GPU).

125

Definition: R-CNN is a deep learning framework for object detection introduced by Ross Girshick in 2014.
It integrates region proposals with CNNs to detect objects in an image effectively.

Key Contributions:
v Combines region proposals with CNN-based feature extraction.
v Demonstrates the use of transfer learning for detection tasks.
v Achieves significant performance improvements over traditional methods.

R-CNN: Regions with CNN features

Workflow of R-CNN:
Ø Input image is processed using Selective Search to generate region proposals.
Ø Each region is resized to 224x224 and passed through a CNN to extract features.
Ø SVM classifiers predict object categories for the proposals.
Ø Bounding box regression refines the coordinates of the proposals.
Ø Outputs are the predicted class labels and refined bounding boxes.

126

SPPNet: Spatial Pyramid Pooling

Kaiming He et al., (ECCV2014)

SPPnet is a deep learning framework designed to handle images of arbitrary sizes without requiring
cropping or resizing. It introduces the Spatial Pyramid Pooling (SPP) layer, which allows for flexible
input dimensions and improved computational efficiency.

127

Fast RCNN

Ross B. Girshick (ICCV15)

Time:
0.32s/image on a GPU

• ROI Pooling
• Multi-task loss (Clc. + BB Reg.)
• BP through RoI pooling layers
• VOC07 mAP: 58.5à70.0

Fast R-CNN is an object
detection framework
introduced by Ross Girshick in
2015. It improves upon the
inefficiencies of R-CNN by
introducing Region of Interest
(ROI) Pooling and enabling
shared computation, leading
to faster and more accurate
object detection.

128

Anchors (reference boxes)

Faster RCNN

Shaoqing Ren et al., (NIPS2015)

Time: 17 fps on a GPU

• Region Proposal Network
• Detection Network
• Sharing Features
• VOC07 mAP: 70.0à78.8

Faster R-CNN is a successor to Fast R-CNN and introduces the Region Proposal Network (RPN) for
generating region proposals, making the detection pipeline fully end-to-end.

• Runs at 45fps with VOC07 mAP=63.4% and VOC12 mAP=57.9%.
• A fast version runs at 155fps with VOC07 mAP=52.7%.

You Only Look Once (YOLO)

J. Redmon et al., (CVPR2016)

YOLO treats object detection as a single regression problem,
predicting both class probabilities and bounding box coordinates in
one forward pass.
Key Contributions:
v Introduces a unified framework for object detection, enabling

real-time performance.
v Processes the entire image in a single forward pass, improving

efficiency.
v Balances speed and accuracy, making it suitable for real-world

applications.

Workflow of YOLO

§ Input Image: The input image is divided into an
 SXS grid (e.g., 7X7).
§ Feature Extraction: A CNN processes the

image to extract features.
§ Bounding Box Prediction: Each grid cell

predicts:
 Bounding boxes (coordinates and dimensions).
 Confidence scores for each bounding box.
§ Classification: Each grid cell predicts class

probabilities for the objects it contains.
§ Post-Processing: Non-Maximum Suppression

(NMS) removes duplicate detections and retains
the most confident predictions.

predict
predict
predict

SSD: Single Shot MultiBox Detector

Wei Liu et al., (ECCV2016)

(a) YOLO (b) SSD

predict

SSD performs object detection in a single forward pass, making it fast and
efficient compared to region-based methods like Faster R-CNN.
Key Contributions:
• Uses multi-scale feature maps for detecting objects of different sizes.
• Introduces default (prior) boxes for efficient bounding box predictions.
• Eliminates the need for separate region proposal steps, improving speed.

Workflow of SSD
1. Input Image: The input image is processed
through a backbone CNN (e.g., VGG16) to extract
feature maps.
2. Multi-Scale Feature Maps: Feature maps from
different layers are used to predict objects at
various scales.
3. Default Boxes: Predefined bounding boxes
with varying aspect ratios and scales are applied to
each feature map cell.
4. Predictions: Each default box predicts:
• Class probabilities for classification.
• Bounding box offsets for localization.
5. Post-Processing: Non-Maximum Suppression
(NMS) removes redundant detections and retains
the most confident predictions

PASCAL VOC

Detection Datasets

ILSVRC MS-COCO Open Images

Detection Datasets

Semantic Segmentation: The Problem

Paired training data: for each
training image, each pixel is labeled
with a semantic category.

Impossible to classify without context
Q: how do we include context?

Q: how do we model this?

Cow

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Classify center pixel
with CNN

U-Net: Motivation
In CNNs, different layers learn different feature levels:

• Lower layers: Learn low-level, fine-grained details
(e.g., edges, textures)

• Higher layers: Capture high-level, coarse-grained
semantic features (e.g., shape, structure)

•This hierarchy is ideal for classification tasks but
introduces limitations for pixel-level tasks like
segmentation

Challenges in Medical Image Segmentation
•Medical images often suffer from:

• Noise
• Low contrast
• Blurred or unclear boundaries

•Relying only on low-level features results in poor object
recognition
•Relying only on high-level semantic features leads to
inaccurate boundary detection

Need for Multi-Level Feature Integration
•Effective segmentation requires a combination of:

• High-level semantic understanding (context)
• Low-level spatial precision (details)

•General CNNs lack explicit mechanisms to combine
both effectively

Encoder-Decoder Architectures
•Designed to combine high-level and low-level features
•Consist of:

• Encoder: Downsamples and extracts abstract features
• Decoder: Upsamples to recover spatial resolution and

integrates detail
•Enables pixel-level prediction with semantic awareness

Semantic Segmentation Idea

Design a network with only convolutional layers without downsampling
operators to make predictions for pixels all at once!

Problem: convolutions at
original image resolution
will be very expensive ...

Design network as a bunch of convolutional layers, with downsampling and
upsampling inside the network!

Downsampling:
Pooling, strided
convolution

Upsampling:
Unpooling or strided
transposed convolution

Downsampling and Upsampling Corresponding pairs of
downsampling and
upsampling layers

Common Downsampling types:
• Max pooling: Takes the maximum value in each window
• Average pooling: Computes the average value
• Stochastic pooling: Randomly selects an activation

based on a probability distribution
• LP-pooling: Generalized pooling that uses the p-norm

over each region
• Global pooling: Applies pooling over the entire feature

map to reduce to a single value per channel
•Purpose: (i) Reduce computation; (ii) Increase receptive field;
(iii) Achieve spatial invariance; (iv) Introduce regularization

Common unpooling strategies:
• Max-unpooling with indices:
• Fixed-position unpooling: inserts values at top-left

corner of window
• Interpolation-based unpooling: uses nearest-

neighbor or bilinear interpolation to expand feature
maps

• Learnable unpooling: introduces parameters to
learn where and how to upsample

 Often followed by convolutional layers to refine outputs

U-Net: Vanilla Version

Ronneberger, O., Fischer, P., & Brox, T. (2015, May 18). U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv.Org. https://arxiv.org/abs/1505.04597v1

v U-Net is a neat end-
to-end neural
network with a
characteristic "U"
shape

Contracting Path (Encoder):
v Captures context through repeated

downsampling blocks
v Each block includes two 3×3 convolutions

+ ReLU, followed by 2×2 max pooling
v Gradually increases the receptive field

without heavy computation

Expanding Path (Decoder):
v Upsamples feature maps to

match input resolution
v Each block includes one 2×2

transposed convolution (up-
conv), two 3×3 convolutions +
ReLUBottleneck:

v Connects encoder and decoder
v Two 3×3 convolutions + ReLU
v Reduces spatial resolution and

increases depth for high-level
abstraction

Skip Connections:
Ø Link encoder and decoder layers at the same depth level
Ø Concatenate encoder feature maps with decoder inputs to

combine detailed and contextual information
Ø Help restore spatial resolution and sharpen boundaries

Final Output:
v A 1×1 convolution maps

the final feature map to
the number of target
classes

v Produces a pixel-level
classification map (e.g.,
segmentation mask)

https://arxiv.org/abs/1505.04597v1

Contracting Path (Encoder)

v Block 1:
v Input: 572×572×1 (grayscale image)
v Two 3×3 unpadded convolutions + ReLU → 64 channels
v 2×2 max pooling (stride 2) → downsampled to 284×284

v Block 2:
v Two 3×3 convolutions + ReLU → 128 channels
v 2×2 max pooling → 140×140

v Block 3 & Block 4:
v Same as previous blocks with doubled channels (256,

512)
v Max pooling after each block halves spatial dimensions

v Block 5 (Bottom):
v Two 3×3 convolutions + ReLU → 1024 channels
v First conv in this block included here, second used in

expanding path for symmetry

Expanding Path (Decoder)
•Block 5:

• Continues from the bottom block with a second 3×3
convolution + ReLU

• Followed by a 2×2 up-convolution → doubles spatial
resolution, reduces channels to 512

•Block 4:
• Skip connection: concatenate encoder feature map

(cropped to match size) → 1024 channels
• Two 3×3 convolutions + ReLU → reduce to 512 channels
• 2×2 up-convolution → upsample and reduce channels to

256
•Block 3 & Block 2:

• Same as Block 4, with halved channels: 256→128→64
•Block 1 (Final Block):

• After skip connection: 128 channels
• Two 3×3 convolutions + ReLU → reduce to 64 channels
• Final 1×1 convolution → maps to number of classes (e.g.,

2 for binary)
• Followed by activation function (e.g., sigmoid for binary

classification)

3D U-Net
• Due to the abundance and representation power of volumetric data, most medical image modalities are

three-dimensional. 3D U-Net was commonly used in Brain tumor segmentation (e.g., BraTS dataset), Lung
nodule detection, and liver and pancreas segmentation.

• 3D U-Net is proposed to deal with 3D medical data directly. It replaces all 2D operations with their 3D
counterparts. The users can annotate some slices in the volume to be segmented. The model then learns
from these sparse annotations and provides a dense 3D segmentation.

• However, due to the limitation of computational resources, it only includes three down-sampling, which
cannot effectively extract deep-layer image features, leading to limited segmentation accuracy for
medical images.

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3D U-Net: Learning Dense Volumetric Segmentation from
Sparse Annotation (No. arXiv:1606.06650). arXiv. https://doi.org/10.48550/arXiv.1606.06650

https://doi.org/10.48550/arXiv.1606.06650

U-Net in Clinical Image Analysis Pipelines
U-Net plays a central role in clinical image

 analysis pipelines
 Overview of key stages:

• Input Preparation: Image acquisition,
normalization, and preprocessing for
consistent input format

• Architecture Search: Automatic
selection of the most efficient U-Net
variant via neural architecture search

• Postprocessing: Refinement of
segmentation masks (e.g.,
morphological operations)

• Clinical Application: Supports decisions
such as tumor growth tracking or
treatment planning

Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2022). Medical Image Segmentation
Review: The success of U-Net (No. arXiv:2211.14830). arXiv. http://arxiv.org/abs/2211.14830

http://arxiv.org/abs/2211.14830

Content
1 Introduction to Deep Learning

3 Modern DL Model Architectures

4 Loss Functions

2 Neural Network Basics

5 Optimization Techniques

8 Theoretical Properties

6 Convolutional Neural Networks (CNN)

7 Graph Neural Networks (GNNs/GCNs)

Examples:
• Social networks, citation networks, multi-agent systems
• Knowledge graphs
• Recommendation System
• Protein interaction networks
• Molecules
• Road maps
• Brain networks

Graph-Structured Data

Why Are Graph-structured Data Important?
Graphs capture complex relationships and dependencies between entities:
•Interconnected entities influence each other (e.g., in social networks, a person’s behavior depends on their connections).
•Knowledge is structured in relational forms (e.g., in knowledge graphs, concepts are linked based on meaning and context).
•Biological and medical data exhibit intricate interactions (e.g., protein-protein interaction networks, brain connectivity graphs).
By modeling data as graphs, we can better understand structures, uncover hidden patterns, and improve AI-driven decision-making.

Graph-structured data is a type of data representation where entities (nodes) and
their relationships (edges) are explicitly modeled as a graph. This structure captures the
connections between data points, allowing for more effective analysis of relational
patterns.

Graphs are a general
language for describing
and analyzing entities with
relations/interactions

Graph-Structured Data is Everywhere

StanfordCS224w

Graph-Structured Data is Everywhere

StanfordCS224w

Graph-Structured Data is Everywhere

StanfordCS224w
https://iit.adelaide.edu.au/news/list/2021/09/16/the-topology-of-e-commerce-governance

Challenges

3

Graph-structured data pose significant challenges due to their irregularity, high
dimensionality, and computational complexity. The major challenges include:

Ø Scalability and computational inefficiency

Ø Irregular and dynamic nature

Ø Data sparsity and missing values

Ø Complex relationships and non-Euclidean space

Ø Challenges in learning meaningful representations

Ø Privacy, security, and adversarial attacks

• Key Characteristics of Homogeneous Graphs
v Single Node Type: All nodes in the graph belong to the same category.

v Single Edge Type: All edges represent the same kind of relationship between nodes.
v Uniform Structure: The graph follows a consistent connectivity pattern, making it easier to apply traditional

graph-based algorithms.

• Examples of Homogeneous Graphs
Ø Social Networks (e.g., Facebook, Twitter, LinkedIn)

• Nodes: Users. Edges: "Friends" or "Follows" relationships between users.
Ø Citation Networks (e.g., Google Scholar, ArXiv, PubMed)

• Nodes: Research papers. Edges: "Cites" relationships, where one paper references another.
Ø Protein Interaction Networks (e.g., Biological Networks)
• Nodes: Proteins. Edges: "Interacts with" relationships, representing biological interactions between proteins.

Homogeneous Graph

How to build an effective graph?
v Nodes (or vertices) represent the fundamental entities in a graph. They can correspond to different

objects depending on the problem domain.

v Edges (or links) define relationships or interactions between nodes. Edges can be:
Ø Directed or undirected (e.g., one-way vs. mutual friendships).
Ø Weighted or unweighted (e.g., flight routes with different distances).
Ø Static or dynamic (e.g., evolving relationships over time).

v Choosing the Proper Network Representation. The way we construct a graph determines
our ability to extract meaningful insights. Different representations can lead to different outcomes.

Ø Cases Where Representation is Unique and Unambiguous
Ø Cases Where Representation is Not Unique

v How the Choice of Links Affects the Questions You Can Study
Ø The way you define connections (edges) influences the type of insights you can extract.
Ø If you ignore certain relationships, you may miss critical aspects of the data.
Ø If you add unnecessary edges, you might introduce noise and bias in analysis.

Graph Set-up
• Graph 𝐺	 = 	 (𝑉, 𝐸)	is defined by a set of nodes 𝑉 and a set of edges 𝐸 between these nodes. An edge

going from node 𝑢	 ∈ 	𝑉	to node 𝑣	 ∈ 	𝑉	as (𝑢, 𝑣) 	 ∈ 	𝐸.

DirectedUndirected

Adjacency Matrix
• A convenient way to represent graphs is through an adjacency matrix 𝐴	 ∈ 	ℝ|%|×|%|.	 We order the

nodes in the graph so that every node indexes a particular row and column in the adjacency matrix.

Graphs and Graph Signals

152

𝑣!

𝑣"

𝑣#

𝑣$
𝑣%

𝑣&
𝑣'

𝑣(

G = {V, E}

<latexit sha1_base64="42VCs5+ZRUKpd1Ngg1hLuTFE4wQ=">AAACE3icbVDLSsNAFL3xWesr6tLNYBFEpCRS0I1QFNFlBfuAJpTJdNoOnTyYmQgl5B/c+CtuXCji1o07/8ZJG4q2Hhg495x7mXuPF3EmlWV9GwuLS8srq4W14vrG5ta2ubPbkGEsCK2TkIei5WFJOQtoXTHFaSsSFPsep01veJX5zQcqJAuDezWKqOvjfsB6jGClpY557PhYDQjmyU2KLpCTTOtGeoKmxXXqpB2zZJWtMdA8sXNSghy1jvnldEMS+zRQhGMp27YVKTfBQjHCaVp0YkkjTIa4T9uaBtin0k3GN6XoUCtd1AuFfoFCY/X3RIJ9KUe+pzuzJeWsl4n/ee1Y9c7dhAVRrGhAJh/1Yo5UiLKAUJcJShQfaYKJYHpXRAZYYKJ0jEUdgj178jxpnJbtSrlyVylVL/M4CrAPB3AENpxBFW6hBnUg8AjP8ApvxpPxYrwbH5PWBSOf2YM/MD5/APcSnjs=</latexit>

V = {v1, . . . , vN}

<latexit sha1_base64="eujUti0rgCR0AzuKeTvh8pKTpsA=">AAACCXicbVDLSsNAFJ34rPUVdelmsAguSkmkoBuh6MaVVLAPaEKYTCft0MmDmZtCCd268VfcuFDErX/gzr9x0mahrQcGDufcw9x7/ERwBZb1baysrq1vbJa2yts7u3v75sFhW8WppKxFYxHLrk8UEzxiLeAgWDeRjIS+YB1/dJP7nTGTisfRA0wS5oZkEPGAUwJa8kzshASGlIisPcVX2MnGnl11+jGo6ti7c6Zlz6xYNWsGvEzsglRQgaZnfuk4TUMWARVEqZ5tJeBmRAKngk3LTqpYQuiIDFhP04iETLnZ7JIpPtVKHwex1C8CPFN/JzISKjUJfT2Z760WvVz8z+ulEFy6GY+SFFhE5x8FqcAQ47wW3OeSURATTQiVXO+K6ZBIQkGXl5dgL568TNrnNbteq9/XK43roo4SOkYn6AzZ6AI10C1qohai6BE9o1f0ZjwZL8a78TEfXTGKzBH6A+PzBwdfmUQ=</latexit>

E = {e1, . . . , eM}

<latexit sha1_base64="9YXDJ3L9YWv5SFH6StaxcK+jIjQ=">AAACCXicbVDLSsNAFJ34rPUVdelmsAguSkmkoBuhKIIboYJ9QFPCZHrTDp08mJkIJWTrxl9x40IRt/6BO//GSZuFth4YOJxzD3Pv8WLOpLKsb2NpeWV1bb20Ud7c2t7ZNff22zJKBIUWjXgkuh6RwFkILcUUh24sgAQeh443vsr9zgMIyaLwXk1i6AdkGDKfUaK05JrYCYgaUcLT6wxfYCcF1646g0jJKri3TlZ2zYpVs6bAi8QuSAUVaLrml47TJIBQUU6k7NlWrPopEYpRDlnZSSTEhI7JEHqahiQA2U+nl2T4WCsD7EdCv1Dhqfo7kZJAykng6cl8bznv5eJ/Xi9R/nk/ZWGcKAjp7CM/4VhFOK8FD5gAqvhEE0IF07tiOiKCUKXLy0uw509eJO3Tml2v1e/qlcZlUUcJHaIjdIJsdIYa6AY1UQtR9Iie0St6M56MF+Pd+JiNLhlF5gD9gfH5A7WzmRA=</latexit>

153

G = {V, E}

<latexit sha1_base64="42VCs5+ZRUKpd1Ngg1hLuTFE4wQ=">AAACE3icbVDLSsNAFL3xWesr6tLNYBFEpCRS0I1QFNFlBfuAJpTJdNoOnTyYmQgl5B/c+CtuXCji1o07/8ZJG4q2Hhg495x7mXuPF3EmlWV9GwuLS8srq4W14vrG5ta2ubPbkGEsCK2TkIei5WFJOQtoXTHFaSsSFPsep01veJX5zQcqJAuDezWKqOvjfsB6jGClpY557PhYDQjmyU2KLpCTTOtGeoKmxXXqpB2zZJWtMdA8sXNSghy1jvnldEMS+zRQhGMp27YVKTfBQjHCaVp0YkkjTIa4T9uaBtin0k3GN6XoUCtd1AuFfoFCY/X3RIJ9KUe+pzuzJeWsl4n/ee1Y9c7dhAVRrGhAJh/1Yo5UiLKAUJcJShQfaYKJYHpXRAZYYKJ0jEUdgj178jxpnJbtSrlyVylVL/M4CrAPB3AENpxBFW6hBnUg8AjP8ApvxpPxYrwbH5PWBSOf2YM/MD5/APcSnjs=</latexit>

V = {v1, . . . , vN}

<latexit sha1_base64="eujUti0rgCR0AzuKeTvh8pKTpsA=">AAACCXicbVDLSsNAFJ34rPUVdelmsAguSkmkoBuh6MaVVLAPaEKYTCft0MmDmZtCCd268VfcuFDErX/gzr9x0mahrQcGDufcw9x7/ERwBZb1baysrq1vbJa2yts7u3v75sFhW8WppKxFYxHLrk8UEzxiLeAgWDeRjIS+YB1/dJP7nTGTisfRA0wS5oZkEPGAUwJa8kzshASGlIisPcVX2MnGnl11+jGo6ti7c6Zlz6xYNWsGvEzsglRQgaZnfuk4TUMWARVEqZ5tJeBmRAKngk3LTqpYQuiIDFhP04iETLnZ7JIpPtVKHwex1C8CPFN/JzISKjUJfT2Z760WvVz8z+ulEFy6GY+SFFhE5x8FqcAQ47wW3OeSURATTQiVXO+K6ZBIQkGXl5dgL568TNrnNbteq9/XK43roo4SOkYn6AzZ6AI10C1qohai6BE9o1f0ZjwZL8a78TEfXTGKzBH6A+PzBwdfmUQ=</latexit>

E = {e1, . . . , eM}

<latexit sha1_base64="9YXDJ3L9YWv5SFH6StaxcK+jIjQ=">AAACCXicbVDLSsNAFJ34rPUVdelmsAguSkmkoBuhKIIboYJ9QFPCZHrTDp08mJkIJWTrxl9x40IRt/6BO//GSZuFth4YOJxzD3Pv8WLOpLKsb2NpeWV1bb20Ud7c2t7ZNff22zJKBIUWjXgkuh6RwFkILcUUh24sgAQeh443vsr9zgMIyaLwXk1i6AdkGDKfUaK05JrYCYgaUcLT6wxfYCcF1646g0jJKri3TlZ2zYpVs6bAi8QuSAUVaLrml47TJIBQUU6k7NlWrPopEYpRDlnZSSTEhI7JEHqahiQA2U+nl2T4WCsD7EdCv1Dhqfo7kZJAykng6cl8bznv5eJ/Xi9R/nk/ZWGcKAjp7CM/4VhFOK8FD5gAqvhEE0IF07tiOiKCUKXLy0uw509eJO3Tml2v1e/qlcZlUUcJHaIjdIJsdIYa6AY1UQtR9Iie0St6M56MF+Pd+JiNLhlF5gD9gfH5A7WzmRA=</latexit>

Graph Signal: f : V ! RN

<latexit sha1_base64="O0erWbsX4VxEhyHBy30lmJlgLF4=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0V0VRIpKK6KblxJFfuAJpbJdNIOncyEmYlSQj7Bjb/ixoUibl2682+ctF1o64ELh3Pu5d57gphRpR3n2yosLC4trxRXS2vrG5tb9vZOU4lEYtLAggnZDpAijHLS0FQz0o4lQVHASCsYXuR+655IRQW/1aOY+BHqcxpSjLSRuvZheAa9COkBRixtZtCTtD/QSErxMNGDIL3J7q66dtmpOGPAeeJOSRlMUe/aX15P4CQiXGOGlOq4Tqz9FElNMSNZyUsUiREeoj7pGMpRRJSfjh/K4IFRejAU0hTXcKz+nkhRpNQoCkxnfqOa9XLxP6+T6PDUTymPE004niwKEwa1gHk6sEclwZqNDEFYUnMrxAMkEdYmw5IJwZ19eZ40jytutVK9rpZr59M4imAP7IMj4IITUAOXoA4aAINH8AxewZv1ZL1Y79bHpLVgTWd2wR9Ynz/cY50h</latexit>

V �!

2

66666666664

f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)
f(8)

3

77777777775

<latexit sha1_base64="tmQfZ7QSxqnO9Uwcdb5eC3rmOJc=">AAACbHicbVHLbtQwFHVSHiU8OhQWoArJYgSa2YySMtAuK9iwLBIzrTSJRo7nJmPVsSP7BjSKsuIP2fEJbPgGnIcQtFzJOsfnPmwfp6UUFsPwh+fv3bp95+7+veD+g4ePDkaPD5dWV4bDgmupzWXKLEihYIECJVyWBliRSrhIrz60+YsvYKzQ6jPuSkgKliuRCc7QSevRt7hguOVM1suGxlKr3Ih8i8wY/dXtIcNVnEIuVO0ktmtq3gR1Nommrjpu2fEf9mbaOJJN5tMO3vbwroeTHk6nQQxqMwyLu7OS9WgczsIu6E0SDWRMhjhfj77HG82rAhRyyaxdRWGJiRuKgktogriyUDJ+xXJYOapYATapO7Ma+sopG5pp45ZC2ql/d9SssHZXpK6ytcZez7Xi/3KrCrPTpBaqrBAU7w/KKklR09Z5uhEGOMqdI4wb4e5K+ZYZxtH9T+BMiK4/+SZZHs+i+Wz+aT4+ez/YsU+OyEsyIRE5IWfkIzknC8LJT+/Ae+Y99375T/0j/0Vf6ntDzxPyT/ivfwPHybaM</latexit>

Graphs and Graph Signals

154

G = {V, E}

<latexit sha1_base64="42VCs5+ZRUKpd1Ngg1hLuTFE4wQ=">AAACE3icbVDLSsNAFL3xWesr6tLNYBFEpCRS0I1QFNFlBfuAJpTJdNoOnTyYmQgl5B/c+CtuXCji1o07/8ZJG4q2Hhg495x7mXuPF3EmlWV9GwuLS8srq4W14vrG5ta2ubPbkGEsCK2TkIei5WFJOQtoXTHFaSsSFPsep01veJX5zQcqJAuDezWKqOvjfsB6jGClpY557PhYDQjmyU2KLpCTTOtGeoKmxXXqpB2zZJWtMdA8sXNSghy1jvnldEMS+zRQhGMp27YVKTfBQjHCaVp0YkkjTIa4T9uaBtin0k3GN6XoUCtd1AuFfoFCY/X3RIJ9KUe+pzuzJeWsl4n/ee1Y9c7dhAVRrGhAJh/1Yo5UiLKAUJcJShQfaYKJYHpXRAZYYKJ0jEUdgj178jxpnJbtSrlyVylVL/M4CrAPB3AENpxBFW6hBnUg8AjP8ApvxpPxYrwbH5PWBSOf2YM/MD5/APcSnjs=</latexit>

V = {v1, . . . , vN}

<latexit sha1_base64="eujUti0rgCR0AzuKeTvh8pKTpsA=">AAACCXicbVDLSsNAFJ34rPUVdelmsAguSkmkoBuh6MaVVLAPaEKYTCft0MmDmZtCCd268VfcuFDErX/gzr9x0mahrQcGDufcw9x7/ERwBZb1baysrq1vbJa2yts7u3v75sFhW8WppKxFYxHLrk8UEzxiLeAgWDeRjIS+YB1/dJP7nTGTisfRA0wS5oZkEPGAUwJa8kzshASGlIisPcVX2MnGnl11+jGo6ti7c6Zlz6xYNWsGvEzsglRQgaZnfuk4TUMWARVEqZ5tJeBmRAKngk3LTqpYQuiIDFhP04iETLnZ7JIpPtVKHwex1C8CPFN/JzISKjUJfT2Z760WvVz8z+ulEFy6GY+SFFhE5x8FqcAQ47wW3OeSURATTQiVXO+K6ZBIQkGXl5dgL568TNrnNbteq9/XK43roo4SOkYn6AzZ6AI10C1qohai6BE9o1f0ZjwZL8a78TEfXTGKzBH6A+PzBwdfmUQ=</latexit>

E = {e1, . . . , eM}

<latexit sha1_base64="9YXDJ3L9YWv5SFH6StaxcK+jIjQ=">AAACCXicbVDLSsNAFJ34rPUVdelmsAguSkmkoBuhKIIboYJ9QFPCZHrTDp08mJkIJWTrxl9x40IRt/6BO//GSZuFth4YOJxzD3Pv8WLOpLKsb2NpeWV1bb20Ud7c2t7ZNff22zJKBIUWjXgkuh6RwFkILcUUh24sgAQeh443vsr9zgMIyaLwXk1i6AdkGDKfUaK05JrYCYgaUcLT6wxfYCcF1646g0jJKri3TlZ2zYpVs6bAi8QuSAUVaLrml47TJIBQUU6k7NlWrPopEYpRDlnZSSTEhI7JEHqahiQA2U+nl2T4WCsD7EdCv1Dhqfo7kZJAykng6cl8bznv5eJ/Xi9R/nk/ZWGcKAjp7CM/4VhFOK8FD5gAqvhEE0IF07tiOiKCUKXLy0uw509eJO3Tml2v1e/qlcZlUUcJHaIjdIJsdIYa6AY1UQtR9Iie0St6M56MF+Pd+JiNLhlF5gD9gfH5A7WzmRA=</latexit>

Graph Signal:

V �!

2

66666666664

f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)
f(8)

3

77777777775

<latexit sha1_base64="tmQfZ7QSxqnO9Uwcdb5eC3rmOJc=">AAACbHicbVHLbtQwFHVSHiU8OhQWoArJYgSa2YySMtAuK9iwLBIzrTSJRo7nJmPVsSP7BjSKsuIP2fEJbPgGnIcQtFzJOsfnPmwfp6UUFsPwh+fv3bp95+7+veD+g4ePDkaPD5dWV4bDgmupzWXKLEihYIECJVyWBliRSrhIrz60+YsvYKzQ6jPuSkgKliuRCc7QSevRt7hguOVM1suGxlKr3Ih8i8wY/dXtIcNVnEIuVO0ktmtq3gR1Nommrjpu2fEf9mbaOJJN5tMO3vbwroeTHk6nQQxqMwyLu7OS9WgczsIu6E0SDWRMhjhfj77HG82rAhRyyaxdRWGJiRuKgktogriyUDJ+xXJYOapYATapO7Ma+sopG5pp45ZC2ql/d9SssHZXpK6ytcZez7Xi/3KrCrPTpBaqrBAU7w/KKklR09Z5uhEGOMqdI4wb4e5K+ZYZxtH9T+BMiK4/+SZZHs+i+Wz+aT4+ez/YsU+OyEsyIRE5IWfkIzknC8LJT+/Ae+Y99375T/0j/0Vf6ntDzxPyT/ivfwPHybaM</latexit>

f : V ! RN⇥d

<latexit sha1_base64="cff3ehQk+qbrB307iKWNOb0d2ps=">AAACGXicbVDLSsNAFJ3UV62vqEs3g0VwVRIpKK6KblxJFfuAJpbJdNIOTh7M3Cgl5Dfc+CtuXCjiUlf+jZM2C209cOFwzr3ce48XC67Asr6N0sLi0vJKebWytr6xuWVu77RVlEjKWjQSkex6RDHBQ9YCDoJ1Y8lI4AnW8e7Oc79zz6TiUXgD45i5ARmG3OeUgJb6puWfYicgMKJEpO3MkXw4AiJl9DCVPS+9zm7TSwd4wBQeZH2zatWsCfA8sQtSRQWaffPTGUQ0CVgIVBClerYVg5sSCZwKllWcRLGY0DsyZD1NQ6L3uOnkswwfaGWA/UjqCgFP1N8TKQmUGgee7syvVbNeLv7n9RLwT9yUh3ECLKTTRX4iMEQ4jwkPuGQUxFgTQiXXt2I6IpJQ0GFWdAj27MvzpH1Us+u1+lW92jgr4iijPbSPDpGNjlEDXaAmaiGKHtEzekVvxpPxYrwbH9PWklHM7KI/ML5+AKGcoVU=</latexit>

Graphs and Graph Signals

155

G = {V, E}

<latexit sha1_base64="42VCs5+ZRUKpd1Ngg1hLuTFE4wQ=">AAACE3icbVDLSsNAFL3xWesr6tLNYBFEpCRS0I1QFNFlBfuAJpTJdNoOnTyYmQgl5B/c+CtuXCji1o07/8ZJG4q2Hhg495x7mXuPF3EmlWV9GwuLS8srq4W14vrG5ta2ubPbkGEsCK2TkIei5WFJOQtoXTHFaSsSFPsep01veJX5zQcqJAuDezWKqOvjfsB6jGClpY557PhYDQjmyU2KLpCTTOtGeoKmxXXqpB2zZJWtMdA8sXNSghy1jvnldEMS+zRQhGMp27YVKTfBQjHCaVp0YkkjTIa4T9uaBtin0k3GN6XoUCtd1AuFfoFCY/X3RIJ9KUe+pzuzJeWsl4n/ee1Y9c7dhAVRrGhAJh/1Yo5UiLKAUJcJShQfaYKJYHpXRAZYYKJ0jEUdgj178jxpnJbtSrlyVylVL/M4CrAPB3AENpxBFW6hBnUg8AjP8ApvxpPxYrwbH5PWBSOf2YM/MD5/APcSnjs=</latexit>

V = {v1, . . . , vN}

<latexit sha1_base64="eujUti0rgCR0AzuKeTvh8pKTpsA=">AAACCXicbVDLSsNAFJ34rPUVdelmsAguSkmkoBuh6MaVVLAPaEKYTCft0MmDmZtCCd268VfcuFDErX/gzr9x0mahrQcGDufcw9x7/ERwBZb1baysrq1vbJa2yts7u3v75sFhW8WppKxFYxHLrk8UEzxiLeAgWDeRjIS+YB1/dJP7nTGTisfRA0wS5oZkEPGAUwJa8kzshASGlIisPcVX2MnGnl11+jGo6ti7c6Zlz6xYNWsGvEzsglRQgaZnfuk4TUMWARVEqZ5tJeBmRAKngk3LTqpYQuiIDFhP04iETLnZ7JIpPtVKHwex1C8CPFN/JzISKjUJfT2Z760WvVz8z+ulEFy6GY+SFFhE5x8FqcAQ47wW3OeSURATTQiVXO+K6ZBIQkGXl5dgL568TNrnNbteq9/XK43roo4SOkYn6AzZ6AI10C1qohai6BE9o1f0ZjwZL8a78TEfXTGKzBH6A+PzBwdfmUQ=</latexit>

E = {e1, . . . , eM}

<latexit sha1_base64="9YXDJ3L9YWv5SFH6StaxcK+jIjQ=">AAACCXicbVDLSsNAFJ34rPUVdelmsAguSkmkoBuhKIIboYJ9QFPCZHrTDp08mJkIJWTrxl9x40IRt/6BO//GSZuFth4YOJxzD3Pv8WLOpLKsb2NpeWV1bb20Ud7c2t7ZNff22zJKBIUWjXgkuh6RwFkILcUUh24sgAQeh443vsr9zgMIyaLwXk1i6AdkGDKfUaK05JrYCYgaUcLT6wxfYCcF1646g0jJKri3TlZ2zYpVs6bAi8QuSAUVaLrml47TJIBQUU6k7NlWrPopEYpRDlnZSSTEhI7JEHqahiQA2U+nl2T4WCsD7EdCv1Dhqfo7kZJAykng6cl8bznv5eJ/Xi9R/nk/ZWGcKAjp7CM/4VhFOK8FD5gAqvhEE0IF07tiOiKCUKXLy0uw509eJO3Tml2v1e/qlcZlUUcJHaIjdIJsdIYa6AY1UQtR9Iie0St6M56MF+Pd+JiNLhlF5gD9gfH5A7WzmRA=</latexit>

Graph Signal: f : V ! RN

<latexit sha1_base64="O0erWbsX4VxEhyHBy30lmJlgLF4=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0V0VRIpKK6KblxJFfuAJpbJdNIOncyEmYlSQj7Bjb/ixoUibl2682+ctF1o64ELh3Pu5d57gphRpR3n2yosLC4trxRXS2vrG5tb9vZOU4lEYtLAggnZDpAijHLS0FQz0o4lQVHASCsYXuR+655IRQW/1aOY+BHqcxpSjLSRuvZheAa9COkBRixtZtCTtD/QSErxMNGDIL3J7q66dtmpOGPAeeJOSRlMUe/aX15P4CQiXGOGlOq4Tqz9FElNMSNZyUsUiREeoj7pGMpRRJSfjh/K4IFRejAU0hTXcKz+nkhRpNQoCkxnfqOa9XLxP6+T6PDUTymPE004niwKEwa1gHk6sEclwZqNDEFYUnMrxAMkEdYmw5IJwZ19eZ40jytutVK9rpZr59M4imAP7IMj4IITUAOXoA4aAINH8AxewZv1ZL1Y79bHpLVgTWd2wR9Ynz/cY50h</latexit>

V �!

2

66666666664

f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)
f(8)

3

77777777775

<latexit sha1_base64="tmQfZ7QSxqnO9Uwcdb5eC3rmOJc=">AAACbHicbVHLbtQwFHVSHiU8OhQWoArJYgSa2YySMtAuK9iwLBIzrTSJRo7nJmPVsSP7BjSKsuIP2fEJbPgGnIcQtFzJOsfnPmwfp6UUFsPwh+fv3bp95+7+veD+g4ePDkaPD5dWV4bDgmupzWXKLEihYIECJVyWBliRSrhIrz60+YsvYKzQ6jPuSkgKliuRCc7QSevRt7hguOVM1suGxlKr3Ih8i8wY/dXtIcNVnEIuVO0ktmtq3gR1Nommrjpu2fEf9mbaOJJN5tMO3vbwroeTHk6nQQxqMwyLu7OS9WgczsIu6E0SDWRMhjhfj77HG82rAhRyyaxdRWGJiRuKgktogriyUDJ+xXJYOapYATapO7Ma+sopG5pp45ZC2ql/d9SssHZXpK6ytcZez7Xi/3KrCrPTpBaqrBAU7w/KKklR09Z5uhEGOMqdI4wb4e5K+ZYZxtH9T+BMiK4/+SZZHs+i+Wz+aT4+ez/YsU+OyEsyIRE5IWfkIzknC8LJT+/Ae+Y99375T/0j/0Vf6ntDzxPyT/ivfwPHybaM</latexit>

Graphs and Graph Signals

156

𝑣!

𝑣"

𝑣#

𝑣$
𝑣%

𝑣&
𝑣'

𝑣(

Spectral graph theory. American Mathematical Soc.; 1997.

Matrix Representations of Graphs

157

𝑣!

𝑣"

𝑣#

𝑣$
𝑣%

𝑣&
𝑣'

𝑣(

0

BBBBBBBBBB@

0 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 1 1 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0

1

CCCCCCCCCCA

<latexit sha1_base64="bYgTG2GftEf70jJFqAylE0Byv4E=">AAAClnicbZFdS8MwFIbT+j2/prsRvCkORW9GKwP1RsQhejnBqbCOkWanWzBNS3IqjrKf5J/xzn9jtnZufpwQePOc85KTkyARXKPrflr2wuLS8srqWml9Y3Nru7yz+6jjVDFosVjE6jmgGgSX0EKOAp4TBTQKBDwFL41x/ukVlOaxfMBhAp2I9iUPOaNoULf87gsI8dgPoM9lFlFU/G3kHnlH7mz5/viYIy8Huci3l4MZcqdgDuWWmWnOUqCp5dvog+xNO/IV7w/wpFuuujV3Es5f4RWiSopodssffi9maQQSmaBatz03wU5GFXImYFTyUw0JZS+0D20jJY1Ad7LJWEfOoSE9J4yV2RKdCZ13ZDTSehgFptK0OdC/c2P4X66dYnjeybhMUgTJ8ovCVDgYO+M/cnpcAUMxNIIyxU2vDhtQRRmanyyZIXi/n/xXPJ7WvHqtfl+vXl0X41gl++SAHBOPnJErckeapEWYVbEurGurYe/Zl/aNfZuX2lbhqZAfYTe/AD7Ys8k=</latexit>

𝑨

Adjacency Matrix

Adjacency Matrix: 𝐴 𝑖, 𝑗 = 1 if 𝑣1 is adjacent to 𝑣2
 𝐴 𝑖, 𝑗 = 0, otherwise

Spectral graph theory. American Mathematical Soc.; 1997.

Matrix Representations of Graphs

158

𝑣!

𝑣"

𝑣#

𝑣$
𝑣%

𝑣&
𝑣'

𝑣(

0

BBBBBBBBBB@

0 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 1 1 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0

1

CCCCCCCCCCA

<latexit sha1_base64="bYgTG2GftEf70jJFqAylE0Byv4E=">AAAClnicbZFdS8MwFIbT+j2/prsRvCkORW9GKwP1RsQhejnBqbCOkWanWzBNS3IqjrKf5J/xzn9jtnZufpwQePOc85KTkyARXKPrflr2wuLS8srqWml9Y3Nru7yz+6jjVDFosVjE6jmgGgSX0EKOAp4TBTQKBDwFL41x/ukVlOaxfMBhAp2I9iUPOaNoULf87gsI8dgPoM9lFlFU/G3kHnlH7mz5/viYIy8Huci3l4MZcqdgDuWWmWnOUqCp5dvog+xNO/IV7w/wpFuuujV3Es5f4RWiSopodssffi9maQQSmaBatz03wU5GFXImYFTyUw0JZS+0D20jJY1Ad7LJWEfOoSE9J4yV2RKdCZ13ZDTSehgFptK0OdC/c2P4X66dYnjeybhMUgTJ8ovCVDgYO+M/cnpcAUMxNIIyxU2vDhtQRRmanyyZIXi/n/xXPJ7WvHqtfl+vXl0X41gl++SAHBOPnJErckeapEWYVbEurGurYe/Zl/aNfZuX2lbhqZAfYTe/AD7Ys8k=</latexit>

0

BBBBBBBBBB@

1 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

<latexit sha1_base64="zVK+q0i5UgY+q/vjKcGgl4PwH+M=">AAACl3icbZHNTuMwEMedwC7Q/aDL7gVxsbbaiL1UDlRaxAW0IMQRpC0gNVXluJPWwnEie4Koor4SD7M33ga3BCiBsSz99ZsPj2fiXEmLjN17/tLyh48rq2uNT5+/fF1vftu4sFlhBHRFpjJzFXMLSmrookQFV7kBnsYKLuPro5n/8gaMlZn+h5Mc+ikfaZlIwdGhQfMuUpDgdhTDSOoy5Wjk7TQM2OKJIhbs1gELOnXAgp06eEYvoEpcBPPyrwELwgj08KmjyMjRGH/TQbPF2mxu9K0IK9EilZ0Nmv+jYSaKFDQKxa3thSzHfskNSqFg2ogKCzkX13wEPSc1T8H2y/lcp/SXI0OaZMZdjXROFzNKnlo7SWMX6foc27pvBt/z9QpM9vql1HmBoMXjQ0mhKGZ0tiQ6lAYEqokTXBjpeqVizA0X6FbZcEMI619+Ky522mGn3TnvtA7/VuNYJVvkJ9kmIflDDskpOSNdIrwf3r535B37m/6Bf+KfPob6XpXznbwy//wBvv+z8w==</latexit>

𝑨𝑫

−

Adjacency MatrixDegree Matrix

Degree Matrix:

Adjacency Matrix: 𝐴 𝑖, 𝑗 = 1 if 𝑣1 is adjacent to 𝑣2
 𝐴 𝑖, 𝑗 = 0, otherwise

D = diag(degree(v1), . . . , degree(vN))

<latexit sha1_base64="2C5cGQCtppY+ODZyDdO4Cbe5ip8=">AAACHnicbVDLSgNBEJyNrxhfUY9eBoOQgIRdiehFCOrBk0QwGkhCmJ3tjYOzD2Z6xbDkS7z4K148KCJ40r9xkiziq6ChqOqe6S43lkKjbX9Yuanpmdm5/HxhYXFpeaW4unaho0RxaPJIRqrlMg1ShNBEgRJasQIWuBIu3eujkX95A0qLKDzHQQzdgPVD4QvO0Ei94m7acX16PKQHtINwi6knWH9Y9qCvAMo3Paey3fEi1Nv0SzqtVHrFkl21x6B/iZOREsnQ6BXfzCs8CSBELpnWbceOsZsyhYJLGBY6iYaY8WvWh7ahIQtAd9PxeUO6ZRSP+pEyFSIdq98nUhZoPQhc0xkwvNK/vZH4n9dO0N/vpiKME4SQTz7yE0kxoqOsqCcUcJQDQxhXwuxK+RVTjKNJtGBCcH6f/Jdc7FSdWrV2VivVD7M48mSDbJIyccgeqZMT0iBNwskdeSBP5Nm6tx6tF+t10pqzspl18gPW+yepqaDx</latexit>

Spectral graph theory. American Mathematical Soc.; 1997.

Matrix Representations of Graphs

159

𝑣!

𝑣"

𝑣#

𝑣$
𝑣%

𝑣&
𝑣'

𝑣(

0

BBBBBBBBBB@

0 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 1 1 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0

1

CCCCCCCCCCA

<latexit sha1_base64="bYgTG2GftEf70jJFqAylE0Byv4E=">AAAClnicbZFdS8MwFIbT+j2/prsRvCkORW9GKwP1RsQhejnBqbCOkWanWzBNS3IqjrKf5J/xzn9jtnZufpwQePOc85KTkyARXKPrflr2wuLS8srqWml9Y3Nru7yz+6jjVDFosVjE6jmgGgSX0EKOAp4TBTQKBDwFL41x/ukVlOaxfMBhAp2I9iUPOaNoULf87gsI8dgPoM9lFlFU/G3kHnlH7mz5/viYIy8Huci3l4MZcqdgDuWWmWnOUqCp5dvog+xNO/IV7w/wpFuuujV3Es5f4RWiSopodssffi9maQQSmaBatz03wU5GFXImYFTyUw0JZS+0D20jJY1Ad7LJWEfOoSE9J4yV2RKdCZ13ZDTSehgFptK0OdC/c2P4X66dYnjeybhMUgTJ8ovCVDgYO+M/cnpcAUMxNIIyxU2vDhtQRRmanyyZIXi/n/xXPJ7WvHqtfl+vXl0X41gl++SAHBOPnJErckeapEWYVbEurGurYe/Zl/aNfZuX2lbhqZAfYTe/AD7Ys8k=</latexit>

0

BBBBBBBBBB@

1 �1 0 0 0 0 0 0
�1 3 �1 0 0 �1 0 0
0 �1 4 �1 0 �1 �1 0
0 0 �1 2 �1 0 0 0
0 0 0 �1 2 �1 0 0
0 �1 �1 0 �1 4 �1 0
0 0 �1 0 0 �1 3 �1
0 0 0 0 0 0 �1 1

1

CCCCCCCCCCA

<latexit sha1_base64="op2Zm3X6paBh2UB3V8RAzpbqAR4=">AAACq3icbVFNbxMxEPUuhZbwFeiRi9WIKhwS7ZaV2mMFl55QEaSJGkeR15lNrHq9K3u2Ilrlz/ETuPFv8H6kkLZjWfPmjd94PI5zJS0GwR/Pf7L39Nn+wfPOi5evXr/pvn13ZbPCCBiJTGVmEnMLSmoYoUQFk9wAT2MF4/jmS5Uf34KxMtM/cJ3DLOVLLRMpODpq3v3FFCTYZzEspS5Tjkb+3ITHg/A4+LcYc/GnLdk4xmoUNeGgkVRkHZzcVWioHbKVboXRrrR11XVb7V2FkIFebLtkRi5X+JHOu71gGNRGH4KwBT3S2uW8+5stMlGkoFEobu00DHKcldygFAo2HVZYyLm44UuYOqh5CnZW1rPe0A+OWdAkM25rpDX7v6LkqbXrNHYnXZ8rez9XkY/lpgUmZ7NS6rxA0KK5KCkUxYxWH0cX0oBAtXaACyNdr1SsuOEC3fd23BDC+09+CK5OhmE0jL5FvfPP7TgOyHtyRPokJKfknFyQSzIiwut7X72xN/EH/nf/2mfNUd9rNYdkx3z4Cy3zuFM=</latexit>

0

BBBBBBBBBB@

1 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

<latexit sha1_base64="zVK+q0i5UgY+q/vjKcGgl4PwH+M=">AAACl3icbZHNTuMwEMedwC7Q/aDL7gVxsbbaiL1UDlRaxAW0IMQRpC0gNVXluJPWwnEie4Koor4SD7M33ga3BCiBsSz99ZsPj2fiXEmLjN17/tLyh48rq2uNT5+/fF1vftu4sFlhBHRFpjJzFXMLSmrookQFV7kBnsYKLuPro5n/8gaMlZn+h5Mc+ikfaZlIwdGhQfMuUpDgdhTDSOoy5Wjk7TQM2OKJIhbs1gELOnXAgp06eEYvoEpcBPPyrwELwgj08KmjyMjRGH/TQbPF2mxu9K0IK9EilZ0Nmv+jYSaKFDQKxa3thSzHfskNSqFg2ogKCzkX13wEPSc1T8H2y/lcp/SXI0OaZMZdjXROFzNKnlo7SWMX6foc27pvBt/z9QpM9vql1HmBoMXjQ0mhKGZ0tiQ6lAYEqokTXBjpeqVizA0X6FbZcEMI619+Ky522mGn3TnvtA7/VuNYJVvkJ9kmIflDDskpOSNdIrwf3r535B37m/6Bf+KfPob6XpXznbwy//wBvv+z8w==</latexit>

𝑨𝑫 𝑳

− =

Adjacency MatrixDegree Matrix Laplacian Matrix

Degree Matrix:

Adjacency Matrix: 𝐴 𝑖, 𝑗 = 1 if 𝑣1 is adjacent to 𝑣2
 𝐴 𝑖, 𝑗 = 0, otherwise

D = diag(degree(v1), . . . , degree(vN))

<latexit sha1_base64="2C5cGQCtppY+ODZyDdO4Cbe5ip8=">AAACHnicbVDLSgNBEJyNrxhfUY9eBoOQgIRdiehFCOrBk0QwGkhCmJ3tjYOzD2Z6xbDkS7z4K148KCJ40r9xkiziq6ChqOqe6S43lkKjbX9Yuanpmdm5/HxhYXFpeaW4unaho0RxaPJIRqrlMg1ShNBEgRJasQIWuBIu3eujkX95A0qLKDzHQQzdgPVD4QvO0Ei94m7acX16PKQHtINwi6knWH9Y9qCvAMo3Paey3fEi1Nv0SzqtVHrFkl21x6B/iZOREsnQ6BXfzCs8CSBELpnWbceOsZsyhYJLGBY6iYaY8WvWh7ahIQtAd9PxeUO6ZRSP+pEyFSIdq98nUhZoPQhc0xkwvNK/vZH4n9dO0N/vpiKME4SQTz7yE0kxoqOsqCcUcJQDQxhXwuxK+RVTjKNJtGBCcH6f/Jdc7FSdWrV2VivVD7M48mSDbJIyccgeqZMT0iBNwskdeSBP5Nm6tx6tF+t10pqzspl18gPW+yepqaDx</latexit>

Spectral graph theory. American Mathematical Soc.; 1997.

Matrix Representations of Graphs

How to Deal with Multi-relation?

Heterogeneous Graph
Key Characteristics of Heterogeneous Graphs
v Multiple Node Types: Nodes represent different entities, such as users, items, papers, or institutions.
v Multiple Edge Types: Different relationships exist between nodes, such as "authored by," "cites"
v Rich Semantic Information: The diverse relationships provide deeper insights than homogeneous graphs.

Examples of Heterogeneous Graphs
Ø Academic Citation Network
Nodes: Papers, authors, journals. Edges: "Cites" (paper-to-paper), "Authored by" (paper-to-author).
Ø Knowledge Graphs (e.g., Google Knowledge Graph, Wikidata)
Nodes: People, locations, organizations, events.
Edges: "Works at" (person-to-organization), "Located in" (place-to-country).

Why Are Heterogeneous Graphs Important?
q More expressive than homogeneous graphs, capturing richer information.
q Essential for real-world applications in social networks, recommendation systems, and knowledge graphs.
q Enhance AI models by incorporating multi-type relationships in representation learning.

Node, Edge, and Global Features
Node features represent characteristics or attributes of individual nodes for downstream tasks like node classification,
clustering, and link prediction.
Common Types of Node Features
v Categorical Features: Node types (e.g., "user" or "product" in a recommendation system).
v Numerical Features: Values like age, price, or degree centrality.
v Textual Features: Descriptions, reviews, or labels in textual form.
v Vectorized Embeddings: Learned representations from NLP models or pre-trained embeddings.

Edge features define relationships or interactions between nodes for link prediction and edge classification.
Common Types of Edge Features
Ø Weight: The strength or importance of a connection (e.g., frequency of interactions).
Ø Type: The kind of relationship (e.g., friendship, purchase, citation).
Ø Timestamp: When the connection was established (useful for dynamic graphs).
Ø Directionality: Whether the edge is directed or undirected.

Graph-Level Features: graphs have global properties or features that apply to the entire network.
Examples include:

Ø Graph Density (How connected is the graph?).
Ø Average Clustering Coefficient (Tendency of nodes to form clusters).
Ø Graph Size (Number of nodes and edges).

Different Types of Task

Graph-based machine learning involves multiple
tasks categorized by the focus of analysis. The
main categories of tasks include:
▶ Node-Level Tasks: Predicting properties of
individual nodes.
▶ Edge-Level Tasks: Inferring relationships
between node pairs.
▶ Community-Level Tasks: Detecting and
analyzing groups of closely connected nodes.
▶ Graph-Level Tasks: Understanding global
graph properties.

Jie Zhou, et al. (2020). AI Open

GNN Designs
Step Task

1. Define Graph Nodes, edges, features

2. Feature Engineering Define node and edge features

3. Message Passing Select aggregation method

4. Choose Architecture GCN, GAT, GraphSAGE, etc.

5. Loss Function Supervised (cross-entropy), unsupervised
(contrastive)

6. Training Use mini-batching and optimizers

7. Evaluation Classification, link prediction, graph-level
tasks

8. Deployment Optimize for inference speed

📌 Summary

Key Modules in Graph Neural Networks
GNNs process graph-structured data by propagating and aggregating information across nodes and edges.
Three key modules in GNNs:
v Sampling Module
Aims to reduce the size of each node’s neighborhood, especially for large graphs, preventing the neighbor explosion
problem.
v Propagation Module
Ø Performs message passing via convolutions (e.g., GCNs) or recurrent operators (e.g., GRUs) on node features.
Ø Uses skip connections to mitigate over-smoothing and incorporate historical representations.
v Pooling Module
Aggregates node-level embeddings into subgraph or graph-level representations, extracting higher-level features needed for
tasks like graph classification.

The Sampling Module
• Efficient Graph Processing via Sampling
• ▶ Direct propagation on large graphs is computationally infeasible.
• ▶ The Sampling Module reduces cost by selecting subsets of nodes or edges.
• Key Challenge:
v Neighbor Explosion: The number of neighbors grows exponentially with depth. GNNs aggregate messages from each node’s neighbors in the

previous layer. Tracking back multiple layers can exponentially increase the neighbor set. Storing and processing all neighborhood information
becomes intractable for large graphs.

v Computational Efficiency: Full neighbor aggregation is impractical for large graphs.
v Memory Constraints: Storing all neighborhood information for each node is infeasible.
v Scalability: Enables GNNs to handle large graphs effectively.
• Common sampling techniques: Node Sampling; Layer Sampling; Subgraph Sampling.

Impact on Permutation Properties:
▶ Node-level predictions remain unchanged under node reordering.
▶ Node representations transform consistently when input ordering changes.
Impact on Task Performance:
▶ Preserve downstream performance in classification, link prediction, etc.
▶ Sampling strategies must capture essential structural information despite reduced neighborhood size.
▶ Aim for low variance while avoiding high computational costs.

• Node Sampling: Selects a subset of nodes and their immediate neighbors.

• ▶ Reduces computational complexity by limiting the number of participating nodes.
• ▶ Often used in algorithms like GraphSAGE.

Layer Sampling: It selects a fixed number of neighbors per layer.
▶ Controls exponential growth by restricting the number of aggregated neighbors.
▶ Balances efficiency and performance in large-scale graphs.

Subgraph Sampling: Extracts a subgraph based on connectivity patterns.
▶ Useful for mini-batch training by working on graph partitions.
▶ Preserves graph topology while reducing computation.

Common Sampling Methods

Jie Zhou, et al. (2020). AI Open

The Propagation Module
• Facilitates message passing between nodes to integrate structural and feature information.

• Key operations:
v Convolution Operators: Aggregate neighbor information.
v Recurrent Operators: Maintain temporal dependencies in dynamic graphs (e.g., Graph GRU, Graph LSTM).
v Skip Connections: Mitigate over-smoothing by retaining historical representations.

Jie Zhou, et al. (2020). AI Open

• Permutation Equivariance (PE): Node embeddings maintain
• structure when node order changes.
• Permutation Invariance (PI): Graph-level representations

remain
• unchanged under different node orderings.

Permutation Equivariance and Invariance

Key Observation:
▶ A graph does not have a fixed, canonical ordering of its nodes.
▶ Any permutation of node indices can still represent the same
underlying graph.
Implication:
▶ The labeling or numbering of nodes is arbitrary.
▶ Reorder node IDs without changing the graph’s structure.

Definition of PE and PI

P

• Designing GNN Layers must preserve or respect permutations at each update step. PI and PE are crucial for robust GNN
models that handle node reorderings gracefully.

v Sampling + Approximation: Avoid violating permutation properties in large-scale graphs (random sampling, etc.).
v Pooling Mechanisms: Summation/average pooling ensures invariant graph-level outputs.
v Challenges: Hierarchical pooling, dynamic graphs, and advanced aggregator designs can complicate these properties.

Designing GNN

GNN consist of multiple permutation equivariant / invariant functions. A general GNN framework

The Pooling Module
• Extracting High-Level Representations
v Generates compact representations of subgraphs or entire graphs.
v Essential for tasks like graph classification and hierarchical learning.
• Key pooling techniques:
v Node Dropout Pooling: Drops less informative nodes (e.g., Top-K pooling).
v Cluster-based Pooling: Merges similar nodes into clusters (e.g., DiffPool).
v Attention-based Pooling: Assigns weights to nodes based on learned importance.
v Maintaining Permutation Invariance: Ensures that graph representations remain unchanged.
• Two main categories:
v Direct (Readout) Pooling Modules: Aggregate node embeddings into a single graph-level embedding in one step.
v Hierarchical Pooling Modules: Iteratively coarsen (or cluster) the graph, creating a hierarchy of smaller graphs or subgraphs.

Jie Zhou, et al. (2020). AI Open

Training Approaches
v Supervised Learning: Uses labeled data to train GNNs for node/graph classification.
v Semi-supervised Learning: Uses both labeled and unlabeled data to improve training.
v Unsupervised Learning: Uses self-supervision (e.g., contrastive learning) to learn node embeddings.

GNN Training Framework

Prediction Tasks in GNNs
v Node-focused: Predicts node labels (e.g., node classification) using an MLP or softmax layer.
v Edge-focused: Predicts relationships between nodes (e.g., link prediction) using similarity functions or MLPs.
v Graph-focused: Generates graph embeddings using pooling layers for tasks like graph classification.

Types of Nodes in GNN Training
v Training Nodes: Used in loss computation.
v Transductive Test Nodes: Processed in GNN but not
included in loss computation.
v Inductive Test Nodes: Not included in GNN

computation or loss function.

Example

GNN Training Pipeline

175

Original GNN
(Scarselli et al.
 2005)

GCN
(Kipf & Welling.
 ICLR 2017)

GAT
(Veličković et al.
 ICLR 2018)

GraphSage
(Hamilton et al.
 NIPS 2017)

MPNN
(Glimer et al.
 ICML 2017)

Spectral
Graph CNN
(Bruna et al.
 ICLR 2014)

ChebNet
(Defferard et al.
 NIPS 2016)…

Spatial Based Filtering Spectral Based Filtering

Spectral and Spatial GNN Framework

Spatial GNN Framework
Key Concepts:
v Spatial approaches define convolutions directly on the graph using graph topology.
v Unlike spectral methods, these approaches operate in the node domain without eigen-decomposition.
v The challenge lies in handling variable neighborhood sizes and preserving local invariance.

General Spatial Convolution:

Neural Message Passing

The defining feature of a GNN is that it uses a form of neural
message passing.

During each iteration 𝑘, a hidden embedding ℎ$
(&) for node 𝑢 is

updated according to the information aggregated from its
neighborhood 𝑵(𝒖), which can be expressed as follows:
ℎ$
(&()) = 𝑢𝑝𝑑𝑎𝑡𝑒 & ℎ$

& , 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 & { ℎ*
& , ∀𝑣 ∈ 𝑁 𝑢 }

We often denote 𝑚+($) = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 & {	ℎ*
& , ∀𝑣 ∈ 𝑁 𝑢 }

as the “message” aggregated from neighborhood. The initial
embeddings at 𝑘 = 0 are set to the input features for all nodes,
i.e., ℎ$

(,) = 𝑥$. After running 𝐾 iterations of the GNN message
passing, we can use the output of the final layer to define the
embeddings for each node, i.e., 𝑧$ = ℎ$

(-), ∀𝑢 ∈ 𝑉.

Intuition Behind Message-Passing Framework
v The core idea of message passing is simple:

Ø At each iteration, every node aggregates information from its 1-hop neighbors.
Ø As iterations progress, nodes encode information from progressively farther regions of the graph.

v This allows nodes to capture both local and global structures over time.

What Do Node Embeddings Encode?
Node embeddings contain two main types of information:
• Structural Information: Local connectivity patterns; Higher-

order graph structures; the importance of a node based on its
graph position (e.g., centrality measures).

• Feature Information: Numerical attributes (e.g., temperature,
population density in spatial graphs); Categorical attributes
(e.g., user preferences in recommendation systems); Learned
representations from deep neural networks.

Neural Message Passing: Intuition

Why is Message Passing Powerful?
v Combines local and global information efficiently.
v Enables deep learning models to capture rich relational patterns.
v Supports various tasks like node classification, link prediction, and graph generation.

The basic GNN message passing is defined in node-level:

ℎ'
()) = 𝜎 𝑊+,-.

) ℎ/
)01 +𝑊2,345

) 3
6∈8 /

ℎ6
)01 + 𝑏)

where 𝑊./01 ,𝑊2/345 are trainable parameter and 𝜎 denotes an elementwise non-linearity such as ReLU. Alternatively, it can
also be succinctly defined in graph-level:

𝐻(") = 𝜎(𝐻 $%& 𝑊'()*
$ + 𝐴𝐻 $%& 𝑊+(,-.

$)

GNN: Basic Form

The basic GNN message passing can be simplified by omitting the explicit update step:

ℎ/
($0&) = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 {	ℎ1

$, ∀𝑣 ∈ 𝑁 𝑢 ∪ {𝑢}}

where now the aggregation is also taken over the node 𝑢 itself. Adding self-loops is equivalent to sharing parameters
between self and neighbor transformations.

The self-loop GNN approach balances simplicity and efficiency but has some limitations. Self-loops make it harder to
differentiate between node and neighbor information. Blurs the distinction between structural and feature information

•

Permutation Invariant and Equivariant

Neighborhood Normalization
A basic approach is summing neighbor embeddings, but summing
neighbor embeddings can create large magnitude differences. Nodes
with significantly different degrees may lead to instability and
optimization challenges.

ℎ$
(&()) = 𝑢𝑝𝑑𝑎𝑡𝑒 & ℎ$

& , 𝑚 𝑁 𝑢
Example: A node with 100× more neighbors than another will have
drastically different embedding scales. Leads to numerical instability
and difficulties in optimization.

A straightforward solution is degree-based normalization:

One solution to this problem is to normalize based upon the degrees of
the nodes involved, which is called symmetric normalization:

𝑚+($) = @
*∈+($)

ℎ*
|𝑁 𝑢 × 𝑁 𝑣

Graph convolutional networks (GCNs)

Generalized Message Passing
As the last attempt to generalize the basic neural message passing framework, now we extend the approach beyond the node
level, leveraging edge and graph-level information at each stage.

One more generalized message passing approach can be formulized according to the following equations:
ℎ $,*
(&) = 𝑢𝑝𝑑𝑎𝑡𝑒/84/ ℎ $,*

&9) , ℎ$
&9) , ℎ*

&9) , ℎ:
&9)

𝑚+($) = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒2;8/ {ℎ $,*
& , ∀𝑣 ∈ 𝑁 𝑢 }

ℎ$
(&) = 𝑢𝑝𝑑𝑎𝑡𝑒2;8/ ℎ$

&9) , 𝑚+ $, ℎ:
&9)

ℎ:
(&) = 𝑢𝑝𝑑𝑎𝑡𝑒4<=>5(ℎ:

&9) , {ℎ$
& , ∀𝑢 ∈ 𝑉}, {ℎ $,*

& , ∀ 𝑢, 𝑣 ∈ 𝐸})
The important innovation in this framework is that we generate hidden embeddings not only for each node ℎ*

(&), but also
ℎ $,*
(&) for each edge in the graph as well as an embedding ℎ:

(&) that corresponds to the entire graph. This allows the message
passing model to easily integrate edge and graph-level features and have enhanced performances compared to a standard
basic GNN. Generating embeddings for edges and the entire graph also makes it trivial to define loss functions based on
the graph or edge-level classification tasks.

Content
1 Introduction to Deep Learning

3 Modern DL Model Architectures

4 Loss Functions

2 Neural Network Basics

5 Optimization Techniques

8 Theoretical Properties

6 Convolutional Neural Networks (CNN)

7 Graph Neural Networks (GNNs/GCNs)

The Universal Approximation Theorems

Universal Approximation Theorem

Statistical Theory of Deep Learning

1
8
6

Approximation theory viewpoint

Recently, a large collection of works bridge approximation
theory of neural network models with empirical processes.

Applications: Fast convergence rates of excess risks in
regression and classification tasks.

Perspectives: Measuring complexities of neural networks
for function approximations.

Scaling Parameters: Network width, depth, and active
parameters should scale with sample size, data dimension,
and function smoothness index.

Assumptions:
Ø Assumes global minimizers of loss functions are

obtainable.
Ø Focuses on statistical properties without optimization

concerns.
Ø Recognizes non-convexity of loss functions due to non-

linear activation functions.

Training Dynamics Viewpoint

Understanding non-convex loss functions for neural network
models is crucial. Key implications for generalization capabilities.
Key Empirical Findings: Overparameterized neural networks
trained by stochastic gradient descent can fit noisy data or
random noise perfectly but still generalize well.

Overparameterization Insights:
• The dynamics of deep neural networks with large enough

width, trained via gradient descent (GD) in ℓ2-loss, behave
similarly to those of functions in reproducing kernel Hilbert
spaces (RKHS),where the kernel is associated with a specific
network architecture.

• In the Mean-Field (MF) regime, the network parameters have
the flexibility to deviate significantly from their initial values,
even though it necessitates an infinite width.

• Comprehensive understanding of weight initializations and
learning rate scalings in gradient-based methods.

Deep learning theory

~ p(x)p(y|x)Data

Model

Assumption

Ideal

Estimate

The Risk Error

Approx Error

Complexity

Functional Equivalence can reduce
stochastic and optimization errors

Deep learning theory
• Much of the current theoretical understanding is

counterintuitive and falls short of explaining why deep
learning or reinforcement learning methods perform
effectively in real-world scenarios. There is a big gap between
popular deep learning algorithms and current theoretical
results.

• Many deep learning (DL) theoretical studies primarily focus
on fully connected neural networks (FNN) within
nonparametric settings, while making unrealistic
assumptions.

• Key breakthroughs in algorithmic modeling often lack a solid
mathematical foundation due to the absence of powerful tools
in such complex scenarios.

• Furthermore, existing methodologies, such as traditional
harmonic analysis and empirical process theory, are
insufficient for addressing heterogeneous object structures
(e.g., Lie group/algebra) commonly encountered in computer
vision (CV) and natural language processing (NLP).

1
8
9

v Expressivity: What graph structures can a GNN distinguish?
– Traditional results relate GNNs to the 1-WL test, but finer geometric
notions are needed.
v Approximation: Under what conditions can GNNs
approximate continuous, permutation-invariant functions?
– Universal approximation results require a careful
treatment of the topology of graph space.
v Generalization: How well do GNNs perform on unseen
graphs?
– Existing VC-dimension based bounds are loose and do not
fully capture the influence of architectural choices and graph
structure.

Theoretical Properties

Morris, Christopher, Fabrizio Frasca, Nadav Dym, Haggai Maron, Ismail Ilkan Ceylan, Ron Levie, Derek Lim, Michael M. Bronstein, Martin Grohe, and Stefanie Jegelka.
"Position: Future Directions in the Theory of Graph Machine Learning." In Forty-first International Conference on Machine Learning.

Future Directions
v Develop fine-grained expressivity results that quantify not only if two graphs are distinguishable, but how similar they are.
v Derive uniform approximation bounds for GNNs using a refined topology on graph space.
v Establish tighter generalization bounds that incorporate architectural choices and graph geometry.
v Explore the interplay between expressivity, optimization, and generalization to inform the design of more robust GNN

architectures.

Deepset

de Finetti’s theorem states that any exchangeable model can be
factored as

For Exponential Family with Conjugate Priors:

PINE

Then, PINE provides specific parameters for ℎ(·) and 𝑔 · , which can be trained as follows:

which requires ℎ(·) and 𝑔(·) to ensure permutation invariant :

then the PINE framework provides a

Core Representation Theorem as

Accuracy (%) of multi-class classification in homogeneous and heterogeneous graphs

Evaluation

How to succeed in this course?

Practice

Explore

Visualize

Ask
Discuss

