Deep Learning Methods in Advanced
Statistical Problems

JSM 2025 Short Course

jUNC GILLIN GSSC OO O
GLOBAL



Agenda

1 Foundations of Deep Learning Methods (Hongtu)

] Computational Resources and Examples (Runpeng)

] Deep Generative Models (Xiao)

1 Attention and Transformer (Xiao)

1 Deep Sequence Modeling and Spatio-temporal Modeling (Hongtu)
J Large Language Models (Runpeng)

] Deep Learning in Advanced Statistical Problems (Hongtu)

l lP l GILLINGS SCHOOL OF
= GLOBAL PUBLIC HEALTH



Course Websites

https://bios740.github.io/

BIOS740

Syllabus

Fundamentals of Deep Learning

Lec1:

Lec2:

Introduction to Deep Learning, PyTorch & Basic
Algorithms

Neural Networks Fundamentals

Basic Network Structures

Lec3:

Lec4:

Lechb:

Lec6:

Convolutional Neural Networks (CNN)

HW 1

Recurrent Neural Networks (RNN) and Long
Short-Term Memory (LSTM)

HW 2

Graph Neural Networks: GNN, GCN

HW 3

HW 2 DUE

Generative Adversarial Networks (GAN)

HW 3 DUE
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Introduction

This short course is designed for researchers in
statistics and data analysis who are eager to explore the
latest trends in deep learning and apply these methods
to solve complex statistical problems. The course
delves into the intersection of deep learning and
statistical analysis, covering topics familiar to
statisticians such as time series analysis, survival
analysis, and quantile regression. Additionally, it
addresses cutting-edge topics in the deep learning
community, including transformers, diffusion models,
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Key Modules

Introduction: Basics of deep learning, supervised/
unsupervised learning, and PyTorch fundamentals.

1. Neural Networks: Perceptrons, optimization

) Basics of
Deep Learning PyTortin

rrexne

Deep Learning NGB Fundarcentions [Nk, Anpications B techniques, and activation functions.

ontondation otokzatio

RINNS for
Seotezalifor

(A 2. Advanced Topics:

* CNNs.
* GNNs/GCNs
* RNNs and LSTMs
T * GANSs/ Diffusion Models
ey  Transformers
RS «  BioBERT.
spio-Temal

Sequatioil ‘ . .
; lgsging ) | Mealing

Welolex
Fontctions

3. Applications: Segmentation, Registration, Tumor

gt iceTtons localization, Disease spread prediction, Biomedical text mining,
and Drug discovery.
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Foundations of Deep Learning Methods

Dr. Hongtu Zhu
Kenan Distinguished Professor
University of North Carolina at Chapel Hill
URL: www.med.unc.edu/bigs2/
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Content

1 Introduction to Deep Learning

2 Neural Network Basics

3 Modern DL Model Architectures

4 Loss Functions

S Optimization Techniques

6 Convolutional Neural Networks (CNN)
7 Graph Neural Networks (GNNs/GCNs)

8 Theoretical Properties
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Content

1 Introduction to Deep Learning
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Deep Learning

Deep Learning

Many hidden layers Supervised, semi-supervised, unsupervised
Learn adaptive parameters

e Use a cascade of multiple layers of nonlinear processing units for feature extract and transformation
e Learn in supervised and/or unsupervised manner

* Learn representations in different level of abstraction

Why popular?

* Chip processing ability ‘ Deep models to efficiently exploit complex,

* Increased size of data for training compositional nonlinear functions to learn

* Advances in machine learning and distributed and hierarchical feature
signal/information researches representations, to make best use
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Historical Summary

Deep Neural Network
(Pretraining)
Multi-layered m X
XOR Perceptron A
ADALINE (Backpropagation)
A A Y
Perceptron
L Golden Age | Dark Age (“Al Wimer') |
Electronic Brain

1990 2000

=

V.”Vapnik - C. Cortes

D. Rumelhart - G. Hinton - R. Wiliams

e

M. Minsky - S. Papel

S. McCulloch - W. Pitts
X AND ¥ XORY NOT X e e FOWArd Ay e " ) -1 -
" ", ", L X . - ‘
+ o+ 2 #1414 -1 . ‘ . O l .‘.,: ° . o :
NIV T do0ob||®le ore ~ ogsaeiretnd = e e
+ Solution to nonlinearly separable problems + Limitations of leaming prior knowledge * Hierarchical feature Learing

« Adi } i . iah h .
o cf;;‘:gfsb;xeol?[t:amed Losrmtee. Nelonia: od thiswoid XOR Froblem * Big computation, local optima and overfitting « Kernel function: Human Intervention
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Deep Learnlng Explosion

M"'"M"" THE NOBEL PRIZE : THE NOBEL PRIZE
Select Awards by year IN PHYSICS 2024 g IN CHEMISTRY 2024
2021 v X z

X LEAD ORGANIZATION O Select Awards by Institution

eS|

PayaWI3 SePIN

John J. Hopfield Geoffrey E. Hinton

“for foundational discoveries and inventions
that enable machine learning
with artificial neural networks”

Hassabis Jumpel

"for computational “for protein structure prediction”
protein design”

THE ROYAL N CES THE RO

Title [+]

Feature

Deep Residual Learning for Image Recognition

Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-AACT M
Using thematic analysis in psychology

Diagnostic and Statistical Manual of Mental Disorders, DSM-5

A short history of SHELX

I Attention is allyou need
p'll ImageNet classification with deep convolutional neural networks
- &N Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for :
3 Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for G
": kW Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement
%8 U-Net: Convolutional Networks for Biomedical Image Segmentation
gl Electric Field Effect in Atomically Thin Carbon Films

i [sW Fitting Linear Mixed-Effects Models Using lme4

O 0oNOOOAWNR

An exclusive Nature analysis reveals the 25 highest-cited B%a Scikit-learn: Machine learning in Python

papers published this century and explores why they BTN Deep learning

are breaking records. ?y Helen Pearson, Heidi Ledford, #i-ll Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recom
Matthew Hutson and Richard Van Noorden 'l Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
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Deep Learning Platforms

? (;\, B Microsof 44 PaddlePaddle
ner CNTK g
TensorFlow  Chainer PYTORCH

theano Keras O Caffe2 m




Applications - Vision

IMAGENET
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Applications - Vision

High quality image generalization

DALL-E 2

“a teddy bear on a skateboard in times square”

Disease Detection in Healthcare and Medicine

Deep learning can be utilized for early and more accurate
detection of diseases like cancer, Alzheimer's, and heart diseases

thrOUgh Image analy5|s. “Hierarchical Text-Conditional Image Generation with CLIP Latents”
Ramesh et al., 2022
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Applications — Medical Imaging

Segmentation Annotation U-Nets

SimpleClick Demo

[ Lood trage | Sove nask | Lood mask | Foout | Ex

Inge Controls Residual
] ‘ Chid g Residual
] Residual A&B A&B
Zoonln opt. 3
“Flwonh % ele [ sy AZB  A&B
VE e erop Torget, size 448 Residual- Domain
Expond ratio 14 Softmax | classifi =
5 options Shared the \l ‘Io:sssl:r Segmentation|
MBS same E . Softmax —%confusion S _
parameters Residual loss Lgg . bs =
Predictions threshold Residual A&B  AgB M E"E";(ui'km)/(z‘:ui'k+§‘:Vi'k)
Target i Le, = - 3 log(qa)(y = d)
i . data Residual ASB A8B e
flpha blanding cosffictent Residual Ree ek
0% _____ Residual i
J AgB Ags|-@
Visualisation click radius
3
m
TN -
Residual Block Basic Block A (left) and B (rigl
. . Azad et al., “Medical Image Segmentation Review: The success of U-
Liu, Q., Xu, Z., Bertasius, G., & Niethammer, M. (2023). SimpleClick: o 5€ O€5
. . . . .. Net.” arXiv, Nov. 27, 2022.
Interactive Image Segmentation with Simple Vision Transformers. ICCV., - : " . . .
22290-22300. 2023 Minaee, Shervin, et al. "Image segmentation using deep learning: A
’ ’ survey.” IEEE PAMI 44.7 (2021): 3523-3542
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Application - Language

Language Translation in Natural Language Processing

Deep learning enhances real-time, accurate translation of languages, as seen in tools like Google Translate. The following picture
shows the translation of a webpage from English to Chinese.

I W W N

[ —— —

Meta e
New Tools to Support Independent ﬁ JT

R h .
esearc XEFMIMRNFT IR
202311 B 218

November 21, 2023

- Facebook Al IE7E#H M2M-100, X2E—1ZIESHEREIE (MMT) 28, 7
LA 100 MBS RIERI Z B TEIE, MABKBRIENE. XERFRN,

q . -

- Bl FERPXEEREEN, ASHRUIIEAPOMNSIESREMRIEDIER
EMZGERIAE LTI, BAEHIGHIERERZARN, HIWREEE

« Facebook Al is introducing M2M-100, the first multilingual machine
translation (MMT) model that can translate between any pair of 100
languages without relying on English data. It's open sourced here.

\ MARXERIENBIEHTIIG, NEFHRES N, EZERNATITEIEE
- When translating, say, Chinese to French, most English-centric multilingual . 1M BLEU #8157 L, ELEMFIERPONAFASL 10 TR,
mo.dfels train ?n Chinese to-Engllsh a.lnd English to Fren.ch, becau-se English . M2M-100 55 T 5 2,200 MBS HEHOUIE, IR0, LIS Y
training data is the most widely available. Our model directly trains on ’ MZESHRELZT 10 5. 5BF M2M-100 FRBHZARBEIZRE, LHEN
= &, 8 - & s
Chinese to French data to better preserve meaning. It outperforms English- u EERAEESIEEMA,

centric systems by 10 points on the widely used BLEU metric for evaluating
machine translations.

- X—EBRREE Facebook Al SERTENBEIFTMLEM TENER. K, #EN

BHZUER 100 FIESMREMS M MMT JISBIBEFEERNEMES.,
+ M2M-100 is trained on a total of 2,200 language directions — or 10x more Bl NE &M THER NGMIHEIRE, NEBHEMMRAASANH —SHHASIE
Meta SHE,

| i

than previous best, English-centric multilingual models. Deploying M2M- eta 0 Christian Louboutin %t{5 512
100 will improve the quality of translations for billions of people, especially L. -
Meta and Christian Louboutin File

those that speak low-resource languages. Joint Lawsuit Against Counterfeiter

<

+ This milestone is a culmination of years of Facebook Al’s foundational work November 16, 2023

in machine translation. Today, we’re sharing details on how we built a more
diverse MMT training data set and model for 100 languages. We’re also
releasing the model, training, and evaluation setup to help other researchers
reproduce and further advance multilingual models.
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Application - Language

ChatGPT

Large language models
4

Capabilites Large language models can perform
various tasks such as answering questions,
generating creative content, summarizing
text, translating languages, and engaging in
conversations. It’s designed to understand
and generate text in a coherent and

contextually relevant manner.
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Application - Decision

. FIE KE JIE

¢ 00:13:28

ALPHAGO
01:30:35

FRE

PESHE BHES
= @ Future of Go Summit in Wuzhen

March 2016, AlphaGo made Reinforcement learning methods
headlines by defeating Lee Sedol. have shown priority in video games.
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Applications - more

Personalized Shopping Experience in Retail and E-
Commerce

Deep learning is leveraged to provide personalized
recommendations and targeted advertising to customers
based on their shopping behavior.

amazon..

Hello
© select your address

= All BestSellers Mobiles Customer Service Today'sDeals Fashion Electronics Prime ~ New Releases Home & Kitchen AmazonPay Computers

Your Amazon, .in Your Browsing History ~ Recommended For You  Improve Your Recommendations  Your Profile  Learn more

Top picks for you

1»

boAt Airdopes 141 True Wireless Redmi 9A S|

0 -

Earbuds with 42H Playtime, RAM, 32G8 Storage) | 2GHz. Blue, 8GB RAM, 128GB Storage) Wireless Earbuds with Upto 14 (M ida )5009
& e fe #e vy 58,038 o e e fe v 159,691 oA A Aoy 12,639 o e fe #e v 116,391 o7 489 %10400
21,499. OO 36,999.00 ?24 999.00 +T; 299 00 ?30 00
Get it by Saturday, April 23 Get it by Saturday, April 23 Get it by Saturday, April 23 Get it by Saturday, April 23

Tata Sampann Unpolished Toos Maggi 2-Minute Noodles Masala, Fortune Premium Kachi Ghan
Dl/Ah 0al, kg 709(P ck of 12) Pure Mustard Ol 1tr PETBttl
v 7 12,726 *7 7 47,101 i A A ofy 13,858
%13500 2189.00 ?13600 3¥330.00 ?20500 3214.00
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(Coral Green, 2GB OnePlus Nord CE 2 5G (Bahamas boAt Airdopes 121v2 Tru APLUS Super S er Wheat Flour Ml(lU Ply g[ ard Game

Get it by Saturday, April 23

_.l

Glucon-D Glucon D Instal tE ergy boAt Bassheads 100 in Ear Wired
He: llhD kNmb Pani - Tkg... Ea ph s with Mic(Black)

?309 00 ¥399.00

Predict the folding and 3D structure of protein

AlphaFold aims to solve the protein folding
problem, which involves predicting a protein's
three-dimensional structure based solely on its
amino acid sequence. Understanding protein
structures is crucial for biological research and

AlphaFold 3
can predict the structure and
interactions of all life's molecules




Some Future Directions in DL for Biostatistics

Patient tumors

Sequencing platforms ~ Metagenome

B
"ﬂ’m/ a!' .

Metabolome Healthy Disease

Pharmacological

’.. ~:§‘;"!‘ Genome Proteine o Module3-
y T Vs 0&5 . /
fedical Facilities 4 ) centralLReseaq Iéitu‘ QR A €28 . > I I
" 2 Q) % Lol
ﬂ J L Jlnﬂ One-size-fts-al Personalized monotherapy Mass spectrometry platforms
A A
Al-driven Public Advanced Drug Integrative Analysis of
Health Interventions Response Modeling Multi-omic Data
Utilizing deep learning models to analyze Using deep learning to model and Leveraging deep learning to integrate and
large-scale public health data for informed predict individual responses to drugs, analyze data from genomics, proteomics,
decision-making and policy development. considering genetic, environmental metabolomics, and other omics fields for a
Allowing better resource allocation, and more and lifestyle factors. Developing more comprehensive understanding of biological
effective epidemic control strategies. effective personalized treatments.

processes and disease mechanisms
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Generalist Medical Artificial Intelligence

Foundation Models in Medicine: These models leverage large-scale datasets and generalizable architectures to address
diverse medical tasks, moving beyond task-specific Al systems.

Generalist Al: Unlike traditional models, foundation models aim to function across multiple domains, such as imaging,
text, and genomics, enabling integration of multimodal data for holistic medical insights.

Challenges:
* Data heterogeneity: Medical data comes in varied formats, requiring harmonization.

* Privacy and ethics: Ensuring secure, unbiased Al while maintaining patient confidentialitv.

Perspective

 Interpretability: Providing clinicians with actionable insights from Al outputs. ,

Multimodal self-supervised training

Applications:
* Diagnostics: Detecting diseases across imaging modalities (e.g., radiology).

in knowled Flexibie interacti
2 Ie
Publications s %
—> > T —
®

* Prognostics: Predicting patient outcomes using integrated data. ovees 1§
* Personalized medicine: Tailoring treatments based on multimodal patient profiles. &3 EEIESED " & o
Future Directions: ; 6 n E % E -
] L. ) waes (@) (@ (W -]
* Collaboration between Al experts and clinicians to co-design models. = \LIJ/ < &
* Development of robust validation frameworks for clinical adoption. e ——

Fig. 1| Overvi ipeline.a,AG listrai outtasksthat the us

* Advancing explainability and trust in AI-driven medical decisions. s oo Bl s

Next, the

Moor, M., ... ., Rajpurkar, P. (2023) Nature. et it
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2 Neural Network Basics
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What Exactly 1s Deep Learning?




Artificial Intelligence

Key Terminologies

/

Simulates human intelligence in machines for
tasks like decision-making and language
translation.

Machine Learning (ML)

A subset of Al where algorithms learn from
data to make predictions or decisions without
being explicitly programmed for each
scenario.

Deep Learning (DL)

A branch of machine learning using multi-
layered neural networks, effective in
processing large amounts of unstructured
data like images and speech.

Generative Al

Al algorithms that generate new, original
content (like text or images) based on existing
data, using techniques like Generative
Adversarial Networks (GANs).
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Deep Learning

* Deep learning is a subset of machine learning that focuses on training algorithmic neural
networks to perform tasks. Its algorithms were inspired by the working of the human brain.

* It's characterized by the use of multiple layers (deep architectures) that allow networks to learn
hierarchical representations of data and to learn to complete specific tasks.

* In contrast to traditional machine learning/data models, which often requires manual feature
extraction, deep learning can automatically learn features from raw data, which you can think of as
patterns that occur within the data.

* Deep learning can be used for supervised, unsupervised, self-supervised, semi-supervised,
generative, contrastive, few-shot, as well as reinforcement learning.

Objective: teaching computer how to learn a task directly from raw data
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Backbone of DL - Neural Networks

Neural networks, also called artificial neural networks (ANNs) or simulated neural networks (SNN’s),
are a subset of machine learning and are the backbone of deep learning algorithms.

The neural network is inspired by the human brain’s interconnected neurons. They are called “neural”
because they mimic how neurons in the brain signal one another.

[t consists of layers: an input layer, one or more hidden
layers, and an output layer.

* The “deep” in deep learning refers to the depth of layers
in a neural network.

* Usually, a neural network of more than three layers,
including the inputs and the output, can be considered a
deep-learning algorithm.

Output Layer

Input Layer
Hidden Layer Hidden Layer

Further details on neural networks will be in upcoming courses.
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Deep Learning Basics

Neurons (Nodes) receive input signals and perform

computations and produce an output.

Channels (connections) are associated with a weight
value that determines the strength of the connection.

Bias _is conceptually similar to the intercept in linear

regression, accounting for potential deviations from the
ideal relationship between inputs and outputs.

Activation function are threshold values that introduce
non-linearities into the neural network, determining if
the particular neuron will get activated or not.
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Shallow Neural Network

Hidden layer

Input layer Output layer

Universal Approximation Theorem

Cybenko (1989) and Hornik (1991)

A feed-forward network with a single

hidden layer containing a finite number @ Neuron or
of neurons can approximate continuous Weight " hidden unit
functions on compact subsets of R™, under D;
mild assumptions on the activation function. hqg = a |:9d{] + Z deiﬂz] ,
i=1
D
Yi = ¢jo + Z ¢jaha,
d=1
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Activation Function - The Gateway to Non-Linearity

Introducing Non-Linearity: Activation functions introduce non-linear properties to the
network, enabling it to learn complex data patterns beyond the capability of linear models.

*  Transforming Inputs to Outputs: It takes input from previous layers and converts i1t to some
form of input for the next layers.

* Essential Building Blocks: It decides what is to be fired to the next neuron.

*  Beyond Linear Modeling: Without non-linearity, neural networks would be limited to linear
decision boundaries, similar to linear regression.

* Crucial for Performance: Non-linear functions allow neural networks to solve advanced
problems like image and speech recognition, and natural language processing.
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Activation Functions

a),, b) c)

a) Logistic sigmoid and tanh
functions.

b) Leaky RelLU and parametric
ReLU with parameter 0.25.

e

1 sig|z : .
%_D-_ELL/ | LRelUL:]

| softplus[z]

o GelU[z] . .
1 SiLU[z] c) SoftPlus, Gaussian error linear
[ tanh[z] | PRelU[z,0.25] ' unit, and sigmoid linear unit.
20l - - . - . d) Exponential linear unit with
4.0 0.0 40 4.0 0.0 4.0-4.0 0.0 40 parameters 0.5 and 1.0.
d)20 e) F) e) Scaled exponential linear unit.
f) Swish with parameters 0.4, 1.0,
and 1.4.
— | swish[z,1.4]
N | ) !
= 00T ELU[Z, 0.3] L0
. »...swish[z, 1.
4 - SELU E SWlSh|z,U‘I
ELU[z, 1.0] [2]
4.0 0.0 4.0 -4.0 0.0 4.0-4.0 0.0 4.0
z z z
2
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Motivation for Deep Learning

2X, x € [0,0.5]
Consider a piecewise linear function m(x) =<2 — 2x, x € [0.5,1] Define o(x) = max(0, x)
0 otherwise

Z1 = O'(x)
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Motivation for Deep Learning

m(m(x)) m(m(m(x)))

AVANEATATATAN

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

m(m(m(m(x))))
Depth

Generate a deep network: - Multiplicatively
3n+1 nodes to represent the m™ (x)
with width of each layer < 2
ICCE AN Width
If we generate a shallow one, we need 2™ nodes - additively

3
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Deep Neural Network

Shallow vs deep networks

s both networks can approximate any function given
enough capacity,

+* deep networks produce many more linear regions per
parameter,

+* some functions can be approximated much more

efficiently by deep networks,

i Q € R""“‘H_dd 2 ERB“H_dd Qs € R¥ % in practice, the best results for most tasks are achieved
Input, x layor, hy layer, hs layer, hs Output, y using deep networks with many layers.
D; =3 Dy =1 Dy =2 Ds; =3 D, =2
vy =Bg +Qka By _, +Qx_1al... B, + Ma[B, + a8, + Qox]] .. ]].
+* The number of hidden units in each layer is referred to as the width of the h; = a[8;+ QpX]
network, and the number of hidden layers as the depth. The total number of h, = a[3, +Q1hy]
hi its i fth k’ ity.
idden units is a measure of the network’s capacity hy = alB, + Qhy)
s The depth version of the universal approximation theorem (Lu et al., 2017):
There exists a network with ReLU activation functions and at least Di+4
hidden units in each layer can approximate any specified D-dimensional hy = a[fg_; +Qkx_1hk_1]
Lebesgue integrable function to arbitrary accuracy given enough layers. y = Bg +Qxhg.
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Fitting DL Models

AS=Applied Statistics

Define a set of functions/models

4

Find a criterion/measurement of goodness —

loss( + regularization)

4

Get the best model for the problem

Al=Artificial Intelligence

Design the neural network

4

Find a criterion/measurement of goodness —

loss( + regularization)

4

Get the best model for the problem



Fitting DL Models

a @ ’@ Design the neural network

& @ O 3

Find a criterion/measurement of goodness

é e @ Get the best model for the problem

hy, = a[g,+ Qox] A loss function is needed here,
hy = a8, +Qih] to measure the difference between the output and truth
hy = al8y + Qohy) .
| Total loss: L= Z (¥, Vi)
hK - a[ﬁK_l T ﬂK_lhK_l] ?1 — /BK + QKhK (X’u [(1807 QO)? T (BK—lv QK—l)])

y = PBg+Qkhg.
Find the network parameters to minimize the loss
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Workflow of a Typical DL Project

(Data Preprocessing\ Training Dataset Modeling
—T—
Cleaning Data Define model architecture and hyperparameter
— Input Layer Hidden Layer Output Layer
Validation Dataset
Scaling Numeric 2- y

Data Acquisition Features —
*  Public Datasets

i Databases Test Dataset
Handling -
MO%

*  Web-scraping Categorical Data
) Splitting Data

*  Crowd Labeling & text
Understand Train on training dataset

o

Artificial Neural Networks

Problem Training.
I sample
Hyperparameter Tuning e . 037 037
I Regression Classification P Neural ,_ “Dog”
o MSPE o Precision-Recall Image i N | Network 0.50 Y= 050 o8
. o MSAE o ROC-AUC
| Unsatisfactory i o Bty | 1 0.13 0.13
oAdjusted R Square o Log-Loss [— ; Th Predicti d Predicted
*  Tune hyperparameters ey 8] | ouas " enven s tomes
del Evaluation I
a

. Tweak architecture

. Add regularization

. Study why the model is
struggling

Others R, S

® CV Error
 Heuristic methods

Deployment

to find K
* BLEU Score (NLP)

Acceptable
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Face Recognition System

| ..
m.a ge Face Recognition Model Training
Acquisition
l l
| |
I @ I \ A7A.
| | ,
| ) t_lﬂ. A \. " ‘,
| e | Gabor, LBP etc. |
| l
| U - WS‘
| \ “-
: Face Matching \—I \_l Deep Learning l : \
' Y ' 3
- : Recognition |
Monitor | Results | = 1
Videos | I : & :
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Types of Deep Learning

The neural network learns to
discover the patterns or to cluster the
dataset based on unlabeled datasets.

N There are no target variables.
\

/, E
7
DDPG e .
,/
,/
,/
,/
V4
An agent learns to make decisions in .
£° s Reinforcement
an environment to maximize a
reward signal. The agent interacts Learning
with the environment by taking action Neural network learns to make
and observing the resulting rewards. . predictions or classify data
Network based on the labeled datasets.
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Modern DL Model Architectures

1 Convolutional Neural Networks (CNNs) Fully

Convolution Connected

* Key Features: Utilizes convolutional layers to Input

process data in a grid pattern (like images). . ‘ JIFLLH

* Key Components:

* Convolutional Layers: Extract features from \ y J\
input images USing filters. Feature Extraction Classification
* Pooling Layers: Reduce dimensions and Figure. Basic CNN structure.

computational load, retaining key information.

: « Applications in Biomedicine:
* Fully Connected Layers: Classify images based pplications In b1

on extracted features. * Image classification in diagnostics

(e.g., cancer detection from scans).
 Example Models: LeNet-5, AlexNet, VGGNet. » Image segmentation for identifying

regions of interest in medical images.
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Modern DL Model Architectures

Recurrent Neural Network

2 Recurrent Neural Networks (RNNS)

* Key Features: Processes sequences of data (time-
series data), with memory of previous inputs,
capturing temporal dynamics.

e Unique Feature: Loop-like architecture allowing D o o o o e
previous outputs to be used as inputs while having ; ‘A ‘A ‘A ’A ‘A
hidden states, enabling information persistence. h - ~‘ < ‘ . ‘ < ’ < ‘ p-Co

* Challenges & Solutions: Problem of vanishing X > 5 ) )
érle;c[l}ents; solved by advanced RNNs, e.g. LSTM and Applications in Biomedicine:

' * Analysis of sequential patient data in

* Example Models: LSTM (Long Short-Term EHRs.

Memory), GRU (Gated Recurrent Unit). « Time-series analysis in physiological

signal processing.
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Modern DL. Model Architectures

3 U-Net

* Key Features: U-shaped architecture with symmetric encoder
and decoder paths. Skip connections that concatenate feature
maps from encoder to decoder

e Structure: Encoder: Series of convolutional and max-pooling
layers that capture context. Bottleneck: Intermediate layer
connecting encoder and decoder. Decoder: Series of up-
convolution and concatenation layers that restore resolution.
Final Layer: Convolutional layer that maps features to the desired
output.

* Types: 2D/3D U-Net, Attention U-Net.

* Applications in Biomedicine: Medical image segmentation.
Satellite image segmentation. Biomedical image analysis.
Autonomous driving. General image segmentation tasks.
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Crop and concatenate

Crop and concatenate

(Crop and concatenate

Crop and concatenate \mm

(ﬁ“\“’oow’gg‘ i\“fy ¢ *0"’-‘“ #oo\ oo ,gcp“w G““\'nj;‘f"‘qq UJ“LO“ LU&P“(D‘@“

U-Net for segmenting Hela cells. The U-Net has an
encoder-decoder structure, in which the representation is
downsampled (orange blocks) and then re-upsampled (blue
blocks). The encoder uses regular convolutions, and the
decoder uses transposed convolutions. Residual
connections append the last representation at each scale in
the encoder to the first representation at the same scale

in the decoder (orange arrows).




Modern DL Model Architectures

4 Autoencoders

* Key Features: Unsupervised learning models for
dimensionality reduction and feature learning.

e Structure: Composed of an encoder (compressing input)
and a decoder (reconstructing input).

* Types: Standard Autoencoders, Variational Autoencoders
(VAEs).

* Applications in Biomedicine:
* Data denoising (e.g., removing noise from images).

* Anomaly detection in medical imaging (e.g., identifying
unusual patterns).
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Figure 1. Visualization of an autoencoder
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Figure 2. Autoencoders are a specific type of feedforward
neural networks where the input is the same as the output.



Modern DL Model Architectures

5 Graph Neural Network

* Key Features: Ability to process graph-structured data. Utilizes
node features and graph topology for learning. Effective in
capturing dependencies between nodes. Supports inductive and
transductive learning.

e Structure: Nodes, Edges, Node Features, Graph Convolution,
and Readout Layer.

* Types: Graph Convolutional Networks (GCNs), Graph Attention
Networks (GATs), Graph Recurrent Networks (GRNs), Graph
Autoencoders, Graph U-Net

* Applications in Biomedicine:

Social Network Analysis, Knowledge Graphs, Drug Discovery,
Recommender Systems, Network Security
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Modern DL Model Architectures

Real examples

6 Generative Adversarial Networks (GANs) S | uges unicn

real/fake

* Key Featlll'eS' Comprlses two neural netWOI'kS, a Fake images/noise
generator and a discriminator, competing against each -
Generator Fake generated
Other. example

[} 3 .
Mechanism: Figure. Visualization of the flow of GAN

* Generator creates images, trying to fool the
discriminator by generating data similar to those in
the training set.

Applications in Biomedicine:

* Generate high-resolution images from

 Discriminator evaluates them, trying to distinguish low-resolution inputs, enabling
between fake data and real data improved image quality.
« Example Models: DCGAN, Pix2Pix, CycleGAN. * Data augmentation in medical

imaging for robust model training.
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Modern DL. Model Architectures

1 Transformer Models

* Key Features: Utilizes self-attention mechanisms,
excellent for handling sequences of data.

* Key Innovation: Following an encoder-decoder structure,
eliminating recurrence and convolutions.

 Example Models: BERT (adapted for biomedical
applications), AlphaFold.

* Applications in Biomedicine:

* Genomic sequence analysis for personalized medicine.

* Protein structure prediction (e.g., AlphaFold's
breakthroughs).
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Modern DL Model Architectures

Convglution Conv'o!ubon Fu\rycgnnectcd Fully comected

- - =
Deep Reinforcement Learning = -
reward i p 0
* Key Features: DRL leverages neural networks to approximate i b :

value functions and policies, enabling agents to learn complex Jal L I
tasks from high-dimensional sensory inputs. . Envronmet l;[] [/ 10

* Key Components: Agent, Environment, Reward, Policy, and of] [io

Value Function. CE(QE)A‘phaGO of] HD

* Example Models: DQN (Deep Q-Network), A3C 0¢0
(Asynchronous Advantage Actor-Critic), PPO (Proximal Policy
Optimization) ,SAC (Soft Actor-Critic)

EEEEGREEE B %1 i N (=
=) =) =) =) =) =) = =

* Applications:
* Game Playing; Robotics

* Autonomous Vehicles; Healthcare
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Modern DL Model Architectures
Forward SDE (data — noise)
9 bifrusion Models () I

= Key Features: Iterative forward noise < learned reverse .i = posp

denoising, Simple MSE loss via denoising score matching, dx = [£(x,t) — 2 (£)Vx log py (xil] dt + g(t)dw @
Exact or tractable likelihood bounds, Flexible conditioning &

Reverse SDE (noise — data)

= Key Innovations: Score-based learning, Optimized noise schedules, Fast samplers (DDIM) & continuous-time
SDE/ODE formulations, Latent-space diffusion, Classifier-free guidance

= Example Models: DDPM (discrete diffusion), DDIM (implicit sampler), Score SDE / ODE (continuous),
Stable Diffusion (latent), Imagen /DALL-E2 (text-to-image), WaveGrad / DiffWave (audio).

=  Applications: Unconditional & conditional image generation, Text-to-image & multimodal AIGC, Inpainting,
super-resolution, style transfer, Audio synthesis & denoising, Molecular structure generation, Video frame
interpolation & generation
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Loss Function

Definition: a measure of error between what your model
predicts and what the actual value is.
Purpose: quantifies how well the neural network matches

what we want to output and thus guides the optimization
process.

Importance: The choice of loss function directly impacts
how the weights of the model are adjusted.

Examples: Mean Squared Error (Regression), Cross-
Entropy (Classification).

LWy

Prediction

Notation:
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Recipe for Constructing Loss Functions

Recipe for constructing loss functions

The recipe for constructing loss functions for training data {x;,y;} using the maximum
likelihood approach is hence:

1.

DUNC

Choose a suitable probability distribution Pr(y|€) defined over the domain of the
predictions y with distribution parameters 6.

. Set the machine learning model f[x, @] to predict one or more of these parameters,

s0 0 = fix, ] and Pr(y(8) = Pr(ylfix, ¢])
To train the model, find the network parameters ¢ that minimize the negative
log-likelihood loss function over the training dataset pairs {x;,y;}:

I
¢ = argmin {L[¢]} = argmin | — Z log lPr(y”f[xi, @) (R R
g ¢ i=1

To perform inference for a new test example x, return either the full distribu-
tion Pr(y|f[x,¢]) or the value where this distribution is maximized.

GILLINGS SCHOOL OF
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Data Type Domain Distribution Use
univariate, continuous, y€ER univariate regression
unbounded normal

univariate, continuous, y€eR Laplace robust
unbounded or t-distribution  regression
univariate, continuous, yEeR mixture of multimodal
unbounded Gaussians regression
univariate, continuous, yeRT exponential predicting
bounded below or gamma magnitude
univariate, continuous, y €10,1] beta predicting
bounded proportions
multivariate, continuous, y € R multivariate multivariate
unbounded normal regression
univariate, continuous, y € (—m,m von Mises predicting
circular direction
univariate, discrete, y€{0,1} Bernoulli binary
binary classification
univariate, discrete, yedl 2 B categorical multiclass
bounded classification
univariate, discrete, y€[0,1,2,3,..] Poisson predicting
bounded below event counts

multivariate, discrete,

permutation

y € Perm[1,2,..., K]

Plackett-Luce

ranking




LLoss Function for Classification

Binary Classification Task

Binary Cross-Entropy

Multi-Class Classification Task

Cross-Entropy Loss
Kullback Leibler Divergence Loss
Negative Log Likelihood Loss
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Dice Loss Function

Dice Loss is derived from the Dice Coefficient, which is a statistical tool to measure the similarity or
overlaps between two sets.

Unlike cross entropy loss, dice loss is particularly effective when dealing with imbalanced datasets
and when the focus is on capturing fine details in the segmentation masks. It’s a very popular loss
function in medical image segmentation.

Dice coefficient:

To avoid division by zero, a small constant (smooth) is added to the numerator and denominator.

Di = ZX| | > ‘ d Dice L =1-—Di
lce an lce LOSS lce
smooth |A| | |B| - smooth smooth
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Imbalanced Data-Loss Functions

% Consider Data Characteristics: 1. Weighted Likelihood: Modify the likelihood function to emphasize minority class
% Imbalanced Data: Use Weighted A s N
Cross-Entropy or Focal Loss. L= Z wy, log P(y:|xi; 0)
+* Outliers: Use Huber Loss or i=1

where w,, is inversely proportional to the class frequency.

Mean Absolute Error.

2. Cost-Sensitive Likelihood: Introduce class-specific penalties:

Focal Loss for Different Values of gamma N 1

—— gamma=0 ‘Cweighted == I lOgP(yZ|.TZ, 0)
—— gamma=1 i—1 Yi
—— gamma=2

4+ —— gamma=5

where f,. is the frequency of class y;.
3 3. Focal Loss: Focuses on hard-to-classify examples:
s CE(p,) = —log(p\) LosStocal = —a(1 — py) " log(pr)

FL(p)) = —(1 — p)7 log(p:)

where o controls class weighting, and v modulates the focus on hard examples.

Class-Balanced Loss: Reweights classes based on their effective number of sam-
ples:

_1-8

=T~

where n, is the number of samples in class ¢, and § € [0,1).

We

0.0 0.2 0.4 0.6 0.8 1.0
p_t (predicted probability for the true class)
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Outliers-L.oss Functions

Huber Loss: Combines /; and /5 loss to handle small and large residuals differ-

ently: 1 p(z, 0, c)
LOSSH ber = E(y_f(x))2 if |y_f(x)| Sd) . (XY [ | 1 1 |
P ) bly - flx)| - % otherwise.
41
Tukey’s Biweight Loss: Suppresses large residuals:
3 3l
Sl1-(1-5) ) W<s
LOSSTukey =
2
% |T| > 5’ 2t
where r =y — f(x).
1
Quantile Loss: Focuses on specific quantiles:
— . 0 - - . L . - & s L L L 1 1 L 1 L L 1 1 L L
Lossquanile = max(r - €, (1 —7) - ) 6c-5c-4c-3c-2c -¢ 0 ¢ 2c 3¢ 4c 5c 6 -6¢ -hc-4c-3c-2¢ -¢ 0 ¢ 2¢c 3¢ 4c 5e 6

T Z

where 7 is the target quantile, and e = y — f(x). . . . . .
Barron, J. T. (2019). A general and adaptive robust loss function. In CVPR. Flgure 1. Our general loss function (left) and its gradlent (I'lght)

(1(e /c)? ifa =9 for different values of its shape parameter a. Several values of «
log ( L(efe)? + 1) fa=0 reproduce existing loss functions: L2 loss (o = 2), Charbonnier
loss (o = 1), Cauchy loss (o = 0), Geman-McClure loss (o =

IO(.'L',()!,C)=< — _1 :I:C2 i = —
1 exP( 3 (*/e) ) ifa=—oo —2), and Welsch loss (o: = —o0).

o,
|a;2| ((I(a/:); + 1) — 1) otherwise
\
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Fitting DL Models

a @ ’@ Design the neural network

© \®@@§3@@§ @ -©@ 4

@@% @\ : : Find a criterion/measurement of goodness
: \ :
@ @ @ Get the best model for the problem

h; = a;ﬁo + Qox] A loss function is needed here,

hy = a8, +Qih] to measure the difference between the output and truth

hy = al8, + Qohy) R

Total loss: L = z (¥, ¥;)
hye = alfx + Qb Vi = Br + Qrhir (% [(Bo, Q20), -+, (Br=1. Qr—1)])

y = Bg+Qxhg.
Find the network parameters to minimize the loss
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Loss Optimization

Goal: find the network weight that achieve the lowest loss.

Find the value of the parameters that help the loss function reach the lowestE

Write this goal in mathematical format: 9(z)
§(z3)
9(z3)
W = argmin L(f(X; I/,V)], y) 9(z)
w Predictijon
The loss function is a
function of the network
weights W. w=[wbw?, ]
contains all the weight o Output
vectors needed to be adjusted " W@
in the neural network Hidden Layer
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Gradient Descent

W = argmin L(f (X; W), y)

A first-order iterative optimization algorithm for finding the
minimum of a function.

Step 1. Compute the derivatives of the loss w.r.t. the

parameters
0L(f (X; W), y)
ow

Step 2. Update the parameters according to the rule:

0L(fF(X; W), y)

ow
where the positive scalar a (learning rate) determines the

magnitude of the change.

Wiew = W — &
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Multi-Dimension Optimization Process

1. Randomly pick an initial, a start point

Go through the neural
network feed forward
propagation process to get a
prediction of the output, .
Compute loss:

L@,y)
which 1s not satisfied.
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Multi-Dimension Optimization Process

2. Compute gradient respectto  dL(f(X; W), y)
all the interested parameters: ow

The opposite direction of the gradient is
where we can decrease the loss.
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Multi-Dimension Optimization Process

3. Take a small step in the opposite direction
of the gradient to get a new proposal of the
parameter values.

The magnitude of this
step is determined by
learning rate.

- ‘: v
’ ‘- »
0 ’ ’;’, . A Wy =
e e -;j::_;;. - C 32y

-

Compute loss with the new values:
LFXW),y)

S

o
L

_— | Check if it converges.

4. Repeat steps 2 and 3 until the loss converges.
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Gradient Descent

3. Take a small step in the opposite direction
of the gradient to get a new proposal of the
parameter values.

The magnitude of this
step is determined by
learning rate.

Compute loss with the new values:
LFXW),y)

pa—

Check if it converges.

4. Repeat steps 2 and 3 until the loss converges.
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Gradient Computation: Backpropagation

w
wWq 74 2 > L(f(xr W)r y)
wUFExwWyy)  _ Lf&xwyy) oy
awl aj; 6W1
99 09 9
- ]:,]1 — a_zyl . 0_1/Z|/11 Chain rule again
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Gradient Computation: Backpropagation

a—a Zq _e_‘ LFX;W),y)

Backpropagation
LfX:W)y) _ LFXW)y) 9y 0z
aW1 0? 621 awl

O = O

QO0O0O0Q00

(94 BTSNV

Repeat this process for each layer, see the visual on the right:

sisielsiele/sielels

Q
O\
S\
QN
x>
8
@)
O
CXC S
\:\O
Y
57
017
)
o)

ejejelele ejeleletelolel0)0)0l0

QL0000 ---
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Optimization Algorithms in Py Torch

Stochastic Gradient Descent (SGD)

optimizer = torch.optim.SGD (model.parameters (), 1lr=0.01)

Gradient Descent with Momentum

optimizer = torch.optim.SGD (model.parameters(), l1lr=0.01], momentum=0.9)

AdaGrad (Adaptive Gradient Algorithm)

optimizer = torch.optim.Adagrad (model.parameters(), 1r=0.01)

Adam (Adaptive Moment Estimation)

optimizer = torch.optim.Adam(model.parameters(), 1lr=0.001)
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Stochastic Gradient Descent (SGD)

Characteristics:

* Basic form of gradient descent used in neural networks. Batch Size:
Epoch:

* Fixed learning rate.
* In each iteration, randomly select a single data point (or a batch of data points) from the

training set to calculate the gradient of the loss function.
» Updates parameters for each training example, leading to frequent updates with high variance.

Advantages:
* Simple and easy to understand.
e (Can escape local minima due to its inherent noise.

Disadvantages:
* Slow convergence on large datasets and high variance in updates.
* Sensitive to learning rate and other hyperparameters.
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Gradient Descent with Momentum

Characteristics:
* Builds upon SGD by considering past gradients to smooth out the updates.
e Uses a momentum factor to accelerate SGD in the relevant direction.

Parameter update rule:

1. Update Velocity: v = yv — aVf (x).
2. Update Parameter: x = x + v

Stochastic Gradient Stochastic Gradient
Descent withhout Descent with
Momentum Momentum
Advantages:
oli|¢,]
» Faster convergence than standard SGD. my1 < f-me+(1-f) Z 05 " ;
. . . eye i€B, 10 — D+ 1M
* Reduces oscillations and improves stability. € myy ¢ fom+(1-5) Z i t}

0o

Gy & O;—a-myy, icB,

01 & Op—0-myy,
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AdaGrad (Adaptive Gradient Algorithm)

Parameter update rule:

1. Update accumulation: G = G + g2, where g is the gradient of the loss function with respect
to each parameter.

2. Adjust Learning Rate: Scale the learning rate for each parameter inversely proportional to
the square root of G.

3. Update Parameters: Update the parameters using the adjusted learning rate, x = x — S g
VG + €
where a is the 1nitial learning rate, € 1s a small constant added to improve numerical stability.
OL[¢,]

m;,.; < my 1
¢ — —o- ,
OL[¢,]\ o " VAESL S

e ( o6 ) |
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AdaGrad (Adaptive Gradient Algorithm)

Characteristics:

* Adjusts the learning rate to each parameter, decreasing it for parameters with large gradients.

* Each parameter has its own learning rate, which can be beneficial for datasets with features
of varying importance or scale.

Advantages:

* The effective learning rate decreases over time for each parameter. Eliminates the need to
manually tune the learning rate.

» Well-suited for dealing with sparse features or data with different scales.

Disadvantages:
* The continuously accumulating squared gradient can lead to an excessively reduced learning
rate, causing the algorithm to stop learning too early.
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Adam (Adaptive Moment Estimation)

Parameter update algorithm:

1.

DUNC

Moving averages: two vectors m and v are used to store moving averages of the gradients
and squared gradients, both initialized to zero.

Hyperparameters: f; and 55, close to 1 (common defaults are 0.9 and 0.999).
Update Moving Averages: m = fym + (1 — B1)g and v = B,v + (1 — B,)g°.

0L [qb
. ~ m A v — ¢
Correct Bias: m = rand U = . gy, & (Phimlil Z
;[\
: R A _ t
Adjust parameters: x = x e Vesr & Vet (l (; D¢ )

where a is the 1nitial learning rate, € 1s a small constant added to improve numerical stability.

m B 2
t+1 — gt+l m m
1th_1 ¢t+1 5 ¢t—0"\/‘7—t+1_|_6- b1 & G—a- \/Tj_:l—{—e’
Vit1 = At o
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Adam (Adaptive Moment Estimation)

Characteristics:

* Designed to combine the advantages of two other popular optimizers: the adaptive learning
rate feature of AdaGrad and the momentum feature of RMSprop.

» Different learning rates for different parameters and adjusts them throughout training.

» Corrects the bias in moving averages, especially important in the initial training phase.

Advantages:

e Combines the benefits of AdaGrad and RMSprop.

* Performs well in practice and across a wide range of non-convex optimization problems and large
dataset.

Disadvantages:
* (Can be memory-intensive due to storing moving averages for each parameter.
* Might not converge to the optimal solution in certain theoretical cases.
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Optimization
(i) ; M1

m;., < - mt—|- 1— Z miy < _ At+l
5 09 1-p

Vitl
Vipl ’Y'Vt‘i‘(l—’}’)(zag qbt) » Vt-H 1_7t+1

1€8; ‘

]

Priq — P — Z

i€by b1 — P —« M1
Vig1 +€
» Batch SGD » Adaptive Moment Estimation (Adam)

» Momentum » Backpropagation algorithm

miq < [-my+(1-— Z il qbt oG o % _ ol;
i€ By 08, h @_fk 083 oty
Pri1 Oy — My, o, Ol W7 at; ol 7
= o, of F 0Qy  Ofy
8?5@1 = Ifr1>0/0 (Q{g—ﬁz)
Forward Pass Backward Passes
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Efficient Gradient Calculation

Why It’s Important:
* Neural networks often contain billions to trillions of parameters (e.g., models with ~billions+parameters).
* During training, gradients need to be computed for every parameter at each iteration of the optimization process.

Challenges:

¢ Computational Complexity: Calculating gradients for all parameters in large-scale models is computationally
intensive.

* Memory Constraints: Storing intermediate results for backpropagation in large models requires significant memory.

Solutions:
* Backpropagation Algorithm: Efficiently calculates gradients by applying the chain rule of differentiation.

¢ Automatic Differentiation Libraries: Frameworks like TensorFlow, PyTorch, and JAX automate gradient
computation.

* Distributed Training: Parallelizing computations across multiple GPUs or TPUs helps handle large models.
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Backpropagation Algorithm

2 Step S. Forward Propagation

1. Forward Propagation

Forward propagation is how neural networks make predictions.

Involves passing input data through the network layer by layer to the
output.

2. Backpropagation
» Backpropagation is the process of adjusting the weights of the

network by propagating through the neural network backward.
* Involves calculating the gradient of the loss function with respect
to each weight by the chain rule.

QO0Q00Q00

* The weights are adjusted in the direction that reduces the loss.

Both steps are iteratively repeated for several epochs to minimize the
loss and improve the model's accuracy.

0B0AEE0OCTOGOD00

QQO0QQO0 -

ﬁ l l P | GILLINGS SCHOOL OF
b— GLOBAL PUBLIC HEALTH




Backpropagation Algorithm

l; = (fla;, @] — yi)g fla, p| = B3 + ws - cos [82 + wo - exp|B1 + w1 - sin[Bo + wo - ZEH]

fo = /Bo‘f'QOX@ f1 = [31+th1 f2 = ﬁ2+92h2 f3 = B3+ Qsh;

Forward pass: _ = 1[f5, v,

Backward pass #1: f2 ?91;5 glfli gﬁg
ohy af1 Ohs afa

86 Ofo (9e,\ Oh1 [0e;,\ Of1 (9¢;,\ Ohz (D¢, 5’f2 A 3h3 ol
3f0 Oh1 0 f1 Ohao 0 f2 Ohs O f3

Backward pass #2:
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Parameter Initialization

Proper initialization is critical because:
a) Convergence Speed: Poor initialization can slow down the training process.
b)  Gradient Stability: Ensures gradients do not vanish or explode during backpropagation.

¢) Optimization Performance: Facilitates better navigation of the loss landscape, avoiding saddle points and bad
local minima.

Challenges in Parameter Initialization:
a. Vanishing Gradients: Occurs when the gradients become excessively small during backpropagation, leading to

negligible weight updates. This is typically caused by: Small initial weight values and Activation functions like Sigmoid
or Tanh that squash outputs to a narrow range.

b. Exploding Gradients: Occurs when gradients grow exponentially during backpropagation, causing instability and
divergence in the optimization process. This is typically caused by: Large initial weight values and Improper scaling of
weights in deep layers.

c. Symmetry Breaking: Initializing all weights to the same value (e.g., zero) causes symmetry in the network, preventing
neurons in the same layer from learning distinct features.
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Initialization Techniques

Zero Initialization: All weights set to 0, leading to symmetry.

Random Initialization: Weights are initialized randomly (e.g., sampled from N(O, 1)). Issue: Without proper
scaling, it can lead to vanishing or exploding gradients.

Xavier Initialization (Glorot Initialization): Designed for Sigmoid and Tanh activation functions. Ensures

variance of activations remains consistent across layers: : :
( \/faanJrfan_out \/fan_m+fa,n_out) e fan in: Number of input connections.
He (Kaiming) Initialization: Designed for ReLU and its variants. 2 o fan out: Number of output connections.
W ~ N(0, —)
fan_in
LeCun Initialization: Suitable for activation functions like SELU: W ~ N(0, o )
an_in

Orthogonal Initialization: Ensures weights are orthogonal, maintaining variance stability across layers.
Effective for RNNs and deep networks with large dimensions.

Bias Initialization: Biases are often initialized to small positive values (e.g., 0.01).
Pretrained Initializations: Using weights from pretrained models (transfer learning).

Layer-Specific Initialization: Input layers: Focus on uniform weight distribution.
QOutput layers: Smaller initialization to stabilize predictions.
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Batch Normalization

* Definition: Batch Normalization (BN) is a technique used in Input: Values of x over a mini-batch: B = {x;_,, }:
deep learning to normalize the inputs to each layer within a Parameters to be leamed: ~, 3
neural network. It ensures that the inputs have a consistent o Lo _ - |
distribution, which stabilizes and accelerates training. Output: {y; = BN, 5(z:)}

* Purpose: Reduce internal covariate shift: This occurs 1 &
when the distribution of inputs to a layer changes during UB — — Y // mini-batch mean
training. m =
* Benefits: ) 1 & )
a) Improved Stability: Keeps activations in a stable range, - Z(r, ~ 1) /I mini-batch variance
mitigating vanishing/exploding gradients. 1=1
b) Faster Convergence: Allows for higher learning rates and T M // normalize
reduces sensitivity to initialization. Vo B! + €
c) Regularization Effect: Adds noise due to batch statistics, y; — vx; + 3 = BN, (x;) I scale and shift

reducing overfitting.

d) Enhanced Generalization: Produces better results on unseen Algorithm 1: Batch Normalizing Transform, applied to
data. activation = over a mini-batch.

https://kharshit.github.io/blog/2018/12/28/why-batch-normalization
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Batch Normalization

Training Losses

1.6 \ s Using batchnorm
w= No norm
14—\
=

6 4 2 0 2 4 6 4 2 0 2 4 12 "
10—\
= 08 \
6 4 2 0 2 4 6 4 2 0 2 4 06
0.4
= T ———
02 BA—
6 4 2 0 2 4 6 4 20 2 4 0.0
0 2 4 6 8
https://e2eml.school/batch_normalization https://kharshit.github.io/blog/2018/12/28/why-batch-normalization
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Regularization Methods

Four Mechanisms:

+» Make the modeled function smoother.
\ +* Increase the effective amount of data.

Make function smoother

Increase data

Data s Combine multiple models to mitigate uncertainty
augmentation in the fitting process.
Mu|ti'FaSk s Encourages the training process to converge to
learning a wide minimum, where small errors in the
lTranS_fer estimated parameters are less important.
earning

a) Original b) Flip C) Rotate and crop d) Vertical stretch
g N - = e = s - —— — — —

Al e )

h) Pincushion

Combine multiple models Find wider minima
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Content

6 Convolutional Neural Networks (CNN)
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Nature Image Data is Everywhere

StanfordCS231n
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Major CV Tasks

- —

Semantic Object Instance
Segmentation Detection Segmentation

Classification

CAT GRASS, CAT, TREE, DOG, DOG, CAT DOG, DOG, CAT
_ J Sy AN J
Y Y Y
No spatial extent No objects, just pixels Multiple Object e
StanfordCS231n
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Other CV Tasks

Video Multimodal Video Visualization & Self-driving Cars
Classification Understanding Understanding

Running? Jumping?

StanfordCS231n
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Medical Image Data is Everywhere
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Scenario Challenges

Scale variation Deformation Occlusion

|

Viewpoint variation

StanfordCS231n
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High Dimensionality

. Key Feature:

Images are inherently high-dimensional data. For example, a standard image in classification tasks with a
resolution of 224x224 and 3 color channels (RGB) has 224x224x3=150,528 input dimensions.

* Each pixel represents a separate input feature, and the number of features grows quadratically with image
resolution.

* Challenge:

* Fully connected networks scale poorly with such high-dimensional data. For even a shallow network, the
number of weights can exceed 150,5282"2 (~22 billion). This massive number of weights:

* Increases the risk of overfitting, as more parameters require a proportional increase in training data.
* Results in impractical memory and computational requirements, especially for larger images.
* Slows down the training process significantly, making optimization difficult.

* Real-World Implication:

* As image resolution increases (e.g., 512x512 or beyond for high-definition images), the dimensionality
becomes even more unmanageable for fully connected networks.

e Solution: CNNs reduce the number of parameters by using shared weights (convolutional filters) and
processing local regions of the image (kernels). This drastically decreases memory requirements and
computational complexity.

DUNC
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Spatial Relationships in Pixels

Key Feature:

* Nearby pixels in an image are statistically correlated and form local patterns or textures (e.g., edges, corners,
and gradients). These local relationships are critical for understanding the content of an image.

* For example, in an image of a cat, nearby pixels may collectively form the texture of fur or the shape of an ear.

Challenge:

* Fully connected networks ignore spatial relationships by treating all input pixels equally. They lack the notion
of "locality" and process the relationship between each pixel and every other pixel, regardless of their
proximity.

* This lack of spatial awareness means that a fully connected network cannot naturally exploit the structural
dependencies within an image.

 If the pixels of an image are randomly Fermuted in the same way for both training and testing, a fully
connected network can still learn, highlighting its disregard for spatial coherence.

Real-World Implication:

. l\)Vithout spatial awareness, models become inefficient and require a larger number of neurons to learn even
asic patterns.

Solution:

* (CNNs address this by using local receptive fields to capture spatial relationships. Filters (kernels) process
small, overlapping regions of an image, preserving spatial coherence and focusing on local patterns. This
makes CNNs particularly effective for tasks like object detection and image segmentation.

GILLINGS SCHOOL OF
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Stability Under Geometric Transformations

* Key Feature:

* Images maintain their interpretation under geometric transformations such as translation, rotation, scaling, or
flipping. For example:

» A tree remains recognizable as a tree even if shifted slightly to the left or rotated by a small angle.
» Similarly, a flipped or resized image of a cat does not change its underlying identity.

* This invariance is essential for real-world applications like autonomous driving or medical imaging, where
objects may appear in various positions or orientations.

* Challenge:

* Fully connected networks treat each pixel independently and do not account for geometric transformations. A
simple translation (e.g., shifting an 1ma§e to the left by a few pixels) alters every pixel in the input vector,
forcing the network to relearn patterns for each possible position.

* This redundancy results in inefficient learning and requires significantly more data to cover all potential
transformations.

* Real-World Implication:

* Models that lack invariance to transformations are less robust in real-world scenarios where objects appear in
varying contexts.

e Solution;

* CNNs inherently address this issue by leveraging translation invariance through shared filters. These
filters recognize patterns (e.g., edges or textures%regardless of their position within the image.

* Data augmentation techniques, such as randomly rotating, flipping, or cropping images during training,
further improve the model's ability to handle transtformations.
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Major Considerations

* Noise in Images:

* Real-world images often contain noise (e.g., sensor artifacts, motion blur, or lighting
VaI‘lathIlSt). Fully connected networks struggle to differentiate between noise and meaningful
patterns, further emphasizing the need for specialized architectures.

. CIIINS are more robust to noise due to their focus on local features rather than individual pixel
values.

* Scale and Hierarchy:
* Images often contain hierarchical features at multiple scales:
* Low-level features: edges, corners.
* Mid-level features: textures, patterns.
» High-level features: objects or entire scenes.

* Fully connected networks cannot naturally represent this h.ierarchg/, while CNNs achieve this
using multiple convolutional layers with increasing receptive fields.

* Conclusion The uniﬁlle progerties of unstructured image data pose significant challenges for fully
connected networks. These challenges necessitate specialized architectures like CNNs, which
leverage shared weights, local receptive fields, and hierarchical feature extraction to process
images efficiently. Additionally, techniques like data augmentation and multi-scale analysis enhance
the robustness of these models for real-world applications.
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ImageNet

What is ImageNet?

* Definition: ImageNet is a large-scale visual database designed to advance research in object detection,
classification, and other computer vision tasks.

* Dataset Size: It contains over 14 million labeled images
spanning 20,000+ categories, with the most commonly used
subset having 1,000 object categories.

Key Features of ImageNet

a) Diversity of Classes: it
Includes both broad categories (e.g., "dog," it
"car") and fine-grained subcategories (e.g., "golden retriever," "sports car").

b) Real-World Images:

Images collected from the internet represent real-world complexity, including cluttered backgrounds,
occlusions, and multiple objects.

c) Hierarchical Organization:

Based on the WordNet hierarchy, where classes are semantically related, providing meaningful
relationships between categories.
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ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners

30 282

152 layers| |152 layers| [152 layers

25

20

15

19 layers| (22 Iayerg,'

10— —
7.3 6.7 e
' 5.1

5 — — 3.6 - ==
HEm = B
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Lin et al Sanchez &  Krizhevsky etal  Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet) (ResNet) (SENet)
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Introduction to CNN

What Are CNNs?

CNNs are specialized deep learning architectures designed to process data with grid-like structures, such as
images and videos. By leveraging the spatial structure of data, CNNs efficiently extract and learn hierarchical
features, making them particularly well-suited for computer vision tasks like image classification, object
detection, and segmentation. Image Maps

Input
\ \ .. Output
x = |
L 7 mrd =
CNNs’ applications Convolutions Fully Connected

Subsampling

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

In image and video processing, they are widely used for tasks such as classification, object detection,
segmentation, and face recognition.

In medical imaging, CNNs assist in detecting tumors and anomalies in X-rays and CT scans.

In natural language processing (NLP), they process data as 1D inputs for tasks like sentence classification and text
summarization.

In autonomous driving, they enable real-time object detection for pedestrians, vehicles, and road signs.
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Key Components of CNNs

Convolution Layers Pooling Layers Fully-Connected Layers

224x224x64
112x112x64
pool 1
ﬁ>® | X h .

112
/ 224 downsampling !
112

10

’ 2
v \/aj + £
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Key Components of CNN

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution 1 /—M
e Convolutional layers (5 X 5) kerr.uel Max-Pooling (5 X 5) kerr.lel Max-Pooling (with
valid padding 2x2) valid padding (2x2) v

e A S
* Rectified Linear Unit (ReLU) /'* A 2 N O &

* Pooling layers

e Fully connected layers S o ) . | ]

INPUT nl channels nl channels n2 channels n2 channels

(28 x28x 1) (24 x24 x nl) (12x12 xnl) (8 x8xn2) (4x4xn2)

n3 units

lllustration of architecture of CNNs applied to digit recognition (source)
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https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Feature Extraction Using Convolution

* Input, kernel, and output

* Fully Connected Networks

*  “fully connect” all the hidden units to
all the input units. Only
computationally feasible to learn
features on the entire image for
relatively small images.

 order of 10°% parameters to learn for
96x96 images. The feedforward and
backpropagation computations
would also be about 100 times
slower, compared to 28x28 images.

* Locally Connected Networks

Prince (2023)
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Feature Extraction Using Convolution

O )
* Input, kernel, and output (right figure) S
* Fully Connected Networks S t ) 3 o)
* Locally Connected Networks B :x: | \j
* A simple solution to this problem 1is to limit ;t\\ ) J
connections between hidden and input units, allowing SN
each hidden unit to connect to only a small subset of ‘j
input units, such as a contiguous region of pixels. For P

other data types different than images like audio,
hidden units can be connected to specific time spans.
This concept of local connections is inspired by the
visual cortex, where neurons respond to stimuli in
specific locations.

nput

Illustration of Discrete 2D Convolution (source)
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https://en.wikipedia.org/wiki/Convolution

Understanding the Convolution Operation

What is convolution?

Mathematically, Convolution is defined as f,g: R" - R :

(f ) (@) = f F(@g(x - 2)dz

Whenever we have discrete objects, the integral turns into a sum. For instance, in CNN, we used
discrete convolution for vectors from the set of square-summable infinite-dimensional vectors

defined as:
(f )@ = ) fDgli-a)

For two-dimensional tensors, we have a corresponding sum with (a,b) for f (i-a,j-b) for g,
respectively:

(F*D@N =) > flablgli—aj—b)
a b
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Padding, Stride, and Pooling

* Padding

» Zero-padding and why it's necessary (The pixels at the corner in the previous images are less
counted than those in the middle)

* How padding affects the dimensions of the output

lllustration of padding effects (source)
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https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-neural-network-3607be47480

Padding

One tricky 1ssue when applying convolutional layers is that we tend to lose pixels on the perimeter of our image.
The following figure depicts the pixel utilization as a function of the convolution kernel size and the position

within the image.
We can see that the pixels in the corners are hardly used at all.

Pixel utilization for convolutions of 1x1, 2x2, and 3x3 respectively.
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Padding

One straightforward solution to this problem is to add extra pixels of filler around the boundary of our
input image, thus increasing the effective size of the image. Typically, we set the values of the extra
pixels to zero.

Example on padding 3x3 input to 5x5 matrix:
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Padding, Stride, and Pooling

Stride

 Example with stride of 1 vs. 2

Convolution with zero Padding

Stride-1 Convolution

Input 7x7

Output 4x4

Stride-2 Convolution

Input Dim — filter size + 2 X Padding
+1
Stride

QOutput Dim =

Illustration Convolution Operation with Stride Length = 1 Vs 2 (source)
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https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Padding, Stride, and Pooling

* Pooling
« Types: Max pooling, average pooling
* Role in reducing dimensionality

* Example: Pooling on an image

max pooling

Illustration of 3x3 pooling over 5x5 convolved feature (source)

0
0
4
12
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https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Average Pooling

Average pooling is essentially as old as CNNs. The idea is akin to downsampling an image. Rather than just
taking the value of every second (or third) pixel for the lower resolution image, we can average over adjacent
pixels to obtain an image with better signal-to-noise ratio since we are combining the information from multiple

adjacent pixels.
Rectified feature map 3 reference iImage . averagepooliec
1 4 2 7 Pooled feature map 1904 o
216|8|5 200 4 100

300 +

400

0 00 200 300 400 a ¢ 100 150 200

Average(3,4,1,2)=25

https://blog.paperspace.com/a-comprehensive-exploration-of-pooling-in-neural-networks/

https://www.digitalocean.com/community/tutorials/pooling-in-convolutional-neural-networks
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Maximum Pooling

Max-pooling was introduced in Riesenhuber and Poggio (1999) in the context of cognitive neuroscience to
describe how information aggregation might be aggregated hierarchically for the purpose of object recognition;
there already was an earlier version in speech recognition (Yamaguchi et al., 1990).

In almost all cases, max-pooling is preferable to average pooling.

Consider example:

reference image maxpooled

Input Output "B = 07 2
100 4 50 !
0 1 2 200 1, ; 100 A
2x2 415
31415 : ,
Max-pooling 718 300§ 150 11
6 7 8 400 A 200 __‘-::':::_ .
0 100 200 300 400 0 50 150 | ll'EISIO 260‘.

https://www.digitalocean.com/community/tutorials/pooling-in-convolutional-neural-networks
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AlexNet

* With high performance hardware (GPUs from ﬁf N e S
Nvidia) and sufficiently rich data-set, Krizhevsky L [ N Efi B
et al. proposed AlexNet (Alom et al. 2018), which j U= \" =[N
consists of five convolution layers and three o R " a
fully connected layers. \ o,
* Each convolution layer contains a convolution Nt | 4 "‘1;‘\ —.... e
kernel, a bias term, a ReLU activation function, Eﬂzl N\ Q[——[ ------ .
and a local response normalization (LRN) * | TN N\ 1
mOdU,le, 4g  Pooling tag  Pooling Poolng 204  204%

e In the 2012 ILSVRC, AlexNet won the

.. . . . Layer Type Filter/Kernel Size Number of Filters Stride Output Size
competition with a Top-5 classification error rate

R . Input RGB Image Input - - - 227 x 227 x 3
of 16.4%, became the leldlIlg line between Layer1 Convolution + Max Pooling 11 x 11 96 4 55 x 55 x 96
- . . Layer 2 Convolution + Max Pooling 5 X5 256 | 27 x 27 x 256
traditional and deep learning algorithms, and was  pLayer 3 Convolution 3% 3 384 ) 13 x 13 x 384
1 1 Layer 4 Convolution 3 %3 384 1 13 x 13 x 384
the ﬁrSt deep CNN mOdel 1n mOdem times. Layer 5 Convolution + Max Pooling 3x3 256 1 13 x 13 x 256
Layer 6 Fully Connected - 4096 - 4096
Layer 7 Fully Connected B 4096 - 4096
Layer 8 Fully Connected (Output) - 1000 - 1000 (class probabilities)

Table 1: Architecture of AlexNet (Rotated Table).
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Visual Geometry Group (VGG) models

 To examine the impact of a CNN’s depth on its
accuracy, Karen Sengupta et al. (2019) conducted a
comprehensive evaluation of the performance of
network models with increasing depth, while using
smaller convolution filters (3 X 3) instead of the

previous 5 X 5 kernels and proposed a series of Visual
Geometry Group (VGG) models in 2014.

e The smaller kernel size lowers the computational
complexity and the number of training parameters.

e Simultaneously, VGG supports the hypothesis that
performance can be enhanced by continually
deepening the network topology.

e In the 2014 ILSVRC, VGG won the competition in
the Localization Task with a Top-5 classification
error rate of 7.3%,
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224x224x3

224 x 224 x 64

12 x 112 x128 convolution + ReLU

max pooling
56 x 56 x 256 fully nected + ReLU

softmax

28 x 28 x 512

14 x14 x 512

. 1x1x 4096
N

7 x7x512
\ 1x1x1000
N

N

Sengupta et al. Front Neurosci (2019)




VGG Models

Layer Type Filters Kernel Size Stride Padding Output Size a) Increased Depth;
Input - - - - 224 x 224 x 3 : : : :
O+ ReLU o 303 X X ot vt s Depth allows VGG to learn hierarchical features, improving
Conv + ReLU 64 3x3 1 1 224 x 224 x 64 accuracy.
Max Pooling - 2% 2 2 0 112 x 112 x 64 . . .
Conv + ReLU 128 3%3 1 1 maxizx1s  P) Simple Des.lgn. . . .
Conv + ReLU 128 3x3 1 1 112x112x128 Stacks of identical convolutional layers make it easy to
Conv + ReLU 256 3%3 1 1 56 x 56 x 256 :
Conv + ReLU 256 3x3 1 1 56 x 56 x 256 c) Transfer Learning;
Conv + ReLU 256 3%3 1 1 56 x 56 x 256 . .
Max Pooling _ 9% 2 9 0 98 x 98 x 256 VGG models pretrained on ImageNet are widely used for
g"n" i gelﬁg gg g ' g } i ;g ' gg ' g}; transfer learning in other tasks.

onv e .
Conv + ReLU 512 3% 3 1 1 28 x 28 x 512 d) Small Filters:
Max Pooling - 2 X2 2 0 14 x 14 x 512 : % :
oy + RoLU - o X X 14 x5l Using 3%3 ﬁlters. result.s in fe.:wer parametqs compafed to
Conv + ReLU 512 3x3 1 1 14 x 14 x 512 larger filters, while maintaining the receptive field size.
Conv + ReLU 512 3x3 1 1 14 x 14 x 512 .
Max Pooling ] 2 x 2 2 0 7X 7 x 512 e) VGG-16:
Flatten - - - - 25088 16 layers: 13 convolutional layers and 3 fully connected layers.
puty Comnected ] ] ] ] o Parameters: ~138 million
Fully Connected - - - - 4096 - .
Output (Softmax) - - - - 1000 f) VGG-19:

Table 1: VGG-16 Architecture: Layers, filters, and output sizes. 19 layers: 16 convolutional layers and 3 fully connected layers.

Parameters: ~143 million.
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GoogLeNet

* GoogleNet, also known as Inception-v1, is a deep CNN
introduced by Szegedy et al. in 2014.

e It won the ILSVRC 2014 the Classification Task with a
top-5 error rate of 6.67%, outperforming other models.

e Main Innovations:

a) Inception Module enables the network to capture
features at multiple scales while reducing
computational cost.

b) Dimension Reduction. Uses 1x1 convolutions for
reducing dimensionality before applying larger
filters, significantly reducing parameters.

¢) Auxiliary Classifiers: Two intermediate softmax
classifiers are added to help with gradient flow and
prevent vanishing gradients.

* Motivation: Despite having 22 layers, GoogleNet has
only ~SM parameters, significantly fewer than
AlexNet (~60M) and VGG-16 (~138M).This is
achieved using 1x1 convolutions for dimensionality
reduction.

B convoluton

I max pooling

I channel concatenation
" channelwise normalization
I fuly-connected layer

final output

M ]

!

3 ;e
;

Inception ceII

g e auxiliary loss

auxiliary loss

zegedy et al. Proceedings of the IEEE Conference
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GoogleNet Architecture

Layer Type Filters/Units Kernel Size Stride Padding Output Size
Input - - - - 224 x 224 x 3
Conv + ReLU 64 X7 2 3 112 x 112 x 64
Max Pooling - 3x3 2 0 96 x 56 X 64
Conv + ReLU 64 Ix1 1 0 96 x 56 x 64
Conv + ReLU 192 3 %3 1 1 56 X 56 x 192
Max Pooling - 3x3 2 0 28 x 28 x 192
Inception Module 1 - Multi-scale - - 28 x 28 x 256
Inception Module 2 - Multi-scale - 28 x 28 x 480
Max Pooling - 3x3 2 14 x 14 x 480
Inception Module 3 - Multi-scale - - 14 x 14 x 512
Inception Module 4 - Multi-scale - - 14 x 14 x 512
Inception Module 5 - Multi-scale - - 14 x 14 x 528
Auxiliary Classifier 1 1000 - - - 1000
Inception Module 6 - Multi-scale - - 14 x 14 x 832
Auxiliary Classifier 2 1000 - - - 1000
Inception Module 7 - Multi-scale - - 7x7x1024
Global Average Pooling - T - - 1x1x1024
Fully Connected 1000 - - - 1000

*Input Layer: 224x224x224x3 RGB image.
*Convolutional Layers: Apply 7x7, 1x1, or 3x3 filters
to extract features.

*Inception Modules: Multi-scale processing

with 1x1, 3x3, 5x5, and pooling operations.
*Auxiliary Classifiers: Intermediate softmax layers
for training regularization.

*Global Average Pooling: Replaces fully connected
layers with spatial pooling across feature maps.
Output Sizes:

*The output size at each stage is shown,
demonstrating how spatial dimensions decrease
progressively.

Table 1: GoogleNet Architecture: Layers, filters, and output sizes.




Inception Module

1. Input feature map with dimensions H x W x Cj,.

Input: Feature map dimensions H X W x C;, = 28 x 28 x 192,
2. Four parallel paths: Paths:

o 1x 1 convolution. o 1 x 1 Convolution: 64 filters, output 28 x 28 x 64.

o 1 x 1 convolution followed by 3 x 3 convolution. o 1x 14 3x3 Convolution: 96 and 128 filters, output 28 x 28 x 128.

o 1x1 convolution followed by 5 x 5 convolution. o 1x1+5x5 Convolution: 16 and 32 filters, output 28 x 28 x 32.

Max pooling followed by 1 1 convolution.
¢ ax pooting foflowed by 2 % & convolution o Max Pooling + 1 x 1 Convolution: 32 filters, output 28 x 28 x 32.

3. Concatenate the outputs to produce a feature map with dimensions H x W x (C; +

050 Concatenation: Final output 28 x 28 x (64 4 128 + 32 + 32) = 28 x 28 x 256.

* Multi-Scale Feature Extraction: Processes feature maps at multiple scales for rich. representations.

* Dimensionality Reduction: 1 x 1 convolutions reduce computational costs while preserving important
information.

* Efficiency: Deep networks can process large input data with fewer parameters compared to traditional
architectures.

* Improved Generalization: Captures features across different abstraction levels.
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Inception Cell

Succeeding Su;:ceedlng
ayers
layers
Fllter Fllter
concatenatlon
/ concatenation \ \
3x3 ﬁlters 5x5 filters 1x1 filters
1x1 filters 3x3 filters 5x5 filters s lm ax
pooling 11 filters 4 $
1x1 ﬁlters 1x1 filters — rpax
\/ pooling
Preceding Preceding
layers layers

(a) Architecture of inception (b) Architecture of inception V1

Example architecture of inception
Zhao et al. Artificial Intelligence Review (2024)
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Residual network (ResNet)

* Degradation Problem: Deeper networks (e.g., >20 layers) suffered from degradation of accuracy, not just
overfitting, but actual performance decline.

* Key Idea: Instead of learning the direct mapping (H(x)), ResNet learns the residual mapping (F(x)=H(x)—x).
This simplifies optimization and allows gradients to flow through skip connections, improving convergence.

* Impact:
* Ease of Optimization: Learning residuals is simpler than learning direct mappings.

* Deeper Architectures: ResNet-152 outperforms shallower networks while maintaining high accuracy.
« State-of-the-art Results: Top-5 error dropped to ~3.6% on ImageNet (ILSVRC).

* Connection to Highway Networks (Srivastava et al., 2015): ResNet can be seen as a special, simplified
case of highway layers where gates are mostly open.

* Residual connections enable building much deeper and more powerful networks by addressing gradient vanishing
and “degradation” issues.
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Residual Block

Building Block:
X a) Input: x (feature map from the previous layer).
S b) Path 1 (Residual Function):
| . | i.  3x3 convolution -> Batch Normalization -> ReLU.
| Weight layer | X ii. 3x3 convolution -> Batch Normalization.
| . : ) c) Path 2 (Skip Connection):
: F(x) l RelU | dent i. ldentity mapping: Directly passes the input x.
| Weight layer | d) A,dd'tlon: ,
| | i.  Output: F(x)+x (summation of the two paths).
————————— — e) Activation:
i. Apply ReLU to the combined output.
F(x)+x f) Output:
ReLU Final feature map retains the same dimensions as the input].
Illustration of a residual block
Zhao et al. Artificial Intelligence Review (2024)
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CNN Optimization Techniques

CNN optimization involves techniques to improve the performance, efficiency, and generalization of
Convolutional Neural Networks during training and inference.

* Goals:

a) Reduce overfitting.

b) Improve convergence speed.

c) Optimize computational resources.

 Common Strategies:
a) Data Augmentation
b) Regularization (L1, L2, Elastic Net)
c) Dropout & Early Stopping
d) Transfer Learning
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Data Augmentation

Input Augmentation Output

* Data augmentation is a strategy used to artificially increase the size and
diversity of a training dataset by applying transformations to the existing
data.

* Purpose: Improve model generalization. Prevent overfitting.
Compensate for limited training data.

Flipping

* Why? Increases effective training set size without extra data collection.

e Common Methods:

Noise Injection

 Color jittering, cropping, flipping, rotations, scaling.

* PCA-based color augmentation (as in AlexNet) (Krizhevsky et
al., Commun. ACM, 2017).

* Transfer learning approach using well-known CNN models
(GoogleNet, AlexNet, VGG16, VGG19, DenseNet, etc.) along with
data augmentation techniques can be used to accelerate the training
and testing process while yielding good results and performance.

Color Spacing

Color Jitter

* He et al. implemented data augmentation along with regularization h F
aud

techniques such as dropouts and weight decay (CVPR, 2016). ‘ )
Teerath et al. IEEE Access (2024)
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Data Augmentation

* Geometric Transformations: o : "~ Data Augmentation
Flipping: Hor1zont‘al and vertical ﬂl.pS. _ ' o . '
Rotation: Rotates images by a specified angle. | \ _
Scaling: Resizes images while preserving aspect ratio. ' AmexnokDifisbs J?
Cropping: Extracts subregions from the image. e N N | ,
* Color Transformations: - | Y Bk ol "
Brightness Adjustment: Alters image brightness. Rpesity ' Shifted the zero- \ e m
Contrast Adjustment: Modifies contrast levels. 8 e el ‘
Saturation Adjustment: Changes color saturation. o m } i e ﬂ
y

Hue Adjustment: Shifts color hues.
* Noise Injection: Adds random noise to images to improve T 1

] |
robustness. | . .
o . . . Covid-19 s i Normal '
 Affine Transformations: Applies scaling, shearing, or Feumoni A

translation to the images.

Example of using preprocessing techniques along with the
well-known CNN models for COVID-19 and Lungs

Pneumonia detection using transfer learning.
Latif et al. AIMS Mathematics (2024)
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Regularization methods

* Definition: Regularization refers to techniques that
improve a model's generalization by reducing overfitting
to the training data.

* Why Regularization? Deep learning models are prone
to overfitting due to high capacity and complex
structures. Regularization helps balance the trade-off
between model complexity and performance.

* L2 Regularization (Weight Decay)

* Penalizes the square of weights — discourages
large weight values, helps smooth solutions.

* L1 Regularization (Lasso)
* Penalizes the absolute value of weights — 4 0 -
encourages sparsity (some weights become zero).
* Elastic Net

* Combines L1 and L2 — can both shrink weights
and promote sparsity.
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Dropout & Early Stopping

* Dropout * Early Stopping
* Randomly “drops” neurons during training. Monitors validation performance and
* Reduces co-adaptations among neurons — halts training before overfitting sets in.
mitigates overfitting. Balances bias/variance by stopping at the

optimal point.

hiddé%n lay?rl hi”dden (ayerQ hidd@n layfzrl hiic‘ifr.z\l\ayeTZ A
p Enor
o Q Validation
' Training
’ >
early stopping Epochs

https://www.pinecone.io/learn/regularization-in-neural-networks/
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Transfer Learning

Train on ImageNet Bigger Datasets

Small Datasets

DUNC

GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH

|__FC-1000 | [_Fec ] L_Fcc |

| FC-4096 | FC-4096 S | FC-4096 | Train these

|__FC-4096 | FC.4096 | R_e'n|t|a||ze_ | __FC-4096 |

. MaxPool | MaxPool | this and train MaxPool \

___Conv-512 | | Conv512_| |__Conv-512 | With bigger

| Conv512 | [ Conv-512 | | Conv-512 | datas et, train

. MaxPool | [ MaxPool | | MaxPool | more | ayers

I Conv-512 I I Conv-512 I I Conv-512 l

. Conv-512 | [ Conv512 | | Conv-512 |

. MaxPool | [ WMaxPool ) > Freeze these | MaxPool |

| Conv-256 | " Conv-256 | |_Conv256 | Freeze these

. Conv-256 | [ Conv-256 | . Conv-256 |

. MaxPool | [ MaxPool ] | MaxPool | .

| Conv-128_| Feomize | | Conv-128 | Lower learning rate

| Conv-128 | [ Conviizs | |_Conv-128_ | when finetuning;

| MaxPool | " MaxPool | |__MaxPool _| 1/10 of original LR Donah ! ICML
|_Conv-e4 | [ Convet | o | is good starting onahue et a.,

. Conv-64 | [ Convea | . Conv-84 | j poin t 2014

[ image | BT [_Image | Razavian et al, CVPR

Workshops 2014



Object Detection

+ Road Sign
I

]
!
3
{

Bicycle

Challenge:

e Objects can be anywhere in the scene, in any orientation, rotation, color hue, etc.
* How can we overcome this challenge?

Answer:

e Learn a ton of features (millions) from the bottom up

e Learn the convolutional filters, rather than pre-computing them
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What is Object Detection?

To determine: What objects are where?
-- Object bounding box: location and size
-- Object category.

By NIPS15-Faster RCNN
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Object Detection Milestones

SSD (W. Liu Retina-Net

-1 T. Y. Linetal-17
YOLO (J. Redmon et al-16) ( )

DPM etal-16,17)
HOG Det. (P. Felzenszwalb et al-08, 10) One-stage
(N. Dalal et al-05)
VJ Det. detector
(P. Viola et al-01) / + AlexNet >
/ 2014 2015 2016 2017 2018 2019
2001 2004 2006 2008
2012 2014 2015 2016 2017 2018 2019
Traditional Detection RCNN\ Two-stage
Methods ,’II (R. Girshick et al'14) SPPNet detector
— fthe cold (K. He et al-14)
isaom o € Cola weapon ’ H
p / Deep Learning based Fast RCNN
Detection Methods (R. Girshick-15)
Technical aesthetics of GPU Faster RCNN Pyramid Networks
(S. Ren et al-15) (T. Y. Lin et al-17)
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R-CNN: Regions with CNN features

Ross B. Girshick et al., (CVPR2014)

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions
 Object Proposal+CNN features
* Bounding Box Regression Drawbacks
* Fine tuning e  The redundant feature computations on a large number
e VOCO7 mAP: 33.7—>58.5 of overlapped proposals (>2000 boxes/img) leads to an
extremely slow detection speed (14s per image with
Time: 14s/image on a GPU GPU).
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R-CNN: Regions with CNN features

Definition: R-CNN is a deep learning framework for object detection introduced by Ross Girshick in 2014.
It integrates region proposals with CNNs to detect objects in an image effectively.

Key Contributions:

¢ Combines region proposals with CNN-based feature extraction.

¢ Demonstrates the use of transfer learning for detection tasks.

¢ Achieves significant performance improvements over traditional methods.

Workflow of R-CNN:

Input image is processed using Selective Search to generate region proposals.
Each region is resized to 224x224 and passed through a CNN to extract features.
SVM classifiers predict object categories for the proposals.

Bounding box regression refines the coordinates of the proposals.

Outputs are the predicted class labels and refined bounding boxes.

YV VYV
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SPPNet: Spatial Pyramid Pooling

SPPnet is a deep learning framework designed to handle images of arbitrary sizes without requiring
cropping or resizing. It introduces the Spatial Pyramid Pooling (SPP) layer, which allows for flexible
input dimensions and improved computational efficiency.

warp image region feature map region

* Fixed-length features are required by fully-connected layers or SVM
* But how to produce a fixed-length feature from a feature map region?
* Solutions in traditional compute vision: Bag-of-words, SPM...

Kaiming He et al., (ECCV2014)
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Fast RCNN

inefficiencies of R-CNN by
introducing Region of Interest
(ROI) Pooling and enabling

i shared computation, leading
Conv ‘\ Rol feature to faster and more accurate

feature map vector object detection.

For each Rol!

Outputs: ey Fast R-CNN is an object

£ detection framework

B\ SOTIMax FEETESSOF  introduced by Ross Girshick in
Rol EEJEFC F_’IEFC 2015. It improves upon the

...... &t pooling

* ROl Pooling

Multi-task loss (Clc. + BB Reg.)
 BP through Rol pooling layers
« VOCO07 mAP: 58.5->70.0

Ross B. Girshick (ICCV15)
MUNC | Someonens

Time:
0.32s/image on a GPU




Faster RCNN

Faster R-CNN is a successor to Fast R-CNN and introduces the Region Proposal Network (RPN) for
generating region proposals, making the detection pipeline fully end-to-end.

2k scores 4k coordinates mm  Fanchor boxes Anchors (reference boxes)
cls layer\ t reg layer
56 ’ _  Region Proposal Network
t intermediate layer ° Detection Network
) -  Sharing Features
\ AN . VOCO7 mAP: 70.0>78.8

sliding window

Time: 17 fps on a GPU

conv feature map

Shaogqing Ren et al., (NIPS2015)

S pi L0t

L({pi}a{ti}) *\Tl ZLCZS Pi. pz +)\

7‘6 g
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You Only Look Once (YOLO)

YOLO treats object detection as a single regression problem,
predicting both class probabilities and bounding box coordinates in Workflow of YOLO

one forward pass. J. Redmon et al., (CVPR2016) S S
Key Contributions: * Input Image: The input image is divided into an
< Introduces a unified framework for object detection, enabling  SXS grid (e.g., 7X7).

real-time performance. = Feature Extraction: A CNN processes the
% Processes the entire image in a single forward pass, improving ~ 1mage to extract features.

efficiency. * Bounding Box Prediction: Fach grid cell
% Balances speed and accuracy, making it suitable for real-world  predicts:

applications. Bounding boxes (coordinates and dimensions).

Confidence scores for each bounding box.
* C(Classification: Each grid cell predicts class
probabilities for the objects it contains.
= Post-Processing: Non-Maximum Suppression
(NMS) removes duplicate detections and retains

. Resize image. the most confident predictions.
. Run convolutional network.

. Non-max suppression.

* Runs at 45fps with VOC07 mAP=63.4% and VOC12 mAP=57.9%.
e A fast version runs at 155fps with VOC07 mAP=52.7%.
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SSD: Single Shot MultiBox Detector

SSD performs object detection in a single forward pass, making it fast and
efficient compared to region-based methods like Faster R-CNN. Workflow of SSD

Key Contri||:>.|.|tiorlrs:]c o . " et . 1. Input Image: The input image is processed
e Uses multi-scale feature maps for detecting objects of different sizes. through a backbone CNN (e.g., VGG16) to extract

e Introduces default (prior) boxes for efficient bounding box predictions.

. : . ) feature maps.
e Eliminates the need for separate region proposal steps, improving speed.

2. Multi-Scale Feature Maps: Feature maps from
different layers are used to predict objects at
various scales.

— > predict : . :
predi —, predict 3. Default Boxes: Predefined bounding boxes
> pre:mt with varying aspect ratios and scales are applied to

~ predict

each feature map cell.

4. Predictions: Each default box predicts:

(a) YOLO (b) SSD « Class probabilities for classification.

3 * Bounding box offsets for localization.

5. Post-Processing: Non-Maximum Suppression

1

|

|

|

™
T

LI LU B B

-
T

1

I

I

I

1

1

£ :‘-T:LE’. Ll (NMS) removes redundant detections and retains
T e L 1 e - i v - the most confident predictions
R ] L]
i e e
. R Yioc: A(ex.cy.w. h)
AT 2 conf ; (c1,¢2, - Cp)

[ e Sy e S Bt~
I TN NN P 2 o o

Wei Liu et al., (ECCV2016)

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map
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Detection Datasets

person

PASCAL VOC ILSVRC MS-COCO Open Images
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Detection Datasets

train validation trainval test
Dataset : . : . : : . .
images objects | images  objects | images objects | images  objects
VOC-2007 2,501 6301 | 2510 6,307 5,011 12,608 | 4952 14976
VOC-2012 5,717 13,609 | 583 13841 | 11,540 27450 | 10,991 -

[LSVRC-2014 456,507 478,807 | 20,121 55502 | 476,688 534,309 | 40,152
[LSVRC-2017 456,507 478,807 | 20,121 55,502 | 476,688 534,309 | 65,500
MS-COCO-2015 | 82,783 604,907 | 40,504 291,875 | 123,287 896,782 | 81,434
MS5-COCO-2018 | 118,287 860,001 | 5000 36,781 | 123287 896,782 | 40,670
OID-2018 1,743,042 14,610,229 | 41,620 204,621 | 1,784,662 14,814,850 | 125436 625, 282

TABLE 1
Some well-known object detection datasets and their statistics.
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Semantic Segmentation: The Problem

?
GRASS, » TREE, At test time, classify each pixel of a new image.
SKY
Paired training data: for each Classifv center pixel
training image, each pixel is labeled with CI}\]IN P
with a semantic category. \ e gt ‘@

Imp0581ble to classrfy without context Q: how do we r}lo del this?; =
Q: how do we include context?
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Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014
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U-Net: Motivation

In CNNs, different layers learn different feature levels:
* Lower layers: Learn low-level, fine-grained details
(e.g., edges, textures)
* Higher layers: Capture high-level, coarse-grained
semantic features (e.g., shape, structure)
*This hierarchy is ideal for classification tasks but
introduces limitations for pixel-level tasks like
segmentation

Challenges in Medical Image Segmentation
*Medical images often suffer from:

* Noise

* Low contrast

e Blurred or unclear boundaries
*Relying only on low-level features results in poor object
recognition
*Relying only on high-level semantic features leads to
inaccurate boundary detection

Need for Multi-Level Feature Integration

*Effective segmentation requires a combination of:
* High-level semantic understanding (context)
* Low-level spatial precision (details)

*General CNNs lack explicit mechanisms to combine

both effectively

Encoder-Decoder Architectures
*Designed to combine high-level and low-level features
*Consist of:
* Encoder: Downsamples and extracts abstract features
* Decoder: Upsamples to recover spatial resolution and
integrates detail
*Enables pixel-level prediction with semantic awareness




Semantic Segmentation Idea

Design a network with only convolutional layers without downsampling
operators to make predictions for pixels all at once!

Problem: convolutions at
original image resolution
& & . .
- - Gony Algmax will be very expensive ...

Y / Scores: Predictions:
CxHxW HxW

Convolutions:
. DxHxW . . .
Design network as a bunch of convolutional layers, with downsampling and

upsampling inside the network!

Med-res: Med-res:
D,xH/4xW/4 D,xH/4xW/4

Upsampling:
Unpooling or strided
transposed convolution

Downsampling: s
Pooling, strided
convolution

Low-res:
D;x H/4 xW/4

Input: High-res: Predictions:

High-res:
3xHxW D, x H/2 x W/2 D, x H/2 x W/2 HxW
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D oOwns amplin g and Up S amplin g Corresponding pairs of

downsampling and
upsampling layers

Max Pooling

) Max Unpooling
Remember which element was max!

Use positions from

1216 3 pooling layer olol21o0
315211 56 112 ojl1(o0o]|o0
> — > 0600 — —
3 4
L1221 T8 Rest of the networl A RIEL L
713|438 3/0|0|4
Input: 4 x 4 Output: 2x2 Input: 2 x2 Output: 4 x 4

Common Downsampling types: Common unpooling strategies:
* Max pooling: Takes the maximum value in each window « Max-unpooling with indices:

* Average pooling: Computes the average value * Fixed-position unpooling: inserts values at top-left
* Stochastic pooling: Randomly selects an activation corner of window
based on a probability distribution .

Interpolation-based unpooling: uses nearest-
neighbor or bilinear interpolation to expand feature
maps

Learnable unpooling: introduces parameters to
learn where and how to upsample

Often followed by convolutional layers to refine outputs

* LP-pooling: Generalized pooling that uses the p-norm
over each region
* Global pooling: Applies pooling over the entire feature .
map to reduce to a single value per channel
*Purpose: (i) Reduce computation; (ii) Increase receptive field;
(iii) Achieve spatial invariance; (iv) Introduce regularization
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U-Net: Vanilla Version

Skip Connections: Final Output:
» Link encoder and decoder layers at the same depth level ** A 1x1 convolution maps
» Concatenate encoder feature maps with decoder inputs to the final feature map to
% U-Net is a neat end- combine detailed and contextual information the number of target
to-end neural » Help restore s/patial resolution and sharpen boundarjes classes

¢ Produces a pixel-level

network with a e
classification map (e.g.,

:::Iroaecterlstlc v | | segmentation mask)
Input Image i a 4 a4 4 Segmentation Mask
g >m: [[n Expanding Path (Decoder):

Contracting Path (Encoder): : W < Upsamples feature maps to
% Captures context through repeated m 7 @mj match input resolution

downsampling blocks ; g U ey % Each block includes one 2x2
+* Each block includes two 3x3 convolutions fﬂfﬂ[ﬂﬁ@@@ O transposed convolution (up-

+ RelLU, followed by 2x2 max pooling ; @/ ‘ 2 X2 Transposed Convoluton COhV), two 3x3 convolutions +
% Gradually increases the receptive field Bottleneck: <~/ S RelU

> Skip Connection and Concatenation

without heavy computation +* Connects encoder and decoder
+* Two 3x3 convolutions + RelLU
¢ Reduces spatial resolution and
increases depth for high-level
Ronneberger, O., Fischer, P., & Brox, T. (2015, May 18). U-Net: Convo/u@b@ftlvawbi@rjor Biomedical Image Segmentation. arXiv.Org. https://arxiv.org/abs/1505.04597v1
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https://arxiv.org/abs/1505.04597v1

Contracting Path (Encoder)

1 64 64

» Block 1:
_input ¢ Input: 572x572x1 (grayscale image)
'mai?,z o b Block 1 * Two 3x3 unpadded convolutions + ReLU = 64 channels
% 2x2 max pooling (stride 2) - downsampled to 284x284
» Block 2:
+* Two 3x3 convolutions + ReLU = 128 channels
, g ¢ 2x2 max pooling > 140x140
Block 3 & Block 4:
Block 2 +* Same as previous blocks with doubled channels (256,
512)
* Max pooling after each block halves spatial dimensions
Block 5 (Bottom):

0

572 x 572
570 x 570
568 x 568

*

2842

N
(4

(o2}
N
0N
(02}
O/

00

> Block 3 +* Two 3x3 convolutions + ReLU = 1024 channels
‘3' P * First conv in this block included here, second used in
l..-.- e Block 4 expanding path for symmetry

1024
N--»— Block 5

O
o
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Expanding Path (Decoder)

128 64 64 2
Block 1 ole|s] OUPU
- segmentation
m Mg M M
‘EEE
™M\ o OO M
256 128
Block 2 =
S EE

512 256 t

Block 3 s :J’I’I
1024 512 '
Block 4 =3 -l
1024 ‘ & %

Block 5 e mmm

N
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=» conv 3x3, RelLU

¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

*Block 5:
e Continues from the bottom block with a second 3x3
convolution + RelLU
* Followed by a 2x2 up-convolution - doubles spatial
resolution, reduces channels to 512
*Block 4:
« Skip connection: concatenate encoder feature map
(cropped to match size) - 1024 channels
e Two 3x3 convolutions + ReLU - reduce to 512 channels
e 2x2 up-convolution - upsample and reduce channels to
256
*Block 3 & Block 2:
* Same as Block 4, with halved channels: 2565128564
*Block 1 (Final Block):
» After skip connection: 128 channels
e Two 3x3 convolutions + ReLU = reduce to 64 channels
* Final 1x1 convolution - maps to number of classes (e.g.,
2 for binary)

* Followed by activation function (e.g., sigmoid for binary
classification



3D U-Net

* Due to the abundance and representation power of volumetric data, most medical image modalities are

three-dimensional. 3D U-Net was commonly used in Brain tumor segmentation (e.g., BraTS dataset), Lung
nodule detection, and liver and pancreas segmentation.

* 3D U-Net is proposed to deal with 3D medical data directly. It replaces all 2D operations with their 3D
counterparts. The users can annotate some slices in the volume to be segmented. The model then learns
from these sparse annotations and provides a dense 3D segmentation.

* However, due to the limitation of computational resources, it only includes three down-sampling, which
cannot effectively extract deep-layer image features, leading to limited segmentation accuracy for
medical images.

train and

apply y
3D u-net |

—_—

raw image manual sparse annotation dense segmentation

apply trained 3D u-net

’ conv {+ BN) + Relu

‘ max pool

up-conv

B P conv
Cicek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3D U-Net: Learning Dense Volumetric Segmentation from

Sparse Annotation (No. arXiv:1606.06650). arXiv. https://doi.org/10.48550/arXiv.1606.06650
=) GILLINGS SCHOOL OF
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raw image dense segmentation
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U-Net plays a central role in clinical image

analysis pipelines

Overview of key stages:

* Input Preparation: Image acquisition,
normalization, and preprocessing for
consistent input format

* Architecture Search: Automatic
selection of the most efficient U-Net
variant via neural architecture search

* Postprocessing: Refinement of
segmentation masks (e.g.,
morphological operations)

* Clinical Application: Supports decisions
such as tumor growth tracking or
treatment planning


http://arxiv.org/abs/2211.14830

Content

7 Graph Neural Networks (GNNs/GCNs)
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Graph-Structured Data

f Graph-structured data i1s a type of data representation where entities (nodes) and
their relationships (edges) are explicitly modeled as a graph. This structure captures the
connections between data points, allowing for more effective analysis of relational

| patterns. y
Examples:
« Social networks, citation networks, multi-agent systems Graphs are a general
* Knowledge graphs language for describing
« Recommendation System and analyzing entities with
* Protein interaction networks relations/interactions

* Molecules
* Road maps
e Brain networks

s
Why Are Graph-structured Data Important?

Graphs capture complex relationships and dependencies between entities:

*Interconnected entities influence each other (e.g., in social networks, a person’s behavior depends on their connections).

*Knowledge is structured in relational forms (e.g., in knowledge graphs, concepts are linked based on meaning and context).

*Biological and medical data exhibit intricate interactions (e.g., protein-protein interaction networks, brain connectivity graphs).

By modeling data as graphs, we can better understand structures, uncover hidden patterns, and improve Al-driven decision-making.
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Graph-Structured Data is Everywhere

2

Image credit: SalientNetworks

Event Graphs Computer Networks Disease Pathways g i Medur ISR i e
Social Networks Economic Networks Communication Networks

Chesapeake Bay Waterbird Food Web

Image credit: Wikipedia i [l i Sl (1] ) [ro% i Nie s el Tl P i
age et R pee il ) mage credit: visitlondon.com naqe credit: Missoula Current News Image credit: The Conversatio
Image credit: Pinterest Image credit: visitlondon.cor age crec Cur ag ‘ a

Food Webs Particle Networks  Underground Networks Citation Networks Internet Networks of Neurons

StanfordCS224w
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Graph-Structured Data is Everywhere
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Graph-Structured Data is Everywhere
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Challenges

Graph-structured data pose significant challenges due to their irregularity, high
dimensionality, and computational complexity. The major challenges include:

» Scalability and computational inefficiency

» Irregular and dynamic nature

» Data sparsity and missing values

» Complex relationships and non-Euclidean space
» Challenges in learning meaningful representations

» Privacy, security, and adversarial attacks

ﬁ l ' P l GILLINGS SCHOOL OF
= GLOBAL PUBLIC HEALTH




Homogeneous Graph

* Key Characteristics of Homogeneous Graphs
¢ Single Node Type: All nodes in the graph belong to the same category.
% Single Edge Type: All edges represent the same kind of relationship between nodes.

¢ Uniform Structure: The graph follows a consistent connectivity pattern, making it easier to apply traditional
graph-based algorithms.

 Examples of Homogeneous Graphs

» Social Networks (e.g., Facebook, Twitter, LinkedIn)

* Nodes: Users. Edges: "Friends" or "Follows" relationships between users.

» Citation Networks (e.g., Google Scholar, ArXiv, PubMed)

* Nodes: Research papers. Edges: "Cites" relationships, where one paper references another.
> Protein Interaction Networks (e.g., Biological Networks)

* Nodes: Proteins. Edges: "Interacts with" relationships, representing biological interactions between proteins.
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How to build an effective graph?

/
0’0

YV V

YV V VYV

DUNC

Nodes (or vertices) represent the fundamental entities in a graph. They can correspond to different
objects depending on the problem domain.

Edges (or links) define relationships or interactions between nodes. Edges can be:
Directed or undirected (e.g., one-way vs. mutual friendships).
Weighted or unweighted (e.g., flight routes with different distances).
Static or dynamic (e.g., evolving relationships over time).

Choosing the Proper Network Representation. The way we construct a graph determines
our ability to extract meaningful insights. Different representations can lead to different outcomes.

Cases Where Representation is Unique and Unambiguous
Cases Where Representation is Not Unique

How the Choice of Links Affects the Questions You Can Study

The way you define connections (edges) influences the type of insights you can extract.
If you ignore certain relationships, you may miss critical aspects of the data.
If you add unnecessary edges, you might introduce noise and bias in analysis.
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Graph Set-up

 Graph G = (V,E) is defined by a set of nodes V and a set of edges E between these nodes. An edge
going fromnodeu € Vtonodev € Vas(u,v) € E.

Undirected Directed

SEAVARV/
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Adjacency Matrix

* A convenient way to represent graphs is through an adjacency matrix A € RIVIXIVl, We order the
nodes in the graph so that every node indexes a particular row and column in the adjacency matrix.

Weighted Multigraph

(undirected) (undirected)

s 5 NN

if there is a link from node i to node j

A,.l._ a e Self-edges (self-loops)
(undirected)
0 1 0 1% (0 0 0 1) ?
1 0 0 1 1 0 00 ‘
A == A —
O 0 0 1 O 0 0 O @
1 1 1 0, LONTNING |
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Graphs and Graph Signals

V:{Ul,...,UN}
52{61,...,6_]\4}

G ={V,&}
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Graphs and Graph Signals
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Graphs and Graph Signals
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Graphs and Graph Signals

N
Graph Signal: f )Y = R

N— N N N N N N
| ]

<
I 1
g Y
0~ O O = W N =

NN NN SN SN N TN




Matrix Representations of Graphs

Spectral graph theory. American Mathematical Soc.; 1997.
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Matrix Representations of Graphs

Usg
vz

vs Adjacency Matrix: A[i, j] = 1if v; is adjacent to v;
Ali, j] = 0, otherwise

Ve
Us

%)

2

Adjacency Matrix 157

/01000000\
1 0100100
01 010110
001 01000
00010100
01 101010
00100101
\0 00000 1 0
A

Spectral graph theory. American Mathematical Soc.; 1997.
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Matrix Representations of Graphs

Usg
vz

vs Adjacency Matrix: A[i, j] = 1if v; is adjacent to v;
. Ali, j] = 0, otherwise
6
Us
v, Degree Matrix: D = diag(degree(vy), ..., degree(vy))
2z
Degree Matrix Adjacency Matrix -
(10000000\ (01000000\
0300000 0 101007100
0040000 0 01010110
00020000 _ 00101000
0000200 0 00010100
0000040 0 01101010
000000 30 00100101
\0 000000 1) \0 00 000 1 0
D A

Spectral graph theory. American Mathematical Soc.; 1997.
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Matrix Representations of Graphs

Usg
vz

vs Adjacency Matrix: A[i, j] = 1if v; is adjacent to v;
. Ali, j] = 0, otherwise
6
Us
v, Degree Matrix: D = diag(degree(vy), ..., degree(vy))
2
Degree Matrix Adjacency Matrix 159 Laplacian Matrix
(10000000\ (01000000\ /1—1000000\
03000000 101007100 1 3 -1 0 0 -1 0 0
0040000 0 01010110 0 -1 4 -1 0 -1 -1 0
00020000 _ 00101000 _ 0 0 -1 2 -1 0 0 0
0000200 0 00010100 0 0 0 -1 2 -1 0 0
00000400 01101010 0 -1 -1 0 -1 4 -1 0
000000 3 0 00100101 0o 0 -1 0 0 -1 3 -1
\0 000000 1) \0 00 000 1 0 \0 0 0 0 0 0 -1 1)
D A L

Spectral graph theory. American Mathematical Soc.; 1997.
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How to Deal with Multi-relation?

A WASHINGTON
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Heterogeneous Graph

Key Characteristics of Heterogeneous Graphs

“* Multiple Node Types: Nodes represent different entities, such as users, items, papers, or institutions.

** Multiple Edge Types: Different relationships exist between nodes, such as "authored by," "cites"

** Rich Semantic Information: The diverse relationships provide deeper insights than homogencous graphs.

Examples of Heterogeneous Graphs
» Academic Citation Network

Nodes: Papers, authors, journals. Edges: "Cites" (paper-to-paper), "Authored by" (paper-to-author).
» Knowledge Graphs (e.g., Google Knowledge Graph, Wikidata) Bt Dsse
Nodes: People, locations, organizations, events. L

Neoplasms by Site

Edges: "Works at" (person-to-organization), "Located in" (place-to-countryzgm

greg

K
\

cerebral
haemorrhage
4%00 ©® Ddrug
@ Disease
elonephritis

@ Adverse event
Protein

ulmon A Pathways
Why Are Heterogeneous Graphs Important? e e, o
J More expressive than homogeneous graphs, capturing richer information. As,

to estradiol

] Essential for real-world applications in social networks, recommendation systems, and knowledge graphs.
(J Enhance AT models by incorporating multi-type relationships in representation learning.
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Node, Edge, and Global Features

Node features represent characteristics or attributes of individual nodes for downstream tasks like node classification,
clustering, and link prediction.

Common Types of Node Features

¢ Categorical Features: Node types (e.g., "user" or "product" in a recommendation system).

*+ Numerical Features: Values like age, price, or degree centrality.

¢ Textual Features: Descriptions, reviews, or labels in textual form.

¢ Vectorized Embeddings: Learned representations from NLP models or pre-trained embeddings.

Edge features define relationships or interactions between nodes for link prediction and edge classification.
Common Types of Edge Features

» Weight: The strength or importance of a connection (e.g., frequency of interactions).

» Type: The kind of relationship (e.g., friendship, purchase, citation).

» Timestamp: When the connection was established (useful for dynamic graphs).

» Directionality: Whether the edge is directed or undirected.

Graph-Level Features: graphs have global properties or features that apply to the entire network.
Examples include:

» Graph Density (How connected is the graph?).

» Average Clustering Coefficient (Tendency of nodes to form clusters).
» Graph Size (Number of nodes and edges).
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Different Types of Task

Graph-based machine learning involves multiple

tasks categorized by the focus of analysis. The
Node level  ,5in categories of tasks include:

O Node-Level Tasks: Predicting properties of

individual nodes.

> Edge-Level Tasks: Inferring relationships

Graph'level ‘_E Community between node pairs.

prediction, (subgraph) > Community-Level Tasks: Detecting and

Graph _ level analyzing groups of closely connected nodes.

generation Graph-Level Tasks: Understanding global
Eidedavel graph properties.
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GNN Designs

o Summary
Step Task
1. Define Graph Nodes, edges, features
/ __________ \ 2. Feature Engineering Define node and edge features
!
! 3. Message Passing Select aggregation method
1 Connection
f = EREEee / 4. Choose Architecture GCN, GAT, GraphSAGE, etc.
5. Loss Function (S:or:‘etrr\;lsst(-_;‘cll e()cross-entropy), unsupervised
. . (oo N . ST
SN Sampling Pooling : 6. Training Use mini-batching and optimizers
,  Operator Operator | Classification. link redicti Hlevel
K B et T 7. Evaluation ta?i? ication, link prediction, graph-leve
\~\ ,// 8. Deployment Optimize for inference speed
Input ~~‘\\\ ’f”’ Output Hidden layer Hidden layer
e \ ~ 2'g / . \
Node Loss Function
Embedding
GNN GNN o e Oupat
:> N — . — :> Edge I:> Training Setting Task
YEL ayer Embedding * Supervised * Node-level ReJLU ij of
* Semi-supervised * Edge-level ) i e
Graph * Unsupervised * Graph-level
— Embedding \ /

Jie Zhou, et al. (2020). AI Open
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Key Modules in Graph Neural Networks

GNNs process graph-structured data by propagating and aggregating information across nodes and edges.

Three key modules in GNNs:

* Sampling Module

Aims to reduce the size of each node’s neighborhood, especially for large graphs, preventing the neighbor explosion
problem.

¢ Propagation Module

»  Performs message passing via convolutions (e.g., GCNs) or recurrent operators (e.g., GRUs) on node features.
»  Uses skip connections to mitigate over-smoothing and incorporate historical representations.

¢ Pooling Module

Aggregates node-level embeddings into subgraph or graph-level representations, extracting higher-level features needed for
t = ssification.

{ /

Tasks
Propagation Modulo . N.ode cla§3|f|cat|on
Sampling Module / Pooling Module * Link prediction
o Convolution / Recurrent i i
o Reduces neighborhood ops O _Afgreg;tes nhode re'?s _‘ . Graph CIaSS|f|Cat|0n
d e g Bt » Anomalous node detection
- . over-smoothin .
0 [z (e s ) o Extracts highlevel + Clustering
arge graphs o Aggregates feature + features
topological info h
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The Sampling Module

 Efficient Graph Processing via Sampling

« [ Direct propagation on large graphs is computationally infeasible.

« I The Sampling Module reduces cost by selecting subsets of nodes or edges.
* Key Challenge:

% Neighbor Explosion: The number of neighbors grows exponentially with depth. GNNs aggsrega}te messages from each node’s neighbors in the
grewous layer. Tracking back multiple layers can exponentially increase the neighbor set. Storing and processing all neighborhood information
ecomes intractable for large graphs.

% Computational Efficiency: Full neighbor aggregation is impractical for large graphs.

% Memory Constraints: Storing all neighborhood information for each node is infeasible.

»  Scalability: Enables GNNs to handle large graphs effectively.

e Common sampling techniques: Node Sampling; Layer Sampling; Subgraph Sampling.

Impact on Permutation Properties:

L Node-level predictions remain unchanged under node reordering.

L Node representations transform consistently when input ordering changes.

Impact on Task Performance:

L Preserve downstream performance in classification, link prediction, etc.

o Sampling strategies must capture essential structural information despite reduced neighborhood size.
2 Aim for low variance while avoiding high computational costs.
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Common Sampling Methods

* Node Sampling: Selects a subset of nodes and their immediate neighbors.

« 9 Reduces computational complexity by limiting the number of participating nodes.

D Often used in algorithms like GraphSAGE.

Layer Sampling: It selects a fixed number of neighbors per layer.

2 Controls exponential growth by restricting the number of aggregated neighbors.
2 Balances efficiency and performance in large-scale graphs.

|

Sampling
Module

<

GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH

Subgraph Sampling: Extracts a subgraph based on connectivity patterns.
L Useful for mini-batch training by working on graph partitions.
3 Preserves graph topology while reducing computation.

o |
Node [
S )
o |
Layer =
oo )
o |
Subgraph r--
__________ /

GraphSAGE VR-GCN  PinSAGE
D |
FastGCN LADIES |
] | |
- ClusterGCN ~ GraphSAINT |

Jie Zhou, et al. (2020). Al Open
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The Propagation Module

» Facilitates message passing between nodes to integrate structural and feature information.

* Key operations:

% Convolution Operators: Aggregate neighbor information.

** Recurrent Operators: Maintain temporal dependencies in dynamic graphs (e.g., Graph GRU, Graph LSTM).

)/

TARGET NODE

(5) Learning objective

N

INPUT GRAPH |j (2) Aggregatlon

i GNN Layer 2
.._\" (1) Message
(3) Layer &
connectivity : . Q‘
 GNN Layer 1, i ,
= 0 _ts-c 9@
(Y1)
(4) Graph augmentation

Propagation <
Module

(

1 Recurrent !
f [ ]
)

Operator 1
7

""""" Y
.{ Skip !
1
\

«» Skip Connections: Mitigate over-smoothing by retaining historical representations.

T . Spte;“allc ChebNet GCN AGCN
i Spectral FEFEE Soommm—— - SO
DGCN GWNN
o pmmmmmmmm o Neural FPs DCNN PASTgIIY' LGCN
: Basic 1N
L GraphSAGE
A S
: Spatial 1<
__________ fmmmmm
| Attentional r--- GAT GAAN
i i &
L i Framework r--- MoNet MPNN NLNN GN
= i e
| Convergence oo GNN GraphSEN SSE LP-GNN
A Sentence
1 -
L _G_a_te_ __r GGNN Tree LSTM Graph LSTM LSTM
_____________________________ Highway
JKN GCN CLN DeepGCN

Jie Zhou, et al. (2020). AI Open




Permutation Equivariance and Invariance

Image Maps
Input

a

Convolutions Fully Connected

Subsampling

lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Key Observation:

N graph does not have a fixed, canonical ordering of its nodes.
Any permutation of node indices can still represent the same

underlying graph.

Implication:

L The labeling or numbering of nodes is arbitrary.

2 Reorder node IDs without changing the graph’s structure.

Node features X,

Adjacency matrix A,
A B CDEF

Ordera

mm ooNn @ >
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e Permutation Equivariance (PE): Node embeddings maintain
structure when node order changes.

e Permutation Invariance (PI): Graph-level representations
remain

* unchanged under different node orderings.

Node features X,

Adjacency matrix 4,
A B i€ D E F

Order 2

mm ONn ™ >




Definition of PE and PI

Permutation Invariance:

» A function f(-) is invariant if permuting inputs does not
change the output:

f(m(A, X)) = f(A,X), Vre S,

» Typical for graph-level tasks (e.g., entire graph classification).

Permutation on Graphs:
» Let P be an n X n permutation matrix.
» Then A— PAPT, X — PX.

* f(A4,X) = 1" X : Permutation-invariant
= Reason: f(PAPT,PX) =1TPX =1"X = f(4,X)

= f(A,X) = AX : Permutation-equivariant
- " Reason: f(PAPT, PX) = PAPTPX = PAX = Pf(4,X)

= f(A,X) = X : Permutation-equivariant
= Reason: f(PAPT,PX) = PX = Pf(4,X)
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Permutation Equivariance:

» A function g(-) is equivariant if the output is permuted in the
same way:

g(m(A, X)) =n(g(A X)), VreS,.

» Typical for node-level tasks (e.g., node embeddings, node
classification).

= Permutation-invariant
f(A,X) = f(PAPT,PX)

Permutation-equivariant
Pf(A,X) = f(PAP", PX)

Order1: A¢, X1 Order 2: 43, X,

/%.

é
f(42,X3) =

|

fA,X,) =

'nrnU('\w:D
MmO N @ >




Designing GNN

* Designing GNN Layers must preserve or respect permutations at each update step. PI and PE are crucial for robust GNN
models that handle node reorderings gracefully.

*» Sampling + Approximation: Avoid violating permutation properties in large-scale graphs (random sampling, etc.).
¢ Pooling Mechanisms: Summation/average pooling ensures invariant graph-level outputs.

¢ Challenges: Hierarchical pooling, dynamic graphs, and advanced aggregator designs can complicate these properties.

GNN consist of multiple permutation equivariant / invariant functions. A general GNN framework
/ : (5) Learning objective
’
i _—_—;;.;.’ i |
’,‘ INPUT GRAPH E (2) Aggregation
[ { GNN Layer 2

i ~ - ‘ (1) Message
r
aye &

connectivity: ‘ . .a‘
| Lol

[GNNlayerl o A :
| 0. J==2 o
(XYY

(4) Graph augmentation
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The Pooling Module

» Extracting High-Level Representations
% Generates compact representations of subgraphs or entire graphs.
¢ Essential for tasks like graph classification and hierarchical learning.

* Key pooling techniques:

)
0’0

Node Dropout Pooling: Drops less informative nodes (e.g., Top-K pooling).

)
0’0

Cluster-based Pooling: Merges similar nodes into clusters (e.g., DiffPool).

)
0’0

Attention-based Pooling: Assigns weights to nodes based on learned importance.

)
0’0

Maintaining Permutation Invariance: Ensures that graph representations remain unchanged.
¢ Two main categories:
% Direct (Readout) Pooling Modules: Aggregate node embeddings into a single graph-level embedding in one step.

Hierarchical Pooling Modules: Iteratively coarsen (or cluster) the graph, creating a hierarchy of smaller graphs or subgraphs.

" A 1
: Direct - Slmple Set2set SortPooling
[P e ; Pooling
Pooling =
Module g
fmmmmmmm—— - : Coarsening ECC DiffPool gPool
Hierarchical 1 <
N e e /
_  EigenPooling SAGPool

Jie Zhou, et al. (2020). AI Open
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GNN Training Framework

Training Approaches

* Supervised Learning: Uses labeled data to train GNNs for node/graph classification.

¢ Semi-supervised Learning: Uses both labeled and unlabeled data to improve training.

* Unsupervised Learning: Uses self-supervision (e.g., contrastive learning) to learn node embeddings.

Prediction Tasks in GNNs

J

* Node-focused: Predicts node labels (e.g., node classification) using an MLP or softmax layer.
*» Edge-focused: Predicts relationships between nodes (e.g., link prediction) using similarity functions or MLPs.
* Graph-focused: Generates graph embeddings using pooling layers for tasks like graph classification.

Cross-Entropy Loss: Example Types of Nodes in GNN Training
¢ Training Nodes: Used in loss computation.
L= Z yilog(co (h,T 0)) + (1 —yi)log(l —o (h:T 0)) % Transductive Test Nodes: Processed in GNN but not
i€ Virain included in loss computation.
where: ¢ Inductive Test Nodes: Not included in GNN

_ _ computation or loss function.
» h; is the node embedding at the last GNN layer.

» y; is the true class label of node 1.
» 0 represents the classification weights.

» o is the sigmoid function.
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GNN Training Pipeline

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
---------------------------------------------------------------------------------------------------------------------------

Evaluation
metrics
Input Graph Node
Graph Neural embeddings /\
Network
— ® — - Prediction —| Predictions Labels
] 1 head
o e
~ N ' \/
o .i. Che
ppppppppp Loss
function

Implementation resources:

PyG provides core modules for this pipeline
GraphGym further implements the full pipeline to facilitate GNN design
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Spectral and Spatial GNN Framework

Spatial Based Filtering Spectral Based Filtering

Original GNN
(Scarselli et al.
2005)

GraphSage Spectral
GAT (Hamilton et al. 1 Graph CNN
(Velickovic et al. ' NIPS 2017) GCN (Bruna et al.
ICLR 2018) ICLR 2014)
(Kipf & Welling.
ICLR 2017)
MPNN

(Glimer et al.
ICML 2017)

ChebNet
(Defferard et al.
NIPS 2016)
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Spatial GNN Framework

Key Concepts:
¢ Spatial approaches define convolutions directly on the graph using graph topology.
¢ Unlike spectral methods, these approaches operate in the node domain without eigen-decomposition.

J

¢ The challenge lies in handling variable neighborhood sizes and preserving local invariance.

TARGET NODE
General Spatial Convolution: l

Initial O-th layer embeddings are
hg = x, _— equal to node features embedding of

/ v at layer k Layer-0

h(k) INPUT GRAPH Layer-.l -------------------- . XA
h1()k+1) =£|(Wk z lN"(iv)l + Bk.)’ Vk € {O’ ""l_ 1} .A‘. ..................... ® X¢
WEN(V) \ Layer-2 . ® XA

X
R
o

Total number

N . : - @ X
Zv = hf?K) Average Of nEIgthI’ S Of |ayers ‘4‘ : """"""""" ‘4-.3 .............. ‘ Xg
. revi layer embeddings
\ Embedding after K P e.\/lous. Y= =g ", ® XF
layers of neighborhood Non-linearity » - y .1., ...............
aggregation (e.g., RelU) il Rt ® X4
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Neural Message Passing

TARGET NODE

l

(5) Learning objective

INPUT GRAPH

(2) Aggregation

GNN Layer 2

(3) Layer - .

connectivity :

i ‘

GNN Layer 1 ..

0 fucr o
0..0'
(4) Graph augmentation

The defining feature of a GNN is that it uses a form of neural
message passing.

During each iteration k, a hidden embedding hl(tk) for node u 1s
updated according to the information aggregated from its
neighborhood N(u), which can be expressed as follows:

R = update® (hl(l,k)' aggregate™ ({ h?, v € N(u)}))

We often denote my ) = aggre gate® ({ h,(,k), Vv EN (u)})
as the “message” aggregated from neighborhood. The initial
embeddings at k = 0 are set to the input features for all nodes,

1.e., hl(to) = x,. After running K iterations of the GNN message
passing, we can use the output of the final layer to define the

embeddings for each node, i.¢., z,, = hl(tK), VuelV.



Neural Message Passing: Intuition

Intuition Behind Message-Passing Framework
¢ The core idea of message passing is simple:

» At each iteration, every node aggregates information from its 1-hop neighbors.

» As iterations progress, nodes encode information from progressively farther regions of the graph.
¢ This allows nodes to capture both local and global structures over time.

What Do Node Embeddings Encode?
Node embeddings contain two main types of information: Aggregation
* Structural Information: Local connectivity patterns; Higher- &b
order graph structures; the importance of a node based on its \
graph position (e.g., centrality measures).
e Feature Information: Numerical attributes (e.g., temperature,
population density in spatial graphs); Categorical attributes /
(e.g., user preferences in recommendation systems); Learned
representations from deep neural networks.

Why is Message Passing Powerful?

¢ Combines local and global information efficiently.

¢ Enables deep learning models to capture rich relational patterns.

¢ Supports various tasks like node classification, link prediction, and graph generation.
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GNN: Basic Form

The basic GNN message passing is defined in node-level:

k k k-1 k k-1
O = o (W 4 W Y KD 4 0)

VEN(u)

where W s, Wheign are trainable parameter and o denotes an elementwise non-linearity such as ReLU. Alternatively, it can
also be succinctly defined in graph-level:

— k — k
HO = gH*DWI) + AHCDW ) )

The basic GNN message passing can be simplified by omitting the explicit update step:
k+1
hz(;, ) — aggregate ({ hl(,k), Vv e N(u) U {u}})

where now the aggregation is also taken over the node u itself. Adding self-loops is equivalent to sharing parameters
between self and neighbor transformations.
H — ((A + I)H(t‘l)W(t))

The self-loop GNN approach balances simplicity and efficiency but has some limitations. Self-loops make it harder to
differentiate between node and neighbor information. Blurs the distinction between structural and feature information
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Permutation Invariant and Equivariant

= Intuition: Network neighborhood defines a Nodefesture X, Adiscencymatic4, Embeddings Hy
» D ABCDEF

A
computation graph Order 1 T 5
C C
. : ’ g
Every node defines a computation : E E

rGED -

Target Node Permute the input, the output also permutes
accordingly - permutation equivariant
Nodefeature X,  Adjacencymatrix4, Embeddings H,

graph based on its neighborhood!

INPUT GRAPH order 2 N Mjcency matrix
A
B
- o I = 0 5 :
X " Yy . > > ¢ Target Node F
Fl% 4% #EVe. 2 AN 4N
¢ 0\;-'.*0 s % ee° ‘ee ¢see® Y Y o0 °° o};; °®
b 0
Shared N ;

f "
E] shared parameters G

’ i ‘ shared parameters # %

44 n

\/

Average of neighbor’s previous layer c .“h.f de A C h for node B
embeddings - Permutation invariant i ol grapor noce
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Neighborhood Normalization

A basic approach is summing neighbor embeddings, but summing °.2"° ‘® Mcmiolé“ ® o
neighbor embeddings can create large magnitude differences. Nodes o

with significantly different degrees may lead to instability and oRBE B”&%m = ”“MK | b
optimization challenges. B ”‘2‘”"

estup2019 1
Muni
Bargdfi®2016 6 U.ZOZR sdin 2020

Chefi%2017 ' ST \‘ Benera..zczc
A% = update® (h, m(NGw)) & @'/
Example: A node with 100x more neighbors than another will have . “"“"“ - me “

drastically different embedding scales. Leads to numerical instability i w 20129 =l
and difficulties in optimization. m e m@
i) Reamon 2015 \ Lw 6
A straightforward solution is degree-based normalization: . e ©@
Z'vEN (u) h,

PN = TN ()]

Graph convolutional networks (GCNs)

One solution to this problem is to normalize based upon the degrees of

the nodes involved, which is called symmetric normalization: h® — o [ W Z h,
R — ety VNIV
N@u) =
etV IN@X|N(W)|
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Generalized Message Passing

As the last attempt to generalize the basic neural message passing framework, now we extend the approach beyond the node
level, leveraging edge and graph-level information at each stage.

One more generalized message passing approach can be formulized according to the following equations:
k k—1 k-1 k—1 k—1
hgu,)v) = updatecqge (hgu,v))' hfa ) hf, ), hf; ))

My = aggregatenoqe ({hgj,)v), Vv € N(u)})

hl(tk) = update,yqe (h,gk_l),mN(u), hgk_l))

he” = updateg,apn (hy™, (b, Yu € V3, (A, ¥ (u,v) € E})
The important innovation in this framework is that we generate hidden embeddings not only for each node h,(,k), but also
hgi)v) for each edge in the graph as well as an embedding hgc) that corresponds to the entire graph. This allows the message

passing model to easily integrate edge and graph-level features and have enhanced performances compared to a standard
basic GNN. Generating embeddings for edges and the entire graph also makes it trivial to define loss functions based on
the graph or edge-level classification tasks.
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The Universal Approximation Theorems

DUNC

Aspect Width Version Depth Version
Definition A single-layer network with A deep network with suf-
sufficient width can approx- ficient depth can approxi-
imate any continuous func- mate any Lebesgue integral
tion on a compact set. function efficiently.
Focus Number of neurons (width) Number of layers (depth) in
in a single layer. the network.
Advantages Simple structure; can ap- More efficient; fewer param-
proximate any function. eters for the same level of
approximation.
Disadvantages Requires exponentially Requires careful tuning to
many neurons for high- avoid overfitting or vanish-
dimensional problems. ing gradients.
Practical Implica- Rarely used due to ineffi- Forms the foundation of
tions ciency. modern deep learning appli-
cations.
Efficiency Inefficient for high- Efficient at capturing com-
dimensional functions. plex hierarchical relation-
ships.
Example Single-layer perceptron. Deep networks like CNNs or
RNNs.
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Universal Approximation Theorem

Theorem 1 (Universal Approximation Theorem for Width-Bounded RelLU Networks). For any
Lebesgue-integrable function f: R"™ — R and any € > 0, there exists a fully-connected RelL.U
network </ with width d,, < n + 4, such that the function F ., represented by this network satisfies

/n |f(x) — Fr(x)|dz < €.

Theorem 2. For any Lebesgue-integrable function f: R™ — R satisfying that {x : f(x) # 0} is a
positive measure set in Lebesgue measure, and any function F ., represented by a fully-connected
Rel.U network of with width d,,, < n, the following equation holds:

/Rn |f(x) — Fo(x)|de = 400 or /Rn £ (z)|de.

Theorem 3. For any continuous function f: [—1,1]™ — R which is not constant along any direction,
there exists a universal €* > 0 such that for any function F' 4 represented by a fully-connected RelLU
network with width d,, < n — 1, the L' distance between f and F 4 is at least €*:

[ 1@ - Fa@lde = e
[—1.1]™

Then it’s a direct comparison with Theorem 1 since in Theorem I the L' distance can be arbitrarily
small.
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Statistical Theory of Deep Learning

Approximation theory viewpoint Training Dynamics Viewpoint
Recently, a large collection of works bridge approximation

_ g Understanding non-convex loss functions for neural network
theory of neural network models with empirical processes.

models is crucial. Key implications for generalization capabilities.

Key Empirical Findings: Overparameterized neural networks
trained by stochastic gradient descent can fit noisy data or
random noise perfectly but still generalize well.

Applications: Fast convergence rates of excess risks in
regression and classification tasks.

Perspectives: Measuring complexities of neural networks

for function approximations. Overparameterization Insights:

» The dynamics of deep neural networks with large enough
width, trained via gradient descent (GD) in {2-loss, behave
similarly to those of functions in reproducing kernel Hilbert
spaces (RKHS),where the kernel is associated with a specific
network architecture.

Scaling Parameters: Network width, depth, and active
parameters should scale with sample size, data dimension,
and function smoothness index.

Assumptions:

> Assumes global minimizers of loss functions are * In the Mean-Field (MF) regime, the network parameters have

the flexibility to deviate significantly from their initial values,

obtainable. ) : L o) :
- : : o even though it necessitates an infinite width.
» Focuses on statistical properties without optimization v Hgh' !
concerns. « Comprehensive understanding of weight initializations and

» Recognizes non-convexity of loss functions due to non- learning rate scalings in gradient-based methods.

linear activation functions.
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Deep learning theory

Data D = {(xi,¥4) fiz1 ~ p(x)ply|x)

Model Vi = fp(X’i) —|—5?;, 1= 1,2,...,7’2,,

Assumption E(c‘fi’Xz’) = (

Ideal f,O — E(y‘x) — argminfeg g(f) = E(XaY)NP [(y B f(X))2]

n

Estimate ﬁl = argmin &Ep(f):= argmin {l Z (Yz‘ — f(XZ))2}

feEF(L,p,N) feF(Lp,N) LT

1=1
Complexity Measure of F N Approx. Error

n v

Approx Error  £apprx = SUp inf f—1r
ppr fpengF(LaEN) || PHLp

Complexity VCdim(F), Pdim(F) < O(LN log(N))

+ Approx. Error”

The Risk Error £(f,) — £(f,) <

l lP l GILLINGS SCHOOL OF
= GLOBAL PUBLIC HEALTH



Functional Equivalence can reduce
stochastic and optimization errors

Theorem 3 (Covering number of shallow neural networks) Theorem 4 (Covering number of deep neural networks)

Consider the class of deep neural networks F := F(1, dy, dy, ..., dy, B) parameterized by

Consider the clasg of shallow neural qetworks F= f(l, th, ), B) Parametenzed by 9 €0 =[-B.BJ°. Suppose the radius of the domain X of f € F s bounded by B, for
#€0=[~B,B]". Suppose the radius of the domain & of f € JF is bounded by some some B, >0, and the activations a1,. ..o, are locally Lipschitz. Then for any ¢ > 0, the
B, >0, and the activation oy is continuous. Then for any ¢ > 0, the covering number covering number N'(F ¢, | - |o) is bounded by
) §, § 1\5
N(Fee | ) < (16B°(8, + 1vaacsfe) x . 3 (L+ (B +1)081 (Mg ad) -7

L . , d! X dy! X o x dy! ’
where p denotes the Lipschitz constant of o1 on the range of the hidden layer (i.e, S L

[-\/570 B(BX) + 1), Vi B( B + 1)]); and Sy, = dydy + di s the total number of parameters Where S = E,'L:o didiy + iy and p; denotes the Lipschitz constant of o; on the range

in the linear transformation from input to the hidden layer, and S = dy x dy +2d +1is| (F ~1)-th hidden layer, especiall the range of (i — 1)-th hidden layer is bounded by

| -8, B with BY < (2BY N pid; fori=1.....L.
the total number of parameters. ’ - =PI Y )
4

: L . o A reduced complexity (by (ci!dy!---d;!)) over existing studies [25, 3, 27, 23, 17).
¢ A el conply (by dl!) compe 0 lsing st [25' 25, 17]' s @ Increasing depth L does increase complexity. The increased hidden layer | will have a
shallow ReLU network with d; = 128, covering number reduced by ~ 10 6 9P prexty y

(d)) discount on the complexity.
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Deep learning theory

* Much of the current theoretical understanding is
counterintuitive and falls short of explaining why deep
learning or reinforcement learning methods perform
effectively in real-world scenarios. There is a big gap between
popular deep learning algorithms and current theoretical
results.

 Many deep learning (DL) theoretical studies primarily focus
on fully connected neural networks (FNN) within
nonparametric  settings, @ while @ making  unrealistic
assumptions.

* Key breakthroughs in algorithmic modeling often lack a solid

mathematical foundation due to the absence of powerful tools
in such complex scenarios.

* Furthermore, existing methodologies, such as traditional
harmonic analys1s and empirical process theory, are
insufficient for addressing heterogeneous object structures
(e.g., Lie group/algebra) commonly encountered in computer
vision (CV) and natural language processing (NLP).
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Theoretical Properties

Expressivity

Applications

Influences

Generalization [« > Optimization

Figure 1: Interactions of the four challenges within graph machine learning: Fine-grained
expressivity, generalization, optimization, applications, and their interactions. The
green boxes architectural choices (hyperparameter and other design choices like
normalization layers), model parameters, and graph classes (different types of graphs)
represent aspects of all four challenges.

Future Directions

/ /
0’0 0’0

33

%

33

%

architectures.

“» Expressivity: What graph structures can a GNN distinguish?
— Traditional results relate GNNs to the 1-WL test, but finer geometric
notions are needed.

% Approximation: Under what conditions can GNN5s
approximate continuous, permutation-invariant functions?

— Universal approximation results require a careful

treatment of the topology of graph space.

% Generalization: How well do GNNs perform on unseen
graphs?

— Existing VC-dimension based bounds are loose and do not
fully capture the influence of architectural choices and graph

structure.

Develop fine-grained expressivity results that quantify not only if two graphs are distinguishable, but how similar they are.
Derive uniform approximation bounds for GNNs using a refined topology on graph space.

Establish tighter generalization bounds that incorporate architectural choices and graph geometry.

Explore the interplay between expressivity, optimization, and generalization to inform the design of more robust GNN

Morris, Christopher, Fabrizio Frasca, Nadav Dym, Haggai Maron, Ismail llkan Ceylan, Ron Levie, Derek Lim, Michael M. Bronstein, Martin Grohe, and Stefanie Jegelka.
"Position: Future Directions in the Theory of Graph Machine Learning." In Forty-first International Conference on Machine Learning.
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Deepset

A function f transforming a set X = {xi,...,xy} into Y should
be:
» Permutation invariant: The output does not change under
reordering.

f({x1,...,xm}) = f({xw(l), .. ,XN(M)})

for any permutation .

» Permutation equivariant: The output follows the
permutation.

F([Xe@)s - - s Xe()]) = [fr) (%) - - -5 Frmy (X)]

Theorem. A function f(X) is invariant to the permutation of
instances in X if and only if it can be decomposed as:

F(X)=p (Z ¢(X))

xeX

where ¢ and p are suitable transformations.

The standard neural network layer is represented as:
fo(x) = o(©x)

where © € RM*M s the weight matrix.
Theorem. A function fg : RM — RM is permutation equivariant

if:
© =\ +~(117)

where:

» | is the identity matrix,

> 1=11,...,1]7,

> A\, veR.
de Finetti’s theorem states that any exchangeable model can be
factored as

M
p(X|Oé, MO) = /da [H P(me)] p(0|a7 MO)‘

m=1

where 6 is a latent feature and o, My are hyper-parameters of the
prior.

For Exponential Family with Conjugate Priors:

p(X|a, My) = exp (h (a + Z é(Xm), Mo + M) — h(a, MO))




PINE

Let f be a continuous real-valued function defined on a compact set with the following form

f(X1,1,X1,2,'“ y X1,N1» X215 y X2 Noy* " s XK 1, 7XK,NK)a

N N

érl Go Gk

where X, p, € RMk . If function £ is partial permutation invariant,  then the PINE framework provides a

Core Representation Theorem as

(Zgl X15) Zg2 X2.n)s ZgK Kk )—I—o(l)

which requires h(-) and g(-) to ensure permutation invariant :

Then, PINE provides specific parameters for A(-) and g(-), which can be trained as follows: i 0'((11, ® al)x 0 b’l ) y
/
il TAT o T s o((u® as)x +by)
h([z],....z5] =2 | e W.b) =cTo(W2+b)  g(x|Tu{aY)L,) -
_a((u X aT)x + b,T) |
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Evaluation

Accuracy (%) of multi-class classification in homogeneous and heterogeneous graphs
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How to succeed in this course? lI

(nn.Module):
(sel

, self).__init__

.
self.pool = nn.MaxPool2d(2, !
ce1£.conv2 = nn.Conv2d(5, ' | e 25
nn.Linear :
n.Linear( ;
(self, x):
= self.pool(F.relu(self.convi(x)))
= self.pool(F.relu(self.conv2(x)))
.view(- 5% 5)
F.relu(self.fcl(x))
F.relu(self.fc2(x))

Visualize
Practice

Discuss

ﬁ l l P I GILLINGS SCHOOL OF
= GLOBAL PUBLIC HEALTH



