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Key Modules

Introduction: Basics of deep learning, supervised/ 
unsupervised learning, and PyTorch fundamentals.

1. Neural Networks: Perceptrons, optimization 
techniques, and activation functions.

2. Advanced Topics:
• CNNs.
• GNNs/GCNs
• RNNs and LSTMs
• GANs/ Diffusion Models
• Transformers 
• BioBERT.

3. Applications: Segmentation, Registration, Tumor 
localization, Disease spread prediction, Biomedical text mining, 
and Drug discovery.



Foundations of Deep Learning Methods

Dr. Hongtu Zhu
Kenan Distinguished Professor

University of North Carolina at Chapel Hill
URL: www.med.unc.edu/bigs2/
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Deep Learning
Many hidden layers Supervised, semi-supervised, unsupervised

Learn adaptive parameters

• Use a cascade of multiple layers of nonlinear processing units for feature extract and transformation

• Learn in supervised and/or unsupervised manner

• Learn representations in different level of abstraction

Deep Learning

Why popular?

• Chip processing ability
• Increased size of data for training
• Advances in machine learning and 
      signal/information researches

Deep models to efficiently exploit complex, 
compositional nonlinear functions to learn 
distributed and hierarchical feature
representations, to make best use of the data.



Historical Summary

9



Deep Learning Explosion

Downloaded from the NSF website and the medium.com 



Deep Learning Platforms

1
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Applications - Vision



Applications - Vision

Disease Detection in Healthcare and Medicine 
Deep learning can be utilized for early and more accurate 
detection of diseases like cancer, Alzheimer's, and heart diseases 
through image analysis.

High quality image generalization



Applications – Medical Imaging
Segmentation Annotation

Liu, Q., Xu, Z., Bertasius, G., & Niethammer, M. (2023). SimpleClick: 
Interactive Image Segmentation with Simple Vision Transformers. ICCV.,  
22290-22300. 2023.

U-Nets

Azad et al., “Medical Image Segmentation Review: The success of  U-
Net.” arXiv, Nov. 27, 2022.
Minaee, Shervin, et al. "Image segmentation using deep learning: A 
survey." IEEE PAMI 44.7 (2021): 3523-3542.



Application - Language

Language Translation in Natural Language Processing
Deep learning enhances real-time, accurate translation of languages, as seen in tools like Google Translate. The following picture 
shows the translation of a webpage from English to Chinese.



Application - Language

Large language models

Large language models can perform 
various tasks such as answering questions, 
generating creative content, summarizing 
text, translating languages, and engaging in 
conversations. It’s designed to understand 
and generate text in a coherent and 
contextually relevant manner.



Application - Decision

March 2016, AlphaGo made 
headlines by defeating Lee Sedol.

Reinforcement learning methods 
have shown priority in video games.



Applications - more
Personalized Shopping Experience in Retail and E-
Commerce

Deep learning is leveraged to provide personalized 
recommendations and targeted advertising to customers 
based on their shopping behavior.

Predict the folding and 3D structure of protein

AlphaFold aims to solve the protein folding 
problem, which involves predicting a protein's 
three-dimensional structure based solely on its 
amino acid sequence. Understanding protein 
structures is crucial for biological research and 
drug discovery.



Some Future Directions in DL for Biostatistics

Leveraging deep learning to integrate and 
analyze data from genomics, proteomics, 

metabolomics, and other omics fields for a 
comprehensive understanding of biological 

processes and disease mechanisms.

Integrative Analysis of 
Multi-omic Data

Utilizing deep learning models to analyze 
large-scale public health data for informed 
decision-making and policy development.

Allowing better resource allocation, and more
effective epidemic control strategies.

AI-driven Public 
Health Interventions

Using deep learning to model and 
predict individual responses to drugs, 
considering genetic, environmental, 

and lifestyle factors. Developing more
effective personalized treatments.

Advanced Drug 
Response Modeling



Generalist Medical Artificial Intelligence
• Foundation Models in Medicine: These models leverage large-scale datasets and generalizable architectures to address 

diverse medical tasks, moving beyond task-specific AI systems.
• Generalist AI: Unlike traditional models, foundation models aim to function across multiple domains, such as imaging, 

text, and genomics, enabling integration of multimodal data for holistic medical insights.
• Challenges:

• Data heterogeneity: Medical data comes in varied formats, requiring harmonization.
• Privacy and ethics: Ensuring secure, unbiased AI while maintaining patient confidentiality.
• Interpretability: Providing clinicians with actionable insights from AI outputs.

• Applications:
• Diagnostics: Detecting diseases across imaging modalities (e.g., radiology).
• Prognostics: Predicting patient outcomes using integrated data.
• Personalized medicine: Tailoring treatments based on multimodal patient profiles.

• Future Directions:
• Collaboration between AI experts and clinicians to co-design models.
• Development of robust validation frameworks for clinical adoption.
• Advancing explainability and trust in AI-driven medical decisions.

Moor, M., … ., Rajpurkar, P. (2023)  Nature. 
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What Exactly is Deep Learning?



Key Terminologies Artificial Intelligence
Simulates human intelligence in machines for 
tasks like decision-making and language 
translation.

Machine Learning (ML)
A subset of AI where algorithms learn from 
data to make predictions or decisions without 
being explicitly programmed for each 
scenario.

Deep Learning (DL)
A branch of machine learning using multi-
layered neural networks, effective in 
processing large amounts of unstructured 
data like images and speech.

Generative AI
AI algorithms that generate new, original 
content (like text or images) based on existing 
data, using techniques like Generative 
Adversarial Networks (GANs).



Deep Learning

• Deep learning is a subset of machine learning that focuses on training algorithmic neural 
networks to perform tasks. Its algorithms were inspired by the working of the human brain.

• It's characterized by the use of multiple layers (deep architectures) that allow networks to learn 
hierarchical representations of data and to learn to complete specific tasks. 

• In contrast to traditional machine learning/data models, which often requires manual feature 
extraction, deep learning can automatically learn features from raw data, which you can think of as 
patterns that occur within the data.

• Deep learning can be used for supervised, unsupervised, self-supervised, semi-supervised, 
generative, contrastive, few-shot, as well as reinforcement learning.

Objective: teaching computer how to learn a task directly from raw data



Backbone of DL - Neural Networks
• Neural networks, also called artificial neural networks (ANNs) or simulated neural networks (SNNs), 

are a subset of machine learning and are the backbone of deep learning algorithms.

• The neural network is inspired by the human brain’s interconnected neurons. They are called “neural” 
because they mimic how neurons in the brain signal one another.

• It consists of layers: an input layer, one or more hidden 
layers, and an output layer.

• The “deep” in deep learning refers to the depth of layers 
in a neural network.

• Usually, a neural network of more than three layers, 
including the inputs and the output, can be considered a 
deep-learning algorithm.

Further details on neural networks will be in upcoming courses.



Deep Learning Basics
Neurons (Nodes) receive input signals and perform 
computations and produce an output.

Channels (connections) are associated with a weight 
value that determines the strength of the connection. 

Bias is conceptually similar to the intercept in linear 
regression, accounting for potential deviations from the 
ideal relationship between inputs and outputs.

Activation function are threshold values that introduce 
non-linearities into the neural network, determining if
the particular neuron will get activated or not.



Shallow Neural Network

Universal Approximation Theorem

A feed-forward network with a single 
hidden layer containing a finite number 
of neurons can approximate continuous 
functions on compact subsets of ℝ!, under 
mild assumptions on the activation function.

2
7

Cybenko (1989) and Hornik (1991) 



Activation Function - The Gateway to Non-Linearity

• Introducing Non-Linearity: Activation functions introduce non-linear properties to the 
network, enabling it to learn complex data patterns beyond the capability of linear models.

• Transforming Inputs to Outputs: It takes input from previous layers and converts it to some 
form of input for the next layers. 

• Essential Building Blocks: It decides what is to be fired to the next neuron.

• Beyond Linear Modeling: Without non-linearity, neural networks would be limited to linear 
decision boundaries, similar to linear regression.

• Crucial for Performance: Non-linear functions allow neural networks to solve advanced 
problems like image and speech recognition, and natural language processing.



Activation Functions

2
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a) Logistic sigmoid and tanh 
functions. 

b) Leaky ReLU and parametric 
ReLU with parameter 0.25.

c) SoftPlus, Gaussian error linear 
unit, and  sigmoid linear unit. 

d) Exponential linear unit with 
parameters 0.5 and 1.0.

e) Scaled exponential linear unit. 
f) Swish with parameters 0.4, 1.0, 

and 1.4.



Motivation for Deep Learning

3
0

Consider a piecewise linear function 𝑚 𝑥 = %
2𝑥, 	 𝑥 ∈ [0,0.5]
2 − 2𝑥, 𝑥 ∈ [0.5,1]
0 	 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Define 𝜎 𝑥 = max 0, 𝑥

𝒙

𝒛𝟏 = 𝝈(𝒙) 𝒛𝟐 = 𝝈(𝒙 − 𝟎. 𝟓)

𝒚 = 𝝈(𝟐𝒛𝟏 − 𝟒𝒛𝟐)𝒎 𝒙 	

-1 0 0.5 1 2

0.5

1



Motivation for Deep Learning

3
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3n+1 nodes to represent the  𝑚($)(𝑥)
with width of each layer ≤ 2

If we generate a shallow one, we need	 2$ nodes. 

Generate a deep network: 

Width
- additively

Depth 
- Multiplicatively 



Deep Neural Network

3
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v The number of hidden units in each layer is referred to as the width of the 
network, and the number of hidden layers as the depth. The total number of 
hidden units is a measure of the network’s capacity.

Shallow vs deep networks 
v both networks can approximate any function given 

enough capacity, 
v deep networks produce many more linear regions per 

parameter, 
v some functions can be approximated much more
efficiently by deep networks, 
v in practice, the best results for most tasks are achieved 

using deep networks with many layers.

v The depth version of the universal approximation theorem (Lu et al., 2017): 
There exists a network with ReLU activation functions and at least Di +4 
hidden units in each layer can approximate any specified Di-dimensional 
Lebesgue integrable function to arbitrary accuracy given enough layers. 



Define a set of functions/models

Find a criterion/measurement of goodness –

 loss( + regularization)

Get the best model for the problem

AS=Applied Statistics

Define a set of functions/models

Find a criterion/measurement of goodness –

 loss( + regularization)

Get the best model for the problem

Design the neural network

Fitting DL Models

AI=Artificial Intelligence



Fitting DL Models

Find a criterion/measurement of goodness

Get the best model for the problem

Design the neural network𝑿𝟏

𝑿𝟐

𝑿𝒏

…
…

"𝒚𝟏

…
…

"𝒚𝟐

"𝒚𝒏

…
…

𝒚𝟏

𝒚𝟐

𝒚𝒏

A loss function is needed here, 
to measure the difference between the output and truth

Total loss: 𝑳 ='ℓ(*𝒚𝒊, 𝒚𝒊)

Find the network parameters to minimize the loss



Workflow of a Typical DL Project

Data Acquisition
• Public Datasets
• Databases
• Web-scraping
• Crowd Labeling

Cleaning Data

Scaling Numeric
Features

Handling
Categorical Data

& text

Data Preprocessing Training Dataset

Validation Dataset

Test Dataset

60% ~ 80%

Splitting Data

20%~10%

20%~10%

Modeling

Define model architecture and hyperparameter

Train on training dataset

Model Evaluation

Hyperparameter Tuning

Unsatisfactory

• Tune hyperparameters
• Tweak architecture
• Add regularization
• Study why the model is

struggling

Deployment

Ac
ce

pt
ab

le

Understand
Problem



Camera

Iphone

Monitor 
Videos

Image 
Acquisition Face Recognition

Face Detection

Feature 
Extraction

Face Matching

Recognition
Results

Gabor, LBP etc.

Deep Learning

Model Training

Face Recognition System
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Types of  Deep Learning
Deep 

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

Neural network learns to make 
predictions or classify data 
based on the labeled datasets.

CNN

RNN

An agent learns to make decisions in 
an environment to maximize a 
reward signal. The agent interacts 
with the environment by taking action 
and observing the resulting rewards.

The neural network learns to 
discover the patterns or to cluster the 
dataset based on unlabeled datasets. 
There are no target variables.

Autoencoders

Generative 
Model

Deep Q 
Network

DDPG

…

…

…



Modern DL Model Architectures

1
• Key Features: Utilizes convolutional layers to 

process data in a grid pattern (like images).

• Key Components:
• Convolutional Layers: Extract features from 

input images using filters.
• Pooling Layers: Reduce dimensions and 

computational load, retaining key information.
• Fully Connected Layers: Classify images based 

on extracted features.

• Example Models: LeNet-5, AlexNet, VGGNet.

Convolutional Neural Networks (CNNs)

• Applications in Biomedicine:
• Image classification in diagnostics 

(e.g., cancer detection from scans).
• Image segmentation for identifying 

regions of interest in medical images.

Figure. Basic CNN structure.



2
Modern DL Model Architectures

• Key Features: Processes sequences of data (time-
series data), with memory of previous inputs,
capturing temporal dynamics.

• Unique Feature: Loop-like architecture allowing 
previous outputs to be used as inputs while having 
hidden states, enabling information persistence.

• Challenges & Solutions: Problem of vanishing 
gradients; solved by advanced RNNs, e.g. LSTM and 
GRU.

• Example Models: LSTM (Long Short-Term 
Memory), GRU (Gated Recurrent Unit).

Recurrent Neural Networks (RNNs)

• Applications in Biomedicine:
• Analysis of sequential patient data in 

EHRs.
• Time-series analysis in physiological 

signal processing.



3
Modern DL Model Architectures

• Key Features: U-shaped architecture with symmetric encoder 
and decoder paths.  Skip connections that concatenate feature 
maps from encoder to decoder

• Structure: Encoder: Series of convolutional and max-pooling 
layers that capture context. Bottleneck: Intermediate layer 
connecting encoder and decoder.   Decoder: Series of up-
convolution and concatenation layers that restore resolution. 
Final Layer: Convolutional layer that maps features to the desired 
output.

• Types: 2D/3D U-Net, Attention U-Net. 

U-Net

• Applications in Biomedicine: Medical image segmentation. 
Satellite image segmentation. Biomedical image analysis.  
Autonomous driving. General image segmentation tasks.

U-Net for segmenting HeLa cells. The U-Net has an 
encoder-decoder structure, in which the representation is 
downsampled (orange blocks) and then re-upsampled (blue 
blocks). The encoder uses regular convolutions, and the 
decoder uses transposed convolutions. Residual 
connections append the last representation at each scale in 
the encoder to the first representation at the same scale
in the decoder (orange arrows).



4
Modern DL Model Architectures

• Key Features: Unsupervised learning models for 
dimensionality reduction and feature learning.

• Structure: Composed of an encoder (compressing input) 
and a decoder (reconstructing input).

• Types: Standard Autoencoders, Variational Autoencoders 
(VAEs).

Autoencoders

• Applications in Biomedicine:
• Data denoising (e.g., removing noise from images).
• Anomaly detection in medical imaging (e.g., identifying 

unusual patterns).

Figure 1. Visualization of an autoencoder

Figure 2. Autoencoders are a specific type of feedforward 
neural networks where the input is the same as the output.



5
Modern DL Model Architectures

• Key Features: Ability to process graph-structured data. Utilizes 
node features and graph topology for learning. Effective in 
capturing dependencies between nodes.   Supports inductive and 
transductive learning.

• Structure: Nodes, Edges,  Node Features, Graph Convolution, 
and Readout Layer.

• Types: Graph Convolutional Networks (GCNs),  Graph Attention 
Networks (GATs), Graph Recurrent Networks (GRNs), Graph 
Autoencoders, Graph U-Net

Graph Neural Network

• Applications in Biomedicine:
Social Network Analysis, Knowledge Graphs, Drug Discovery, 
Recommender Systems, Network Security

Graph U-Net

GNN GAT



6
Modern DL Model Architectures

• Key Features: Comprises two neural networks, a 
generator and a discriminator, competing against each 
other.

• Mechanism: 
• Generator creates images, trying to fool the 

discriminator by generating data similar to those in 
the training set.

• Discriminator evaluates them, trying to distinguish
between fake data and real data

• Example Models: DCGAN, Pix2Pix, CycleGAN.

Generative Adversarial Networks (GANs)

• Applications in Biomedicine:
• Generate high-resolution images from 

low-resolution inputs, enabling 
improved image quality.

• Data augmentation in medical 
imaging for robust model training.

Figure. Visualization of the flow of GAN



Figure. Transformer architecture

7
Modern DL Model Architectures

• Key Features: Utilizes self-attention mechanisms,
excellent for handling sequences of data.

• Key Innovation: Following an encoder-decoder structure,
eliminating recurrence and convolutions.

• Example Models: BERT (adapted for biomedical 
applications), AlphaFold.

Transformer Models

• Applications in Biomedicine:
• Genomic sequence analysis for personalized medicine.
• Protein structure prediction (e.g., AlphaFold's 

breakthroughs).



8
Modern DL Model Architectures

• Key Features: DRL leverages neural networks to approximate 
value functions and policies, enabling agents to learn complex 
tasks from high-dimensional sensory inputs. 

• Key Components: Agent, Environment, Reward, Policy, and 
Value Function.

• Example Models: DQN (Deep Q-Network), A3C 
(Asynchronous Advantage Actor-Critic), PPO (Proximal Policy 
Optimization) ,SAC (Soft Actor-Critic)

Deep Reinforcement Learning

• Applications:
• Game Playing;  Robotics
• Autonomous Vehicles; Healthcare



§ Key Features: Iterative forward noise ↔ learned reverse 
denoising,  Simple MSE loss via denoising score matching, 
Exact or tractable likelihood  bounds, Flexible conditioning & sampling control

§ Key Innovations: Score-based learning, Optimized noise schedules, Fast samplers (DDIM) & continuous-time 
SDE/ODE formulations,  Latent-space diffusion, Classifier-free guidance

§ Example Models: DDPM (discrete diffusion), DDIM (implicit sampler), Score SDE / ODE (continuous), 
Stable Diffusion (latent), Imagen /DALL·E2 (text-to-image), WaveGrad / DiffWave (audio). 

§ Applications: Unconditional & conditional image generation,  Text-to-image & multimodal AIGC, Inpainting, 
super-resolution, style transfer, Audio synthesis & denoising, Molecular structure generation, Video frame 
interpolation & generation

Modern DL Model Architectures

9 Diffusion Models
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Loss Function
Definition: a measure of error between what your model 
predicts and what the actual value is. 
Purpose: quantifies how well the neural network matches 
what we want to output and thus guides the optimization 
process.
Importance: The choice of loss function directly impacts 
how the weights of the model are adjusted.
Examples: Mean Squared Error (Regression), Cross-
Entropy (Classification).
Notation: 

ℒ(𝑓 𝑿;𝑾 , 𝒚)
Prediction True



Recipe for Constructing Loss Functions

5
0



Loss Function for Classification

Binary Classification Task

Binary Cross-Entropy

Multi-Class Classification Task

Cross-Entropy Loss
Kullback Leibler Divergence Loss
Negative Log Likelihood Loss



Dice Loss Function

Dice Loss is derived from the Dice Coefficient, which is a statistical tool to measure the similarity or
overlaps between two sets.

Unlike cross entropy loss, dice loss is particularly effective when dealing with imbalanced datasets 
and when the focus is on capturing fine details in the segmentation masks. It’s a very popular loss 
function in medical image segmentation.

𝐷𝑖𝑐𝑒 =
2×|𝐴 ∩ 𝐵|
𝐴 + |𝐵|

To avoid division by zero, a small constant (smooth) is added to the numerator and denominator.

Dice coefficient:

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒!"##$%𝐷𝑖𝑐𝑒!"##$% =
2× 𝐴 ∩ 𝐵 + 𝑠𝑚𝑜𝑜𝑡ℎ
𝐴 + 𝐵 + 𝑠𝑚𝑜𝑜𝑡ℎ

and



Imbalanced Data-Loss Functions
v Consider Data Characteristics:

v Imbalanced Data: Use Weighted 
Cross-Entropy or Focal Loss.
v Outliers: Use Huber Loss or 
Mean Absolute Error.



Outliers-Loss Functions

Barron, J. T. (2019). A general and adaptive robust loss function. In CVPR.
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Fitting DL Models

Find a criterion/measurement of goodness

Get the best model for the problem

Design the neural network𝑿𝟏

𝑿𝟐

𝑿𝒏

…
…

"𝒚𝟏

…
…

"𝒚𝟐

"𝒚𝒏

…
…

𝒚𝟏

𝒚𝟐

𝒚𝒏

A loss function is needed here, 
to measure the difference between the output and truth

Total loss: 𝑳 ='ℓ(*𝒚𝒊, 𝒚𝒊)

Find the network parameters to minimize the loss



Loss Optimization
Goal: find the network weight that achieve the lowest loss.

ℒ(𝑓 𝑿;𝑾 , 𝒚)
Prediction True

Write this goal in mathematical format:

argmin
𝑾

9𝑊 =

𝑾 = [𝑾 𝟏 ,𝑾 𝟐 , … ]

contains all the weight
vectors needed to be adjusted
in the neural network

The loss function is a
function of the network
weights 𝑾.

Find the value of the parameters that help the loss function reach the lowest value.



Gradient Descent

A first-order iterative optimization algorithm for finding the 
minimum of a function.

Step 1. Compute the derivatives of the loss w.r.t. the 
parameters

Step 2. Update the parameters according to the rule: 

𝒘𝒏𝒆𝒘 	= 	𝒘	 − 	𝛼
𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚) 

𝜕𝑾
where the positive scalar 𝛼	(learning rate) determines the 
magnitude of the change. 

𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚) 
𝜕𝑾

?𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛	ℒ(𝑓 𝑿;𝑾 , 𝒚)



Multi-Dimension Optimization Process

1. Randomly pick an initial, a start point

(𝑤), 𝑤*) Go through the neural
network feed forward
propagation process to get a
prediction of the output, F𝑦.
Compute loss:

ℒ(F𝑦, 𝑦)
which is not satisfied.



Multi-Dimension Optimization Process

2. Compute gradient respect to
all the interested parameters:

𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚) 
𝜕𝑾

The opposite direction of the gradient is
where we can decrease the loss.



Multi-Dimension Optimization Process

3. Take a small step in the opposite direction
of the gradient to get a new proposal of the
parameter values.(𝑤)+ , 𝑤*+)

The magnitude of this
step is determined by
learning rate.

4. Repeat steps 2 and 3 until the loss converges.

ℒ(𝑓 𝑿;𝑾& , 𝑦)

Check if it converges.

Compute loss with the new values:



Gradient Descent

3. Take a small step in the opposite direction
of the gradient to get a new proposal of the
parameter values.(𝑤)+ , 𝑤*+)

The magnitude of this
step is determined by
learning rate.

4. Repeat steps 2 and 3 until the loss converges.

ℒ(𝑓 𝑿;𝑾& , 𝑦)

Check if it converges.

Compute loss with the new values:



Gradient Computation: Backpropagation

𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚)
𝜕𝑤'

𝑥* 𝑧' J𝒚 ℒ(𝑓 𝑿;𝑾 , 𝒚)
𝑤* 𝑤,

=
𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚)

𝜕 F𝑦
K

𝜕 F𝑦
𝜕𝑤'

Chain rule

𝜕 F𝑦
𝜕𝑤'

=
𝜕F𝑦
𝜕𝑧'

K
𝜕𝑧'
𝜕𝑤'

Chain rule again



Gradient Computation: Backpropagation

𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚)
𝜕𝑤'

𝑥* 𝑧' J𝒚 ℒ(𝑓 𝑿;𝑾 , 𝒚)
𝑤* 𝑤,

=
𝜕ℒ(𝑓 𝑿;𝑾 , 𝒚)

𝜕 F𝑦
K

𝜕 F𝑦
𝜕𝑧'

K
𝜕𝑧'
𝜕𝑤'

Backpropagation

Repeat this process for each layer, see the visual on the right: 



Optimization Algorithms in PyTorch

Stochastic Gradient Descent (SGD)

Gradient Descent with Momentum

AdaGrad (Adaptive Gradient Algorithm)

Adam (Adaptive Moment Estimation)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

optimizer = torch.optim.Adagrad(model.parameters(), lr=0.01)

optimizer = torch.optim.Adam(model.parameters(), lr=0.001)



Stochastic Gradient Descent (SGD)
Characteristics:
• Basic form of gradient descent used in neural networks.
• Fixed learning rate.
• In each iteration, randomly select a single data point (or a batch of data points) from the 

training set to calculate the gradient of the loss function.
• Updates parameters for each training example, leading to frequent updates with high variance.

Advantages:
• Simple and easy to understand.
• Can escape local minima due to its inherent noise.

Disadvantages:
• Slow convergence on large datasets and high variance in updates.
• Sensitive to learning rate and other hyperparameters.

Batch Size: 
Epoch: 



Gradient Descent with Momentum
Characteristics:
• Builds upon SGD by considering past gradients to smooth out the updates.
• Uses a momentum factor to accelerate SGD in the relevant direction.

Advantages:
• Faster convergence than standard SGD.
• Reduces oscillations and improves stability.

Parameter update rule:

1. Update Velocity: 𝑣 = 𝛾𝑣 − 𝛼∇𝑓(𝑥).
2. Update Parameter: 𝑥 = 𝑥 + 𝑣



AdaGrad (Adaptive Gradient Algorithm)
Parameter update rule:
1. Update accumulation: 𝐺 = 𝐺 + 𝑔(, where 𝑔 is the gradient of the loss function with respect 

to each parameter.
2. Adjust Learning Rate: Scale the learning rate for each parameter inversely proportional to 

the square root of 𝐺.
3. Update Parameters: Update the parameters using the adjusted learning rate, 𝑥 = 𝑥 −

𝛼
𝐺 + 𝜖

U 𝑔

where 𝛼 is the initial learning rate, 𝜖 is a small constant added to improve numerical stability. 



AdaGrad (Adaptive Gradient Algorithm)
Characteristics:
• Adjusts the learning rate to each parameter, decreasing it for parameters with large gradients.
• Each parameter has its own learning rate, which can be beneficial for datasets with features 

of varying importance or scale.

Advantages:
• The effective learning rate decreases over time for each parameter. Eliminates the need to 

manually tune the learning rate.
• Well-suited for dealing with sparse features or data with different scales.

Disadvantages:
• The continuously accumulating squared gradient can lead to an excessively reduced learning 

rate, causing the algorithm to stop learning too early.



Adam (Adaptive Moment Estimation)
Parameter update algorithm:
1. Moving averages: two vectors 𝑚 and 𝑣 are used to store moving averages of the gradients 

and squared gradients, both initialized to zero.
2. Hyperparameters: 𝛽' and 𝛽(, close to 1 (common defaults are 0.9 and 0.999).

3. Update Moving Averages: 𝑚 = 𝛽'𝑚 + 1 − 𝛽' 𝑔 and 𝑣 = 𝛽(𝑣 + 1 − 𝛽( 𝑔(.

4. Correct Bias: J𝑚 = "
')*!"

and F𝑣 = +
')*#"

.

5. Adjust parameters: 𝑥 = 𝑥 − ,
-+./

J𝑚

where 𝛼 is the initial learning rate, 𝜖 is a small constant added to improve numerical stability. 



Adam (Adaptive Moment Estimation)
Characteristics:
• Designed to combine the advantages of two other popular optimizers: the adaptive learning 

rate feature of AdaGrad and the momentum feature of RMSprop.
• Different learning rates for different parameters and adjusts them throughout training.
• Corrects the bias in moving averages, especially important in the initial training phase.

Advantages:
• Combines the benefits of AdaGrad and RMSprop.
• Performs well in practice and across a wide range of non-convex optimization problems and large

dataset.

Disadvantages:
• Can be memory-intensive due to storing moving averages for each parameter.
• Might not converge to the optimal solution in certain theoretical cases.



Optimization

Ø Batch SGD

Ø Momentum

Ø Adaptive Moment  Estimation (Adam)

Ø Backpropagation algorithm

Forward Pass Backward Passes



Efficient Gradient Calculation
 Why It’s Important:
• Neural networks often contain billions to trillions of parameters (e.g., models with ∼billions+parameters).
• During training, gradients need to be computed for every parameter at each iteration of the optimization process.

  Challenges:
• Computational Complexity: Calculating gradients for all parameters in large-scale models is computationally 

intensive.
• Memory Constraints: Storing intermediate results for backpropagation in large models requires significant memory. 

  Solutions:
• Backpropagation Algorithm: Efficiently calculates gradients by applying the chain rule of differentiation.
• Automatic Differentiation Libraries: Frameworks like TensorFlow, PyTorch, and JAX automate gradient 

computation.
• Distributed Training: Parallelizing computations across multiple GPUs or TPUs helps handle large models.



Backpropagation Algorithm
2 Steps:

1. Forward Propagation

2. Backpropagation

• Forward propagation is how neural networks make predictions.
• Involves passing input data through the network layer by layer to the 

output.

• Backpropagation is the process of adjusting the weights of the 
network by propagating through the neural network backward.

• Involves calculating the gradient of the loss function with respect 
to each weight by the chain rule.

• The weights are adjusted in the direction that reduces the loss.

Forward Propagation

Backpropagation

Both steps are iteratively repeated for several epochs to minimize the 
loss and improve the model's accuracy.



Backpropagation Algorithm



Parameter Initialization
Proper initialization is critical because:
a) Convergence Speed: Poor initialization can slow down the training process.
b) Gradient Stability: Ensures gradients do not vanish or explode during backpropagation.
c) Optimization Performance: Facilitates better navigation of the loss landscape, avoiding saddle points and bad
 local minima.
 

Challenges in Parameter Initialization: 
a. Vanishing Gradients: Occurs when the gradients become excessively small during backpropagation, leading to 
negligible weight updates. This is typically caused by: Small initial weight values and Activation functions like Sigmoid 
or Tanh that squash outputs to a narrow range.

b. Exploding Gradients:  Occurs when gradients grow exponentially during backpropagation, causing instability and 
divergence in the optimization process. This is typically caused by: Large initial weight values and  Improper scaling of 
weights in deep layers.

c. Symmetry Breaking: Initializing all weights to the same value (e.g., zero) causes symmetry in the network, preventing 
neurons in the same layer from learning distinct features.



Initialization Techniques
Zero Initialization: All weights set to 0, leading to symmetry.
Random Initialization: Weights are initialized randomly (e.g., sampled from N(0, 1)). Issue:  Without proper 
scaling, it can lead to vanishing or exploding gradients.
Xavier Initialization (Glorot Initialization):  Designed for Sigmoid and Tanh activation functions. Ensures 
variance of activations remains consistent across layers:

He (Kaiming) Initialization: Designed for ReLU and its variants. 

LeCun Initialization: Suitable for activation functions like SELU:  

 Orthogonal Initialization: Ensures weights are orthogonal, maintaining variance stability across layers. 
Effective for RNNs and deep networks with large dimensions.

Bias Initialization: Biases are often initialized to small positive values (e.g., 0.01).

Pretrained Initializations: Using weights from pretrained models (transfer learning).

Layer-Specific Initialization:  Input layers: Focus on uniform weight distribution. 
                                                        Output layers: Smaller initialization to stabilize predictions.
 



Batch Normalization
• Definition: Batch Normalization (BN) is a technique used in 

deep learning to normalize the inputs to each layer within a 
neural network. It ensures that the inputs have a consistent 
distribution, which stabilizes and accelerates training.

• Purpose: Reduce internal covariate shift: This occurs 
when the distribution of inputs to a layer changes during 
training. 

• Benefits: 
a)  Improved Stability: Keeps activations in a stable range, 

mitigating vanishing/exploding gradients.
b)  Faster Convergence:  Allows for higher learning rates and 

reduces sensitivity to initialization.
c)  Regularization Effect:  Adds noise due to batch statistics, 

reducing overfitting.
d) Enhanced Generalization: Produces better results on unseen 

data.

https://kharshit.github.io/blog/2018/12/28/why-batch-normalization



Batch Normalization

https://e2eml.school/batch_normalization https://kharshit.github.io/blog/2018/12/28/why-batch-normalization



Regularization Methods
Four Mechanisms: 
v Make the modeled function smoother.
v Increase the effective amount of data.
v Combine multiple models to mitigate uncertainty 

in the fitting process.
v Encourages the training process to converge to 

a wide minimum, where small errors in the 
estimated parameters are less important.
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Nature Image Data is Everywhere
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Major CV Tasks
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Self-driving Cars

Other CV Tasks
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Medical Image Data is Everywhere



Scenario Challenges

StanfordCS231n



High Dimensionality
• Key Feature:

• Images are inherently high-dimensional data. For example, a standard image in classification tasks with a 
resolution of 224×224 and 3 color channels (RGB) has 224×224×3=150,528 input dimensions.

• Each pixel represents a separate input feature, and the number of features grows quadratically with image 
resolution.

• Challenge:
• Fully connected networks scale poorly with such high-dimensional data. For even a shallow network, the 

number of weights can exceed 150,5282^2 (~22 billion). This massive number of weights:
• Increases the risk of overfitting, as more parameters require a proportional increase in training data.
• Results in impractical memory and computational requirements, especially for larger images.
• Slows down the training process significantly, making optimization difficult.

• Real-World Implication:
• As image resolution increases (e.g., 512×512 or beyond for high-definition images), the dimensionality 

becomes even more unmanageable for fully connected networks.

• Solution: CNNs reduce the number of parameters by using shared weights (convolutional filters) and 
processing local regions of the image (kernels). This drastically decreases memory requirements and 
computational complexity.



• Key Feature:
• Nearby pixels in an image are statistically correlated and form local patterns or textures (e.g., edges, corners, 

and gradients). These local relationships are critical for understanding the content of an image.
• For example, in an image of a cat, nearby pixels may collectively form the texture of fur or the shape of an ear.

• Challenge:
• Fully connected networks ignore spatial relationships by treating all input pixels equally. They lack the notion 

of "locality" and process the relationship between each pixel and every other pixel, regardless of their 
proximity.

• This lack of spatial awareness means that a fully connected network cannot naturally exploit the structural 
dependencies within an image.

• If the pixels of an image are randomly permuted in the same way for both training and testing, a fully 
connected network can still learn, highlighting its disregard for spatial coherence.

• Real-World Implication:
• Without spatial awareness, models become inefficient and require a larger number of neurons to learn even 

basic patterns.
• Solution:

• CNNs address this by using local receptive fields to capture spatial relationships. Filters (kernels) process 
small, overlapping regions of an image, preserving spatial coherence and focusing on local patterns. This 
makes CNNs particularly effective for tasks like object detection and image segmentation.

Spatial Relationships in Pixels



Stability Under Geometric Transformations
• Key Feature:

• Images maintain their interpretation under geometric transformations such as translation, rotation, scaling, or 
flipping. For example:

• A tree remains recognizable as a tree even if shifted slightly to the left or rotated by a small angle.
• Similarly, a flipped or resized image of a cat does not change its underlying identity.

• This invariance is essential for real-world applications like autonomous driving or medical imaging, where 
objects may appear in various positions or orientations.

• Challenge:
• Fully connected networks treat each pixel independently and do not account for geometric transformations. A 

simple translation (e.g., shifting an image to the left by a few pixels) alters every pixel in the input vector, 
forcing the network to relearn patterns for each possible position.

• This redundancy results in inefficient learning and requires significantly more data to cover all potential 
transformations.

• Real-World Implication:
• Models that lack invariance to transformations are less robust in real-world scenarios where objects appear in 

varying contexts.
• Solution:

• CNNs inherently address this issue by leveraging translation invariance through shared filters. These 
filters recognize patterns (e.g., edges or textures) regardless of their position within the image.

• Data augmentation techniques, such as randomly rotating, flipping, or cropping images during training, 
further improve the model's ability to handle transformations.



Major Considerations
• Noise in Images:

• Real-world images often contain noise (e.g., sensor artifacts, motion blur, or lighting 
variations). Fully connected networks struggle to differentiate between noise and meaningful 
patterns, further emphasizing the need for specialized architectures.

• CNNs are more robust to noise due to their focus on local features rather than individual pixel 
values.

• Scale and Hierarchy:
• Images often contain hierarchical features at multiple scales:

• Low-level features: edges, corners.
• Mid-level features: textures, patterns.
• High-level features: objects or entire scenes.

• Fully connected networks cannot naturally represent this hierarchy, while CNNs achieve this 
using multiple convolutional layers with increasing receptive fields.

• Conclusion The unique properties of unstructured image data pose significant challenges for fully 
connected networks. These challenges necessitate specialized architectures like CNNs, which 
leverage shared weights, local receptive fields, and hierarchical feature extraction to process 
images efficiently. Additionally, techniques like data augmentation and multi-scale analysis enhance 
the robustness of these models for real-world applications.



ImageNet
What is ImageNet?

• Definition: ImageNet is a large-scale visual database designed to advance research in object detection, 
classification, and other computer vision tasks.
• Dataset Size: It contains over 14 million labeled images
spanning 20,000+ categories, with the most commonly used 
subset having 1,000 object categories.

Key Features of ImageNet

a)  Diversity of Classes:
Includes both broad categories (e.g., "dog," 
"car") and fine-grained subcategories (e.g., "golden retriever," "sports car").

b)  Real-World Images:
Images collected from the internet represent real-world complexity, including cluttered backgrounds, 
occlusions, and multiple objects.

c)  Hierarchical Organization:
Based on the WordNet hierarchy, where classes are semantically related, providing meaningful 
relationships between categories.



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners



Introduction to CNN
What Are CNNs?
CNNs are specialized deep learning architectures designed to process data with grid-like structures, such as 
images and videos. By leveraging the spatial structure of data, CNNs efficiently extract and learn hierarchical 
features, making them particularly well-suited for computer vision tasks like image classification, object 
detection, and segmentation.

In image and video processing, they are widely used for tasks such as classification, object detection, 
segmentation, and face recognition. 
In medical imaging, CNNs assist in detecting tumors and anomalies in X-rays and CT scans. 
In natural language processing (NLP), they process data as 1D inputs for tasks like sentence classification and text 
summarization. 
In autonomous driving, they enable real-time object detection for pedestrians, vehicles, and road signs.

CNNs’ applications



Key Components of  CNNs



Key Components of  CNN

• Convolutional layers

• Rectified Linear Unit (ReLU)

• Pooling layers

• Fully connected layers

Illustration of architecture of CNNs applied to digit recognition (source)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Feature Extraction Using Convolution
• Input, kernel, and output 

• Fully Connected Networks
• “fully connect” all the hidden units to 

all the input units. Only 
computationally feasible to learn 
features on the entire image for 
relatively small images.

• order of 106 parameters to learn for 
96x96 images. The feedforward and 
backpropagation computations 
would also be about 100 times 
slower, compared to 28x28 images.

• Locally Connected Networks

Prince (2023)



Feature Extraction Using Convolution
• Input, kernel, and output (right figure)

• Fully Connected Networks

• Locally Connected Networks
• A simple solution to this problem is to limit 

connections between hidden and input units, allowing 
each hidden unit to connect to only a small subset of 
input units, such as a contiguous region of pixels. For 
other data types different than images like audio, 
hidden units can be connected to specific time spans. 
This concept of local connections is inspired by the 
visual cortex, where neurons respond to stimuli in 
specific locations.

Illustration of Discrete 2D Convolution (source)

https://en.wikipedia.org/wiki/Convolution


Understanding the Convolution Operation

Whenever we have discrete objects, the integral turns into a sum. For instance, in CNN, we used 
discrete convolution  for vectors from the set of square-summable infinite-dimensional vectors 
defined as:

For two-dimensional tensors, we have a corresponding sum with (a,b) for f (i-a,j-b) for g, 
respectively:

What is convolution?

Mathematically, Convolution is defined as	𝑓, 𝑔:	ℝ0 → ℝ :

𝑓 ∗ 𝑔 𝒙 = Y𝑓 𝒛 𝑔 𝒙 − 𝒛 𝑑𝑧	

𝑓 ∗ 𝑔 𝑖 =\
-

𝑓 𝑖 𝑔 𝑖 − 𝑎

𝑓 ∗ 𝑔 𝑖, 𝑗 = \
-

\
.

𝑓 a, b 𝑔 𝑖 − 𝑎, 𝑗 − 𝑏



Padding, Stride, and Pooling

• Padding
• Zero-padding and why it's necessary (The pixels at the corner in the previous images are less 

counted than those in the middle)

• How padding affects the dimensions of the output

Illustration of padding effects (source)

https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-neural-network-3607be47480


Padding
One tricky issue when applying convolutional layers is that we tend to lose pixels on the perimeter of our image. 
The following figure depicts the pixel utilization as a function of the convolution kernel size and the position 
within the image. 
We can see that the pixels in the corners are hardly used at all.

Pixel utilization for convolutions of 1x1, 2x2, and 3x3 respectively.



Padding
One straightforward solution to this problem is to add extra pixels of filler around the boundary of our 
input image, thus increasing the effective size of the image. Typically, we set the values of the extra 
pixels to zero. 

Example on padding 3x3 input to 5x5 matrix:



Padding, Stride, and Pooling
Stride

• Example with stride of 1 vs. 2

Illustration Convolution Operation with Stride Length = 1 Vs 2 (source)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Padding, Stride, and Pooling
• Pooling

• Types: Max pooling, average pooling

• Role in reducing dimensionality

• Example: Pooling on an image

Illustration of 3x3 pooling over 5x5 convolved feature (source)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Average Pooling
Average pooling is essentially as old as CNNs. The idea is akin to downsampling an image. Rather than just 
taking the value of every second (or third) pixel for the lower resolution image, we can average over adjacent 
pixels to obtain an image with better signal-to-noise ratio since we are combining the information from multiple 
adjacent pixels. 

https://blog.paperspace.com/a-comprehensive-exploration-of-pooling-in-neural-networks/

https://www.digitalocean.com/community/tutorials/pooling-in-convolutional-neural-networks



Maximum Pooling

Max-pooling was introduced in Riesenhuber and Poggio (1999) in the context of cognitive neuroscience to 
describe how information aggregation might be aggregated hierarchically for the purpose of object recognition; 
there already was an earlier version in speech recognition (Yamaguchi et al., 1990). 
In almost all cases, max-pooling is preferable to average pooling.
Consider example:

https://www.digitalocean.com/community/tutorials/pooling-in-convolutional-neural-networks



AlexNet
• With high performance hardware (GPUs from 

Nvidia) and sufficiently rich data-set, Krizhevsky 
et al. proposed AlexNet (Alom et al. 2018), which 
consists of five convolution layers and three 
fully connected layers.

• Each convolution layer contains a convolution 
kernel, a bias term, a ReLU activation function, 
and a local response normalization (LRN) 
module.  

• In the 2012 ILSVRC, AlexNet won the 
competition with a Top-5 classification error rate 
of 16.4%, became the dividing line between 
traditional and deep learning algorithms, and was 
the first deep CNN model in modern times.

AlexNet Architecture

AlexNet



Visual Geometry Group (VGG) models
• To examine the impact of a CNN’s depth on its 

accuracy, Karen Sengupta et al. (2019) conducted a 
comprehensive evaluation of the performance of 
network models with increasing  depth, while using 
smaller convolution filters (3 × 3) instead of the 
previous 5 × 5 kernels and proposed a series of Visual 
Geometry Group (VGG) models in 2014.

• The smaller kernel size lowers the computational 
complexity and the number of training parameters.

• Simultaneously, VGG supports the hypothesis that 
performance can be enhanced by continually 
deepening the network topology.

• In the 2014 ILSVRC, VGG won the competition in 
the Localization Task with a Top-5 classification 
error rate of 7.3%, Sengupta et al. Front Neurosci (2019) 



VGG Models
a) Increased Depth:

Depth allows VGG to learn hierarchical features, improving 
accuracy.

b) Simple Design:
Stacks of identical convolutional layers make it easy to 
scale the architecture.

c) Transfer Learning:
VGG models pretrained on ImageNet are widely used for 
transfer learning in other tasks.

d) Small Filters:
Using 3×3 filters results in fewer parameters compared to 
larger filters, while maintaining the receptive field size.

e) VGG-16:
16 layers: 13 convolutional layers and 3 fully connected layers.  
Parameters: ~138 million.
f)   VGG-19:
19 layers: 16 convolutional layers and 3 fully connected layers.
Parameters: ~143 million.



GoogLeNet
• GoogleNet, also known as Inception-v1, is a deep CNN 

introduced by Szegedy et al. in 2014.
• It won the ILSVRC 2014 the Classification Task with a 

top-5 error rate of 6.67%, outperforming other models.
• Main Innovations: 
a) Inception Module enables the network to capture 

features at multiple scales while reducing 
computational cost. 

b) Dimension Reduction. Uses 1×1 convolutions for 
reducing dimensionality before applying larger 
filters, significantly reducing parameters.

c) Auxiliary Classifiers: Two intermediate softmax 
classifiers are added to help with gradient flow and 
prevent vanishing gradients.

• Motivation: Despite having 22 layers, GoogleNet has 
only ~5M parameters, significantly fewer than 
AlexNet (~60M) and VGG-16 (~138M).This is 
achieved using 1×1 convolutions for dimensionality 
reduction.

Szegedy et al. Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition (2015) 



GoogleNet Architecture

•Input Layer: 224×224×224×3 RGB image.
•Convolutional Layers: Apply 7×7, 1×1, or 3×3 filters 
to extract features.
•Inception Modules: Multi-scale processing 
with 1×1, 3×3, 5×5, and pooling operations.
•Auxiliary Classifiers: Intermediate softmax layers 
for training regularization.
•Global Average Pooling: Replaces fully connected 
layers with spatial pooling across feature maps.
Output Sizes:
•The output size at each stage is shown, 
demonstrating how spatial dimensions decrease 
progressively.



Inception Module

• Multi-Scale Feature Extraction: Processes feature maps at multiple scales for rich. representations.

• Dimensionality Reduction: 1 × 1 convolutions reduce computational costs while preserving important 
information.

• Efficiency: Deep networks can process large input data with fewer parameters compared to traditional 
architectures.

• Improved Generalization: Captures features across different abstraction levels.



Inception Cell 

Example architecture of inception
Zhao et al. Artificial Intelligence Review (2024) 



Residual network (ResNet)
• Degradation Problem: Deeper networks (e.g., >20 layers) suffered from degradation of accuracy, not just 

overfitting, but actual performance decline.

• Key Idea: Instead of learning the direct mapping (H(x)), ResNet learns the residual mapping  (F(x)=H(x)−x). 
This simplifies optimization and allows gradients to flow through skip connections, improving convergence. 

• Impact:
• Ease of Optimization: Learning residuals is simpler than learning direct mappings.
• Deeper Architectures: ResNet-152 outperforms shallower networks while maintaining high accuracy.
• State-of-the-art Results: Top-5 error dropped to ~3.6% on ImageNet (ILSVRC).

• Connection to Highway Networks (Srivastava et al., 2015): ResNet can be seen as a special, simplified 
case of highway layers where gates are mostly open.

• Residual connections enable building much deeper and more powerful networks by addressing gradient vanishing 
and “degradation” issues.



Residual Block

Illustration of a residual block
Zhao et al. Artificial Intelligence Review (2024) 

Building Block:
a) Input: x (feature map from the previous layer).
b) Path 1 (Residual Function):

i. 3×3 convolution -> Batch Normalization -> ReLU.
ii. 3×3 convolution -> Batch Normalization.

c) Path 2 (Skip Connection):
i. Identity mapping: Directly passes the input x.

d) Addition:
i. Output: F(x)+x (summation of the two paths).

e) Activation:
i. Apply ReLU to the combined output.

f) Output:
  Final feature map retains the same dimensions as the input.



CNN Optimization Techniques
CNN optimization involves techniques to improve the performance, efficiency, and generalization of 
Convolutional Neural Networks during training and inference.
• Goals:  

a) Reduce overfitting.
b) Improve convergence speed.

c) Optimize computational resources.

• Common Strategies:
a) Data Augmentation
b) Regularization (L1, L2, Elastic Net)
c) Dropout & Early Stopping 
d) Transfer Learning



Data Augmentation
• Data augmentation is a strategy used to artificially increase the size and 

diversity of a training dataset by applying transformations to the existing 
data.

• Purpose: Improve model generalization.  Prevent overfitting.  
Compensate for limited training data.

• Why? Increases effective training set size without extra data collection.

• Common Methods:
• Color jittering, cropping, flipping, rotations, scaling.
• PCA‐based color augmentation (as in AlexNet) (Krizhevsky et 

al., Commun. ACM, 2017). 
• Transfer learning approach using well-known CNN models 

(GoogleNet, AlexNet, VGG16, VGG19, DenseNet, etc.) along with 
data augmentation techniques can be used to accelerate the training 
and testing process while yielding good results and performance.

• He et al. implemented data augmentation along with regularization 
techniques such as dropouts and weight decay (CVPR, 2016).

Teerath et al. IEEE Access (2024) 



Data Augmentation

Example of using preprocessing techniques along with the 
well-known CNN models for COVID-19 and Lungs 

Pneumonia detection using transfer learning.
Latif et al. AIMS Mathematics (2024) 

• Geometric Transformations:
   Flipping: Horizontal and vertical flips.
   Rotation: Rotates images by a specified angle.
   Scaling: Resizes images while preserving aspect ratio.
   Cropping: Extracts subregions from the image.
• Color Transformations:
   Brightness Adjustment: Alters image brightness.
   Contrast Adjustment: Modifies contrast levels.
   Saturation Adjustment: Changes color saturation.
   Hue Adjustment: Shifts color hues.
• Noise Injection: Adds random noise to images to improve 
robustness.
• Affine Transformations: Applies scaling, shearing, or 
translation to the images.



Regularization methods
• Definition: Regularization refers to techniques that 

improve a model's generalization by reducing overfitting 
to the training data.

• Why Regularization? Deep learning models are prone 
to overfitting due to high capacity and complex 
structures. Regularization helps balance the trade-off 
between model complexity and performance.

• L2 Regularization (Weight Decay)
• Penalizes the square of weights → discourages 

large weight values, helps smooth solutions.
• L1 Regularization (Lasso)

• Penalizes the absolute value of weights → 
encourages sparsity (some weights become zero).

• Elastic Net
• Combines L1 and L2 → can both shrink weights 

and promote sparsity.



Dropout & Early Stopping
• Dropout

• Randomly “drops” neurons during training.
• Reduces co-adaptations among neurons → 

mitigates overfitting.

• Early Stopping
Monitors validation performance and 
halts training before overfitting sets in.
Balances bias/variance by stopping at the 
optimal point.

https://www.pinecone.io/learn/regularization-in-neural-networks/ https://www.comet.com/site/blog/4-techniques-to-tackle-overfitting-in-deep-neural-networks/



Transfer Learning
Train on ImageNet Bigger DatasetsSmall Datasets

Donahue et al, ICML 
2014
Razavian et al, CVPR 
Workshops 2014



Object Detection



What is Object Detection?

To determine: What objects are where?
-- Object bounding box: location and size
-- Object category.

By NIPS15-Faster RCNN



2001

VJ Det. 
(P. Viola et al-01) 

2006 2008

DPM 
(P. Felzenszwalb et al-08, 10)HOG Det. 

(N. Dalal et al-05）

Traditional Detection 
Methods

Deep Learning based 
Detection Methods

2004
…

201720162015

RCNN
(R. Girshick et al-14)

2014 2018

SPPNet 
(K. He et al-14)

Fast RCNN
(R. Girshick-15)

Faster RCNN
(S. Ren et al-15)

Pyramid Networks 
(T. Y. Lin et al-17)

YOLO (J. Redmon 
et al-16,17)

SSD (W. Liu 
et al-16)

Retina-Net 
(T. Y. Lin et al-17)

Two-stage 
detector

One-stage 
detector

+ AlexNet

Wisdom of the cold weapon

Technical aesthetics of GPU

2012

Object Detection Milestones

2017201620152014 2018

2019

2019
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Time: 14s/image on a GPU

• Object Proposal+CNN features
• Bounding Box Regression
• Fine tuning 
• VOC07 mAP: 33.7à58.5

R-CNN: Regions with CNN features
Ross B. Girshick et al., (CVPR2014)

Drawbacks
• The redundant feature computations on a large number 

of overlapped proposals (>2000 boxes/img) leads to an 
extremely slow detection speed (14s per image with 
GPU).



125

Definition: R-CNN is a deep learning framework for object detection introduced by Ross Girshick in 2014. 
It integrates region proposals with CNNs to detect objects in an image effectively.

Key Contributions:
v Combines region proposals with CNN-based feature extraction.
v Demonstrates the use of transfer learning for detection tasks.
v Achieves significant performance improvements over traditional methods.
 

R-CNN: Regions with CNN features

Workflow of R-CNN:
Ø  Input image is processed using Selective Search to generate region proposals.
Ø  Each region is resized to 224x224 and passed through a CNN to extract features.
Ø  SVM classifiers predict object categories for the proposals.
Ø  Bounding box regression refines the coordinates of the proposals.
Ø  Outputs are the predicted class labels and refined bounding boxes.
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SPPNet: Spatial Pyramid Pooling

Kaiming He et al., (ECCV2014)

SPPnet is a deep learning framework designed to handle images of arbitrary sizes without requiring 
cropping or resizing. It introduces the Spatial Pyramid Pooling (SPP) layer, which allows for flexible 
input dimensions and improved computational efficiency.
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Fast RCNN

Ross B. Girshick (ICCV15)

Time:
0.32s/image on a GPU

• ROI Pooling
• Multi-task loss (Clc. + BB Reg.)
• BP through RoI pooling layers
• VOC07 mAP: 58.5à70.0

Fast R-CNN is an object 
detection framework 
introduced by Ross Girshick in 
2015. It improves upon the 
inefficiencies of R-CNN by 
introducing Region of Interest 
(ROI) Pooling and enabling 
shared computation, leading 
to faster and more accurate
object detection.
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Anchors (reference boxes) 

Faster RCNN

Shaoqing Ren et al., (NIPS2015)

Time: 17 fps on a GPU

• Region Proposal Network
• Detection Network
• Sharing Features
• VOC07 mAP: 70.0à78.8

Faster R-CNN is a successor to Fast R-CNN and introduces the Region Proposal Network (RPN) for 
generating region proposals, making the detection pipeline fully end-to-end.



• Runs at 45fps with VOC07 mAP=63.4% and VOC12 mAP=57.9%. 
• A fast version runs at 155fps with VOC07 mAP=52.7%.

You Only Look Once (YOLO)

J. Redmon et al., (CVPR2016)

YOLO treats object detection as a single regression problem, 
predicting both class probabilities and bounding box coordinates in 
one forward pass.
Key Contributions:
v  Introduces a unified framework for object detection, enabling 

real-time performance.
v Processes the entire image in a single forward pass, improving 

efficiency.
v Balances speed and accuracy, making it suitable for real-world 

applications.

Workflow of YOLO

§ Input Image: The input image is divided into an 
     SXS grid (e.g., 7X7).
§ Feature Extraction: A CNN processes the 

image to extract features.
§ Bounding Box Prediction: Each grid cell 

predicts:
        Bounding boxes (coordinates and dimensions).         
        Confidence scores for each bounding box.
§ Classification: Each grid cell predicts class 

probabilities for the objects it contains.
§ Post-Processing: Non-Maximum Suppression 

(NMS) removes duplicate detections and retains 
the most confident predictions.



predict
predict
predict

SSD: Single Shot MultiBox Detector

Wei Liu et al., (ECCV2016)

(a) YOLO (b) SSD

predict

SSD performs object detection in a single forward  pass, making it fast and 
efficient compared to region-based methods like Faster R-CNN.
Key Contributions:
• Uses multi-scale feature maps for detecting objects of different sizes.
• Introduces default (prior) boxes for efficient bounding box predictions.
• Eliminates the need for separate region proposal steps, improving speed.

Workflow of SSD
1. Input Image: The input image is processed 
through a backbone CNN (e.g., VGG16) to extract 
feature maps.
2. Multi-Scale Feature Maps: Feature maps from 
different layers are used to predict objects at 
various scales.
3. Default Boxes: Predefined bounding boxes 
with varying aspect ratios and scales are applied to 
each feature map cell.
4. Predictions: Each default box predicts:
• Class probabilities for classification.
• Bounding box offsets for localization.
5. Post-Processing: Non-Maximum Suppression 
(NMS) removes redundant detections and retains 
the most confident predictions



PASCAL VOC

Detection Datasets

ILSVRC MS-COCO Open Images



Detection Datasets



Semantic Segmentation: The Problem

Paired training data: for each 
training image, each pixel is labeled 
with a semantic category.

Impossible to classify without context
Q: how do we include context?

Q: how do we model this?

Cow

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Classify center pixel
with CNN



U-Net: Motivation
In CNNs, different layers learn different feature levels:

• Lower layers: Learn low-level, fine-grained details 
(e.g., edges, textures)

• Higher layers: Capture high-level, coarse-grained 
semantic features (e.g., shape, structure)

•This hierarchy is ideal for classification tasks but 
introduces limitations for pixel-level tasks like 
segmentation

Challenges in Medical Image Segmentation
•Medical images often suffer from:

• Noise
• Low contrast
• Blurred or unclear boundaries

•Relying only on low-level features results in poor object 
recognition
•Relying only on high-level semantic features leads to 
inaccurate boundary detection

Need for Multi-Level Feature Integration
•Effective segmentation requires a combination of:

• High-level semantic understanding (context)
• Low-level spatial precision (details)

•General CNNs lack explicit mechanisms to combine 
both effectively

Encoder-Decoder Architectures
•Designed to combine high-level and low-level features
•Consist of:

• Encoder: Downsamples and extracts abstract features
• Decoder: Upsamples to recover spatial resolution and 

integrates detail
•Enables pixel-level prediction with semantic awareness



Semantic Segmentation Idea

Design a network with only convolutional layers without downsampling 
operators to make predictions for pixels all at once!

Problem: convolutions at
original image resolution 
will be very expensive ...

Design network as a bunch of convolutional layers, with downsampling and 
upsampling inside the network!

Downsampling:
Pooling, strided
convolution

Upsampling:
Unpooling or strided
transposed convolution



Downsampling and Upsampling Corresponding pairs of
downsampling and
upsampling layers

Common Downsampling types:
• Max pooling: Takes the maximum value in each window
• Average pooling: Computes the average value
• Stochastic pooling: Randomly selects an activation 

based on a probability distribution
• LP-pooling: Generalized pooling that uses the p-norm 

over each region
• Global pooling: Applies pooling over the entire feature 

map to reduce to a single value per channel
•Purpose: (i) Reduce computation; (ii) Increase receptive field; 
(iii) Achieve spatial invariance; (iv) Introduce regularization

Common unpooling strategies:
• Max-unpooling with indices:
• Fixed-position unpooling: inserts values at top-left 

corner of window
• Interpolation-based unpooling: uses nearest-

neighbor or bilinear interpolation to expand feature 
maps 

• Learnable unpooling: introduces parameters to 
learn where and how to upsample

       Often followed by convolutional layers to refine outputs



U-Net: Vanilla Version

Ronneberger, O., Fischer, P., & Brox, T. (2015, May 18). U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv.Org. https://arxiv.org/abs/1505.04597v1

v U-Net is a neat end-
to-end neural 
network with a 
characteristic "U" 
shape

Contracting Path (Encoder):
v  Captures context through repeated 

downsampling blocks
v  Each block includes two 3×3 convolutions 

+ ReLU, followed by 2×2 max pooling
v  Gradually increases the receptive field 

without heavy computation

Expanding Path (Decoder):
v  Upsamples feature maps to 

match input resolution
v  Each block includes one 2×2 

transposed convolution (up-
conv), two 3×3 convolutions + 
ReLUBottleneck:

v Connects encoder and decoder
v Two 3×3 convolutions + ReLU
v Reduces spatial resolution and 

increases depth for high-level 
abstraction

Skip Connections:
Ø Link encoder and decoder layers at the same depth level
Ø Concatenate encoder feature maps with decoder inputs to 

combine detailed and contextual information
Ø Help restore spatial resolution and sharpen boundaries

Final Output:
v A 1×1 convolution maps 

the final feature map to 
the number of target 
classes

v Produces a pixel-level 
classification map (e.g., 
segmentation mask)

https://arxiv.org/abs/1505.04597v1


Contracting Path (Encoder)

v Block 1:
v Input: 572×572×1 (grayscale image)
v Two 3×3 unpadded convolutions + ReLU → 64 channels
v 2×2 max pooling (stride 2) → downsampled to 284×284

v Block 2:
v Two 3×3 convolutions + ReLU → 128 channels
v 2×2 max pooling → 140×140

v Block 3 & Block 4:
v Same as previous blocks with doubled channels (256, 

512)
v Max pooling after each block halves spatial dimensions

v Block 5 (Bottom):
v Two 3×3 convolutions + ReLU → 1024 channels
v First conv in this block included here, second used in 

expanding path for symmetry



Expanding Path (Decoder)
•Block 5:

• Continues from the bottom block with a second 3×3 
convolution + ReLU

• Followed by a 2×2 up-convolution → doubles spatial 
resolution, reduces channels to 512

•Block 4:
• Skip connection: concatenate encoder feature map 

(cropped to match size) → 1024 channels
• Two 3×3 convolutions + ReLU → reduce to 512 channels
• 2×2 up-convolution → upsample and reduce channels to 

256
•Block 3 & Block 2:

• Same as Block 4, with halved channels: 256→128→64
•Block 1 (Final Block):

• After skip connection: 128 channels
• Two 3×3 convolutions + ReLU → reduce to 64 channels
• Final 1×1 convolution → maps to number of classes (e.g., 

2 for binary)
• Followed by activation function (e.g., sigmoid for binary 

classification)



3D U-Net
• Due to the abundance and representation power of volumetric data, most medical image modalities are 

three-dimensional. 3D U-Net was commonly used in Brain tumor segmentation (e.g., BraTS dataset), Lung 
nodule detection, and liver and pancreas segmentation. 

• 3D U-Net is proposed to deal with 3D medical data directly. It replaces all 2D operations with their 3D 
counterparts. The users can annotate some slices in the volume to be segmented. The model then learns 
from these sparse annotations and provides a dense 3D segmentation.

• However, due to the limitation of computational resources, it only includes three down-sampling, which 
cannot effectively extract deep-layer image features, leading to limited segmentation accuracy for 
medical images.

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3D U-Net: Learning Dense Volumetric Segmentation from 
Sparse Annotation (No. arXiv:1606.06650). arXiv. https://doi.org/10.48550/arXiv.1606.06650

https://doi.org/10.48550/arXiv.1606.06650


U-Net in Clinical Image Analysis Pipelines
U-Net plays a central role in clinical image 

         analysis pipelines
         Overview of key stages:

• Input Preparation: Image acquisition, 
normalization, and preprocessing for 
consistent input format

• Architecture Search: Automatic 
selection of the most efficient U-Net 
variant via neural architecture search

• Postprocessing: Refinement of 
segmentation masks (e.g., 
morphological operations)

• Clinical Application: Supports decisions 
such as tumor growth tracking or 
treatment planning

Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2022). Medical Image Segmentation 
Review: The success of U-Net (No. arXiv:2211.14830). arXiv. http://arxiv.org/abs/2211.14830

http://arxiv.org/abs/2211.14830
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Examples: 
• Social networks, citation networks, multi-agent systems
• Knowledge graphs
• Recommendation System
• Protein interaction networks
• Molecules
• Road maps
• Brain networks

Graph-Structured Data

Why Are Graph-structured Data Important?
Graphs capture complex relationships and dependencies between entities:
•Interconnected entities influence each other (e.g., in social networks, a person’s behavior depends on their connections).
•Knowledge is structured in relational forms (e.g., in knowledge graphs, concepts are linked based on meaning and context).
•Biological and medical data exhibit intricate interactions (e.g., protein-protein interaction networks, brain connectivity graphs).
By modeling data as graphs, we can better understand structures, uncover hidden patterns, and improve AI-driven decision-making.

Graph-structured data is a type of data representation where entities (nodes) and 
their relationships (edges) are explicitly modeled as a graph. This structure captures the 
connections between data points, allowing for more effective analysis of relational 
patterns.

Graphs are a general
language for describing 
and analyzing entities with
relations/interactions



Graph-Structured Data is Everywhere

StanfordCS224w



Graph-Structured Data is Everywhere

StanfordCS224w



Graph-Structured Data is Everywhere

StanfordCS224w
https://iit.adelaide.edu.au/news/list/2021/09/16/the-topology-of-e-commerce-governance



Challenges

3

Graph-structured data pose significant challenges due to their irregularity, high 
dimensionality, and computational complexity. The major challenges include:

Ø Scalability and computational inefficiency

Ø Irregular and dynamic nature

Ø Data sparsity and missing values

Ø Complex relationships and non-Euclidean space

Ø Challenges in learning meaningful representations

Ø Privacy, security, and adversarial attacks



• Key Characteristics of Homogeneous Graphs
v Single Node Type: All nodes in the graph belong to the same category.

v Single Edge Type: All edges represent the same kind of relationship between nodes.
v Uniform Structure: The graph follows a consistent connectivity pattern, making it easier to apply traditional 

graph-based algorithms.

• Examples of Homogeneous Graphs
Ø  Social Networks (e.g., Facebook, Twitter, LinkedIn)

• Nodes: Users.  Edges: "Friends" or "Follows" relationships between users.
Ø  Citation Networks (e.g., Google Scholar, ArXiv, PubMed)

• Nodes: Research papers. Edges: "Cites" relationships, where one paper references another.
Ø  Protein Interaction Networks (e.g., Biological Networks)
• Nodes: Proteins. Edges: "Interacts with" relationships, representing biological interactions between proteins. 

Homogeneous Graph



How to build an effective graph?
v Nodes (or vertices) represent the fundamental entities in a graph. They can correspond to different 

objects depending on the problem domain.

v Edges (or links) define relationships or interactions between nodes. Edges can be:
Ø Directed or undirected (e.g., one-way vs. mutual friendships).
Ø Weighted or unweighted (e.g., flight routes with different distances).
Ø Static or dynamic (e.g., evolving relationships over time).

v Choosing the Proper Network Representation. The way we construct a graph determines 
our ability to extract meaningful insights. Different representations can lead to different outcomes.

Ø Cases Where Representation is Unique and Unambiguous
Ø Cases Where Representation is Not Unique 

v How the Choice of Links Affects the Questions You Can Study
Ø The way you define connections (edges) influences the type of insights you can extract.
Ø If you ignore certain relationships, you may miss critical aspects of the data.
Ø If you add unnecessary edges, you might introduce noise and bias in analysis.



Graph Set-up 
• Graph 𝐺	 = 	 (𝑉, 𝐸)	is defined by a set of nodes 𝑉 and a set of edges 𝐸 between these nodes. An edge 

going from node 𝑢	 ∈ 	𝑉	to node 𝑣	 ∈ 	𝑉	as (𝑢, 𝑣) 	 ∈ 	𝐸.

DirectedUndirected



Adjacency Matrix
• A convenient way to represent graphs is through an adjacency matrix 𝐴	 ∈ 	ℝ|%|×|%|.	 We order the 

nodes in the graph so that every node indexes a particular row and column in the adjacency matrix. 



Graphs and Graph Signals
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<latexit sha1_base64="42VCs5+ZRUKpd1Ngg1hLuTFE4wQ=">AAACE3icbVDLSsNAFL3xWesr6tLNYBFEpCRS0I1QFNFlBfuAJpTJdNoOnTyYmQgl5B/c+CtuXCji1o07/8ZJG4q2Hhg495x7mXuPF3EmlWV9GwuLS8srq4W14vrG5ta2ubPbkGEsCK2TkIei5WFJOQtoXTHFaSsSFPsep01veJX5zQcqJAuDezWKqOvjfsB6jGClpY557PhYDQjmyU2KLpCTTOtGeoKmxXXqpB2zZJWtMdA8sXNSghy1jvnldEMS+zRQhGMp27YVKTfBQjHCaVp0YkkjTIa4T9uaBtin0k3GN6XoUCtd1AuFfoFCY/X3RIJ9KUe+pzuzJeWsl4n/ee1Y9c7dhAVRrGhAJh/1Yo5UiLKAUJcJShQfaYKJYHpXRAZYYKJ0jEUdgj178jxpnJbtSrlyVylVL/M4CrAPB3AENpxBFW6hBnUg8AjP8ApvxpPxYrwbH5PWBSOf2YM/MD5/APcSnjs=</latexit>

V = {v1, . . . , vN}

<latexit sha1_base64="eujUti0rgCR0AzuKeTvh8pKTpsA=">AAACCXicbVDLSsNAFJ34rPUVdelmsAguSkmkoBuh6MaVVLAPaEKYTCft0MmDmZtCCd268VfcuFDErX/gzr9x0mahrQcGDufcw9x7/ERwBZb1baysrq1vbJa2yts7u3v75sFhW8WppKxFYxHLrk8UEzxiLeAgWDeRjIS+YB1/dJP7nTGTisfRA0wS5oZkEPGAUwJa8kzshASGlIisPcVX2MnGnl11+jGo6ti7c6Zlz6xYNWsGvEzsglRQgaZnfuk4TUMWARVEqZ5tJeBmRAKngk3LTqpYQuiIDFhP04iETLnZ7JIpPtVKHwex1C8CPFN/JzISKjUJfT2Z760WvVz8z+ulEFy6GY+SFFhE5x8FqcAQ47wW3OeSURATTQiVXO+K6ZBIQkGXl5dgL568TNrnNbteq9/XK43roo4SOkYn6AzZ6AI10C1qohai6BE9o1f0ZjwZL8a78TEfXTGKzBH6A+PzBwdfmUQ=</latexit>

E = {e1, . . . , eM}

<latexit sha1_base64="9YXDJ3L9YWv5SFH6StaxcK+jIjQ=">AAACCXicbVDLSsNAFJ34rPUVdelmsAguSkmkoBuhKIIboYJ9QFPCZHrTDp08mJkIJWTrxl9x40IRt/6BO//GSZuFth4YOJxzD3Pv8WLOpLKsb2NpeWV1bb20Ud7c2t7ZNff22zJKBIUWjXgkuh6RwFkILcUUh24sgAQeh443vsr9zgMIyaLwXk1i6AdkGDKfUaK05JrYCYgaUcLT6wxfYCcF1646g0jJKri3TlZ2zYpVs6bAi8QuSAUVaLrml47TJIBQUU6k7NlWrPopEYpRDlnZSSTEhI7JEHqahiQA2U+nl2T4WCsD7EdCv1Dhqfo7kZJAykng6cl8bznv5eJ/Xi9R/nk/ZWGcKAjp7CM/4VhFOK8FD5gAqvhEE0IF07tiOiKCUKXLy0uw509eJO3Tml2v1e/qlcZlUUcJHaIjdIJsdIYa6AY1UQtR9Iie0St6M56MF+Pd+JiNLhlF5gD9gfH5A7WzmRA=</latexit>

Graph Signal: 

V �!

2

66666666664

f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)
f(8)

3

77777777775

<latexit sha1_base64="tmQfZ7QSxqnO9Uwcdb5eC3rmOJc="></latexit>

f : V ! RN⇥d

<latexit sha1_base64="cff3ehQk+qbrB307iKWNOb0d2ps=">AAACGXicbVDLSsNAFJ3UV62vqEs3g0VwVRIpKK6KblxJFfuAJpbJdNIOTh7M3Cgl5Dfc+CtuXCjiUlf+jZM2C209cOFwzr3ce48XC67Asr6N0sLi0vJKebWytr6xuWVu77RVlEjKWjQSkex6RDHBQ9YCDoJ1Y8lI4AnW8e7Oc79zz6TiUXgD45i5ARmG3OeUgJb6puWfYicgMKJEpO3MkXw4AiJl9DCVPS+9zm7TSwd4wBQeZH2zatWsCfA8sQtSRQWaffPTGUQ0CVgIVBClerYVg5sSCZwKllWcRLGY0DsyZD1NQ6L3uOnkswwfaGWA/UjqCgFP1N8TKQmUGgee7syvVbNeLv7n9RLwT9yUh3ECLKTTRX4iMEQ4jwkPuGQUxFgTQiXXt2I6IpJQ0GFWdAj27MvzpH1Us+u1+lW92jgr4iijPbSPDpGNjlEDXaAmaiGKHtEzekVvxpPxYrwbH9PWklHM7KI/ML5+AKGcoVU=</latexit>
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G = {V, E}

<latexit sha1_base64="42VCs5+ZRUKpd1Ngg1hLuTFE4wQ=">AAACE3icbVDLSsNAFL3xWesr6tLNYBFEpCRS0I1QFNFlBfuAJpTJdNoOnTyYmQgl5B/c+CtuXCji1o07/8ZJG4q2Hhg495x7mXuPF3EmlWV9GwuLS8srq4W14vrG5ta2ubPbkGEsCK2TkIei5WFJOQtoXTHFaSsSFPsep01veJX5zQcqJAuDezWKqOvjfsB6jGClpY557PhYDQjmyU2KLpCTTOtGeoKmxXXqpB2zZJWtMdA8sXNSghy1jvnldEMS+zRQhGMp27YVKTfBQjHCaVp0YkkjTIa4T9uaBtin0k3GN6XoUCtd1AuFfoFCY/X3RIJ9KUe+pzuzJeWsl4n/ee1Y9c7dhAVRrGhAJh/1Yo5UiLKAUJcJShQfaYKJYHpXRAZYYKJ0jEUdgj178jxpnJbtSrlyVylVL/M4CrAPB3AENpxBFW6hBnUg8AjP8ApvxpPxYrwbH5PWBSOf2YM/MD5/APcSnjs=</latexit>

V = {v1, . . . , vN}

<latexit sha1_base64="eujUti0rgCR0AzuKeTvh8pKTpsA=">AAACCXicbVDLSsNAFJ34rPUVdelmsAguSkmkoBuh6MaVVLAPaEKYTCft0MmDmZtCCd268VfcuFDErX/gzr9x0mahrQcGDufcw9x7/ERwBZb1baysrq1vbJa2yts7u3v75sFhW8WppKxFYxHLrk8UEzxiLeAgWDeRjIS+YB1/dJP7nTGTisfRA0wS5oZkEPGAUwJa8kzshASGlIisPcVX2MnGnl11+jGo6ti7c6Zlz6xYNWsGvEzsglRQgaZnfuk4TUMWARVEqZ5tJeBmRAKngk3LTqpYQuiIDFhP04iETLnZ7JIpPtVKHwex1C8CPFN/JzISKjUJfT2Z760WvVz8z+ulEFy6GY+SFFhE5x8FqcAQ47wW3OeSURATTQiVXO+K6ZBIQkGXl5dgL568TNrnNbteq9/XK43roo4SOkYn6AzZ6AI10C1qohai6BE9o1f0ZjwZL8a78TEfXTGKzBH6A+PzBwdfmUQ=</latexit>

E = {e1, . . . , eM}

<latexit sha1_base64="9YXDJ3L9YWv5SFH6StaxcK+jIjQ=">AAACCXicbVDLSsNAFJ34rPUVdelmsAguSkmkoBuhKIIboYJ9QFPCZHrTDp08mJkIJWTrxl9x40IRt/6BO//GSZuFth4YOJxzD3Pv8WLOpLKsb2NpeWV1bb20Ud7c2t7ZNff22zJKBIUWjXgkuh6RwFkILcUUh24sgAQeh443vsr9zgMIyaLwXk1i6AdkGDKfUaK05JrYCYgaUcLT6wxfYCcF1646g0jJKri3TlZ2zYpVs6bAi8QuSAUVaLrml47TJIBQUU6k7NlWrPopEYpRDlnZSSTEhI7JEHqahiQA2U+nl2T4WCsD7EdCv1Dhqfo7kZJAykng6cl8bznv5eJ/Xi9R/nk/ZWGcKAjp7CM/4VhFOK8FD5gAqvhEE0IF07tiOiKCUKXLy0uw509eJO3Tml2v1e/qlcZlUUcJHaIjdIJsdIYa6AY1UQtR9Iie0St6M56MF+Pd+JiNLhlF5gD9gfH5A7WzmRA=</latexit>

Graph Signal: f : V ! RN

<latexit sha1_base64="O0erWbsX4VxEhyHBy30lmJlgLF4=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0V0VRIpKK6KblxJFfuAJpbJdNIOncyEmYlSQj7Bjb/ixoUibl2682+ctF1o64ELh3Pu5d57gphRpR3n2yosLC4trxRXS2vrG5tb9vZOU4lEYtLAggnZDpAijHLS0FQz0o4lQVHASCsYXuR+655IRQW/1aOY+BHqcxpSjLSRuvZheAa9COkBRixtZtCTtD/QSErxMNGDIL3J7q66dtmpOGPAeeJOSRlMUe/aX15P4CQiXGOGlOq4Tqz9FElNMSNZyUsUiREeoj7pGMpRRJSfjh/K4IFRejAU0hTXcKz+nkhRpNQoCkxnfqOa9XLxP6+T6PDUTymPE004niwKEwa1gHk6sEclwZqNDEFYUnMrxAMkEdYmw5IJwZ19eZ40jytutVK9rpZr59M4imAP7IMj4IITUAOXoA4aAINH8AxewZv1ZL1Y79bHpLVgTWd2wR9Ynz/cY50h</latexit>

V �!

2

66666666664

f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)
f(8)

3

77777777775

<latexit sha1_base64="tmQfZ7QSxqnO9Uwcdb5eC3rmOJc=">AAACbHicbVHLbtQwFHVSHiU8OhQWoArJYgSa2YySMtAuK9iwLBIzrTSJRo7nJmPVsSP7BjSKsuIP2fEJbPgGnIcQtFzJOsfnPmwfp6UUFsPwh+fv3bp95+7+veD+g4ePDkaPD5dWV4bDgmupzWXKLEihYIECJVyWBliRSrhIrz60+YsvYKzQ6jPuSkgKliuRCc7QSevRt7hguOVM1suGxlKr3Ih8i8wY/dXtIcNVnEIuVO0ktmtq3gR1Nommrjpu2fEf9mbaOJJN5tMO3vbwroeTHk6nQQxqMwyLu7OS9WgczsIu6E0SDWRMhjhfj77HG82rAhRyyaxdRWGJiRuKgktogriyUDJ+xXJYOapYATapO7Ma+sopG5pp45ZC2ql/d9SssHZXpK6ytcZez7Xi/3KrCrPTpBaqrBAU7w/KKklR09Z5uhEGOMqdI4wb4e5K+ZYZxtH9T+BMiK4/+SZZHs+i+Wz+aT4+ez/YsU+OyEsyIRE5IWfkIzknC8LJT+/Ae+Y99375T/0j/0Vf6ntDzxPyT/ivfwPHybaM</latexit>
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𝑣!

𝑣"

𝑣#

𝑣$
𝑣%

𝑣&
𝑣'

𝑣(

Spectral graph theory. American Mathematical Soc.; 1997.

Matrix Representations of  Graphs



157

𝑣!

𝑣"

𝑣#

𝑣$
𝑣%

𝑣&
𝑣'

𝑣(

0

BBBBBBBBBB@

0 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 1 1 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0

1

CCCCCCCCCCA

<latexit sha1_base64="bYgTG2GftEf70jJFqAylE0Byv4E=">AAAClnicbZFdS8MwFIbT+j2/prsRvCkORW9GKwP1RsQhejnBqbCOkWanWzBNS3IqjrKf5J/xzn9jtnZufpwQePOc85KTkyARXKPrflr2wuLS8srqWml9Y3Nru7yz+6jjVDFosVjE6jmgGgSX0EKOAp4TBTQKBDwFL41x/ukVlOaxfMBhAp2I9iUPOaNoULf87gsI8dgPoM9lFlFU/G3kHnlH7mz5/viYIy8Huci3l4MZcqdgDuWWmWnOUqCp5dvog+xNO/IV7w/wpFuuujV3Es5f4RWiSopodssffi9maQQSmaBatz03wU5GFXImYFTyUw0JZS+0D20jJY1Ad7LJWEfOoSE9J4yV2RKdCZ13ZDTSehgFptK0OdC/c2P4X66dYnjeybhMUgTJ8ovCVDgYO+M/cnpcAUMxNIIyxU2vDhtQRRmanyyZIXi/n/xXPJ7WvHqtfl+vXl0X41gl++SAHBOPnJErckeapEWYVbEurGurYe/Zl/aNfZuX2lbhqZAfYTe/AD7Ys8k=</latexit>

𝑨

Adjacency Matrix

Adjacency Matrix: 𝐴 𝑖, 𝑗 = 1 if 𝑣1 is adjacent to 𝑣2
                                 𝐴 𝑖, 𝑗 = 0, otherwise

Spectral graph theory. American Mathematical Soc.; 1997.
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𝑣!

𝑣"

𝑣#

𝑣$
𝑣%

𝑣&
𝑣'

𝑣(

0

BBBBBBBBBB@

0 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 1 1 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0

1

CCCCCCCCCCA

<latexit sha1_base64="bYgTG2GftEf70jJFqAylE0Byv4E=">AAAClnicbZFdS8MwFIbT+j2/prsRvCkORW9GKwP1RsQhejnBqbCOkWanWzBNS3IqjrKf5J/xzn9jtnZufpwQePOc85KTkyARXKPrflr2wuLS8srqWml9Y3Nru7yz+6jjVDFosVjE6jmgGgSX0EKOAp4TBTQKBDwFL41x/ukVlOaxfMBhAp2I9iUPOaNoULf87gsI8dgPoM9lFlFU/G3kHnlH7mz5/viYIy8Huci3l4MZcqdgDuWWmWnOUqCp5dvog+xNO/IV7w/wpFuuujV3Es5f4RWiSopodssffi9maQQSmaBatz03wU5GFXImYFTyUw0JZS+0D20jJY1Ad7LJWEfOoSE9J4yV2RKdCZ13ZDTSehgFptK0OdC/c2P4X66dYnjeybhMUgTJ8ovCVDgYO+M/cnpcAUMxNIIyxU2vDhtQRRmanyyZIXi/n/xXPJ7WvHqtfl+vXl0X41gl++SAHBOPnJErckeapEWYVbEurGurYe/Zl/aNfZuX2lbhqZAfYTe/AD7Ys8k=</latexit>

0

BBBBBBBBBB@

1 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

<latexit sha1_base64="zVK+q0i5UgY+q/vjKcGgl4PwH+M="></latexit>

𝑨𝑫

−

Adjacency MatrixDegree Matrix

Degree Matrix:  

Adjacency Matrix: 𝐴 𝑖, 𝑗 = 1 if 𝑣1 is adjacent to 𝑣2
                                 𝐴 𝑖, 𝑗 = 0, otherwise

D = diag(degree(v1), . . . , degree(vN ))

<latexit sha1_base64="2C5cGQCtppY+ODZyDdO4Cbe5ip8=">AAACHnicbVDLSgNBEJyNrxhfUY9eBoOQgIRdiehFCOrBk0QwGkhCmJ3tjYOzD2Z6xbDkS7z4K148KCJ40r9xkiziq6ChqOqe6S43lkKjbX9Yuanpmdm5/HxhYXFpeaW4unaho0RxaPJIRqrlMg1ShNBEgRJasQIWuBIu3eujkX95A0qLKDzHQQzdgPVD4QvO0Ei94m7acX16PKQHtINwi6knWH9Y9qCvAMo3Paey3fEi1Nv0SzqtVHrFkl21x6B/iZOREsnQ6BXfzCs8CSBELpnWbceOsZsyhYJLGBY6iYaY8WvWh7ahIQtAd9PxeUO6ZRSP+pEyFSIdq98nUhZoPQhc0xkwvNK/vZH4n9dO0N/vpiKME4SQTz7yE0kxoqOsqCcUcJQDQxhXwuxK+RVTjKNJtGBCcH6f/Jdc7FSdWrV2VivVD7M48mSDbJIyccgeqZMT0iBNwskdeSBP5Nm6tx6tF+t10pqzspl18gPW+yepqaDx</latexit>

Spectral graph theory. American Mathematical Soc.; 1997.
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𝑣!

𝑣"

𝑣#

𝑣$
𝑣%

𝑣&
𝑣'

𝑣(

0

BBBBBBBBBB@

0 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 1 1 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0

1

CCCCCCCCCCA

<latexit sha1_base64="bYgTG2GftEf70jJFqAylE0Byv4E="></latexit>

0

BBBBBBBBBB@

1 �1 0 0 0 0 0 0
�1 3 �1 0 0 �1 0 0
0 �1 4 �1 0 �1 �1 0
0 0 �1 2 �1 0 0 0
0 0 0 �1 2 �1 0 0
0 �1 �1 0 �1 4 �1 0
0 0 �1 0 0 �1 3 �1
0 0 0 0 0 0 �1 1

1

CCCCCCCCCCA

<latexit sha1_base64="op2Zm3X6paBh2UB3V8RAzpbqAR4=">AAACq3icbVFNbxMxEPUuhZbwFeiRi9WIKhwS7ZaV2mMFl55QEaSJGkeR15lNrHq9K3u2Ilrlz/ETuPFv8H6kkLZjWfPmjd94PI5zJS0GwR/Pf7L39Nn+wfPOi5evXr/pvn13ZbPCCBiJTGVmEnMLSmoYoUQFk9wAT2MF4/jmS5Uf34KxMtM/cJ3DLOVLLRMpODpq3v3FFCTYZzEspS5Tjkb+3ITHg/A4+LcYc/GnLdk4xmoUNeGgkVRkHZzcVWioHbKVboXRrrR11XVb7V2FkIFebLtkRi5X+JHOu71gGNRGH4KwBT3S2uW8+5stMlGkoFEobu00DHKcldygFAo2HVZYyLm44UuYOqh5CnZW1rPe0A+OWdAkM25rpDX7v6LkqbXrNHYnXZ8rez9XkY/lpgUmZ7NS6rxA0KK5KCkUxYxWH0cX0oBAtXaACyNdr1SsuOEC3fd23BDC+09+CK5OhmE0jL5FvfPP7TgOyHtyRPokJKfknFyQSzIiwut7X72xN/EH/nf/2mfNUd9rNYdkx3z4Cy3zuFM=</latexit>

0

BBBBBBBBBB@

1 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

<latexit sha1_base64="zVK+q0i5UgY+q/vjKcGgl4PwH+M="></latexit>

𝑨𝑫 𝑳

− =

Adjacency MatrixDegree Matrix Laplacian Matrix

Degree Matrix:  

Adjacency Matrix: 𝐴 𝑖, 𝑗 = 1 if 𝑣1 is adjacent to 𝑣2
                                 𝐴 𝑖, 𝑗 = 0, otherwise

D = diag(degree(v1), . . . , degree(vN ))

<latexit sha1_base64="2C5cGQCtppY+ODZyDdO4Cbe5ip8=">AAACHnicbVDLSgNBEJyNrxhfUY9eBoOQgIRdiehFCOrBk0QwGkhCmJ3tjYOzD2Z6xbDkS7z4K148KCJ40r9xkiziq6ChqOqe6S43lkKjbX9Yuanpmdm5/HxhYXFpeaW4unaho0RxaPJIRqrlMg1ShNBEgRJasQIWuBIu3eujkX95A0qLKDzHQQzdgPVD4QvO0Ei94m7acX16PKQHtINwi6knWH9Y9qCvAMo3Paey3fEi1Nv0SzqtVHrFkl21x6B/iZOREsnQ6BXfzCs8CSBELpnWbceOsZsyhYJLGBY6iYaY8WvWh7ahIQtAd9PxeUO6ZRSP+pEyFSIdq98nUhZoPQhc0xkwvNK/vZH4n9dO0N/vpiKME4SQTz7yE0kxoqOsqCcUcJQDQxhXwuxK+RVTjKNJtGBCcH6f/Jdc7FSdWrV2VivVD7M48mSDbJIyccgeqZMT0iBNwskdeSBP5Nm6tx6tF+t10pqzspl18gPW+yepqaDx</latexit>

Spectral graph theory. American Mathematical Soc.; 1997.
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How to Deal with Multi-relation?



Heterogeneous Graph
Key Characteristics of Heterogeneous Graphs
v Multiple Node Types: Nodes represent different entities, such as users, items, papers, or institutions.
v Multiple Edge Types: Different relationships exist between nodes, such as "authored by," "cites"
v Rich Semantic Information: The diverse relationships provide deeper insights than homogeneous graphs.

Examples of Heterogeneous Graphs
Ø Academic Citation Network
Nodes: Papers, authors, journals. Edges: "Cites" (paper-to-paper), "Authored by" (paper-to-author). 
Ø  Knowledge Graphs (e.g., Google Knowledge Graph, Wikidata)
Nodes: People, locations, organizations, events.
Edges: "Works at" (person-to-organization), "Located in" (place-to-country).

Why Are Heterogeneous Graphs Important?
q More expressive than homogeneous graphs, capturing richer information.
q Essential for real-world applications in social networks, recommendation systems, and knowledge graphs.
q Enhance AI models by incorporating multi-type relationships in representation learning.



Node, Edge, and Global Features
Node features represent characteristics or attributes of individual nodes for downstream tasks like node classification, 
clustering, and link prediction.
Common Types of Node Features
v Categorical Features: Node types (e.g., "user" or "product" in a recommendation system).
v Numerical Features: Values like age, price, or degree centrality.
v Textual Features: Descriptions, reviews, or labels in textual form.
v Vectorized Embeddings: Learned representations from NLP models or pre-trained embeddings. 

Edge features define relationships or interactions between nodes for link prediction and edge classification.
Common Types of Edge Features
Ø Weight: The strength or importance of a connection (e.g., frequency of interactions).
Ø Type: The kind of relationship (e.g., friendship, purchase, citation).
Ø Timestamp: When the connection was established (useful for dynamic graphs).
Ø Directionality: Whether the edge is directed or undirected.

Graph-Level Features: graphs have global properties or features that apply to the entire network.
Examples include:

Ø Graph Density (How connected is the graph?).
Ø Average Clustering Coefficient (Tendency of nodes to form clusters).
Ø Graph Size (Number of nodes and edges).



Different Types of  Task

Graph-based machine learning involves multiple 
tasks categorized by the focus of analysis. The 
main categories of tasks include:
▶ Node-Level Tasks: Predicting properties of 
individual nodes.
▶ Edge-Level Tasks: Inferring relationships 
between node pairs.
▶ Community-Level Tasks: Detecting and 
analyzing groups of closely connected nodes.
▶ Graph-Level Tasks: Understanding global 
graph properties.



Jie Zhou, et al. (2020). AI Open

GNN Designs
Step Task

1. Define Graph Nodes, edges, features

2. Feature Engineering Define node and edge features

3. Message Passing Select aggregation method

4. Choose Architecture GCN, GAT, GraphSAGE, etc.

5. Loss Function Supervised (cross-entropy), unsupervised 
(contrastive)

6. Training Use mini-batching and optimizers

7. Evaluation Classification, link prediction, graph-level 
tasks

8. Deployment Optimize for inference speed

📌 Summary



Key Modules in Graph Neural Networks
GNNs process graph-structured data by propagating and aggregating information across nodes and edges.
Three key modules in GNNs:
v Sampling Module
Aims to reduce the size of each node’s neighborhood, especially for large graphs, preventing the neighbor explosion 
problem.
v Propagation Module
Ø     Performs message passing via convolutions (e.g., GCNs) or recurrent operators (e.g., GRUs) on node features.
Ø     Uses skip connections to mitigate over-smoothing and incorporate historical representations.
v Pooling Module
Aggregates node-level embeddings into subgraph or graph-level representations, extracting higher-level features needed for 
tasks like graph classification.



The Sampling Module
• Efficient Graph Processing via Sampling
• ▶ Direct propagation on large graphs is computationally infeasible.
• ▶ The Sampling Module reduces cost by selecting subsets of nodes or edges.
• Key Challenge: 
v Neighbor Explosion: The number of neighbors grows  exponentially with depth. GNNs aggregate messages from each node’s neighbors in the 

previous layer.  Tracking back multiple layers can exponentially increase the neighbor set. Storing and processing all neighborhood information 
becomes intractable for large graphs.

v  Computational Efficiency: Full neighbor aggregation is  impractical for large graphs.
v  Memory Constraints: Storing all neighborhood information  for each node is infeasible.
v  Scalability: Enables GNNs to handle large graphs effectively. 
• Common sampling techniques: Node Sampling; Layer Sampling; Subgraph Sampling. 

Impact on Permutation Properties:
▶ Node-level predictions remain unchanged under node reordering.
▶ Node representations transform consistently when input ordering changes.
Impact on Task Performance:
▶ Preserve downstream performance in classification, link prediction, etc.
▶ Sampling strategies must capture essential structural information despite reduced neighborhood size.
▶ Aim for low variance while avoiding high computational costs.



• Node Sampling: Selects a subset of nodes and their immediate neighbors.

• ▶ Reduces computational complexity by limiting the number of participating nodes.
• ▶ Often used in algorithms like GraphSAGE.

Layer Sampling: It selects a fixed number of neighbors per layer.
▶ Controls exponential growth by restricting the number of aggregated neighbors.
▶ Balances efficiency and performance in large-scale graphs.

Subgraph Sampling: Extracts a subgraph based on connectivity patterns.
▶ Useful for mini-batch training by working on graph partitions.
▶ Preserves graph topology while reducing computation.

Common Sampling Methods

Jie Zhou, et al. (2020). AI Open



The Propagation Module
• Facilitates message passing between nodes to integrate structural and feature information.

• Key operations:
v Convolution Operators: Aggregate neighbor information. 
v Recurrent Operators: Maintain temporal dependencies in dynamic graphs (e.g., Graph GRU, Graph LSTM).
v Skip Connections: Mitigate over-smoothing by retaining historical representations.

Jie Zhou, et al. (2020). AI Open



• Permutation Equivariance (PE): Node embeddings maintain
• structure when node order changes.
•  Permutation Invariance (PI): Graph-level representations 

remain
• unchanged under different node orderings.

Permutation Equivariance and Invariance

Key Observation:
▶ A graph does not have a fixed, canonical ordering of its nodes.
▶ Any permutation of node indices can still represent the same 
underlying graph.
Implication:
▶ The labeling or numbering of nodes is arbitrary.
▶ Reorder node IDs without changing the graph’s  structure.



Definition of  PE and PI

P



• Designing GNN Layers must preserve or respect permutations at each update step.  PI and PE are crucial for robust GNN 
models that handle node reorderings gracefully.

v Sampling + Approximation: Avoid violating permutation properties in large-scale graphs (random sampling, etc.).
v Pooling Mechanisms: Summation/average pooling ensures invariant graph-level outputs.
v Challenges: Hierarchical pooling, dynamic graphs, and advanced aggregator designs can complicate these properties.

Designing GNN 

GNN consist of multiple  permutation equivariant / invariant functions. A general GNN framework



The Pooling Module
• Extracting High-Level Representations
v Generates compact representations of subgraphs or entire  graphs.
v  Essential for tasks like graph classification and hierarchical learning.
• Key pooling techniques:
v Node Dropout Pooling: Drops less informative nodes (e.g.,  Top-K pooling).
v  Cluster-based Pooling: Merges similar nodes into clusters (e.g., DiffPool).
v  Attention-based Pooling: Assigns weights to nodes based on learned importance.
v  Maintaining Permutation Invariance: Ensures that graph representations remain unchanged.
• Two main categories:
v  Direct (Readout) Pooling Modules: Aggregate node embeddings into a single graph-level embedding in one step. 
v  Hierarchical Pooling Modules: Iteratively coarsen (or cluster) the graph, creating a hierarchy of smaller graphs or subgraphs.

Jie Zhou, et al. (2020). AI Open



Training Approaches
v Supervised Learning: Uses labeled data to train GNNs for  node/graph classification.
v Semi-supervised Learning: Uses both labeled and unlabeled  data to improve training.
v Unsupervised Learning: Uses self-supervision (e.g., contrastive learning) to learn node embeddings.

GNN Training Framework

Prediction Tasks in GNNs
v Node-focused: Predicts node labels (e.g., node  classification) using an MLP or softmax layer.
v Edge-focused: Predicts relationships between nodes (e.g.,  link prediction) using similarity functions or MLPs.
v Graph-focused: Generates graph embeddings using pooling  layers for tasks like graph classification.

Types of Nodes in GNN Training
v Training Nodes: Used in loss computation.
v Transductive Test Nodes: Processed in GNN but not
included in loss computation.
v Inductive Test Nodes: Not included in GNN 

computation or loss function.

Example



GNN Training Pipeline
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Original GNN
(Scarselli et al. 
        2005)

GCN
(Kipf & Welling. 
   ICLR 2017)

GAT
(Veličković et al. 
 ICLR 2018)

GraphSage
(Hamilton et al. 
 NIPS 2017)

MPNN
(Glimer et al. 
 ICML 2017)

Spectral 
Graph CNN
(Bruna et al. 
  ICLR 2014)

ChebNet 
(Defferard et al. 
  NIPS 2016)…

Spatial Based Filtering Spectral Based Filtering

Spectral and Spatial GNN Framework



Spatial GNN Framework 
Key Concepts:
v  Spatial approaches define convolutions directly on the graph using graph topology.
v  Unlike spectral methods, these approaches operate in the  node domain without eigen-decomposition.
v  The challenge lies in handling variable neighborhood sizes and preserving local invariance.

General Spatial Convolution:



Neural Message Passing

The defining feature of a GNN is that it uses a form of neural 
message passing.

During each iteration 𝑘, a hidden embedding ℎ$
(&) for node 𝑢 is 

updated according to the information aggregated from its 
neighborhood 𝑵(𝒖), which can be expressed as follows:
ℎ$
(&()) = 𝑢𝑝𝑑𝑎𝑡𝑒 & ℎ$

& , 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 & { ℎ*
& , ∀𝑣 ∈ 𝑁 𝑢 }

We often denote 𝑚+($) = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 & {	ℎ*
& , ∀𝑣 ∈ 𝑁 𝑢 }  

as the “message” aggregated from neighborhood. The initial 
embeddings at 𝑘 = 0 are set to the input features for all nodes, 
i.e., ℎ$

(,) = 𝑥$. After running 𝐾 iterations of the GNN message 
passing, we can use the output of the final layer to define the 
embeddings for each node, i.e., 𝑧$ = ℎ$

(-), ∀𝑢 ∈ 𝑉.



Intuition Behind Message-Passing Framework
v The core idea of message passing is simple:

Ø At each iteration, every node aggregates information from its 1-hop neighbors.
Ø As iterations progress, nodes encode information from progressively farther regions of the graph.

v This allows nodes to capture both local and global structures over time.

What Do Node Embeddings Encode?
Node embeddings contain two main types of information:
• Structural Information: Local connectivity patterns; Higher-

order graph structures; the importance of a node based on its 
graph position (e.g., centrality measures).

• Feature Information: Numerical attributes (e.g., temperature, 
population density in spatial graphs); Categorical attributes 
(e.g., user preferences in recommendation systems); Learned 
representations from deep neural networks.

Neural Message Passing: Intuition

Why is Message Passing Powerful?
v Combines local and global information efficiently.
v Enables deep learning models to capture rich relational patterns.
v Supports various tasks like node classification, link prediction, and graph generation.



The basic GNN message passing is defined in node-level:

ℎ'
()) = 𝜎 𝑊+,-.

) ℎ/
)01 +𝑊2,345

) 3
6∈8 /

ℎ6
)01 + 𝑏 )

where 𝑊./01 ,𝑊2/345  are trainable parameter and 𝜎 denotes an elementwise non-linearity such as ReLU. Alternatively, it can 
also be succinctly defined in graph-level:

𝐻(") = 𝜎(𝐻 $%& 𝑊'()*
$ + 𝐴𝐻 $%& 𝑊+(,-.

$ )

GNN: Basic Form

The basic GNN message passing can be simplified by omitting the explicit update step:

ℎ/
($0&) = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 {	ℎ1

$ , ∀𝑣 ∈ 𝑁 𝑢 ∪ {𝑢}}

where now the aggregation is also taken over the node 𝑢 itself. Adding self-loops is equivalent to sharing parameters 
between self and neighbor transformations. 

The self-loop GNN approach balances simplicity and efficiency but has some limitations. Self-loops make it harder to 
differentiate between node and neighbor information. Blurs the distinction between structural and feature information

• 



Permutation Invariant and Equivariant



Neighborhood Normalization
A basic approach is summing neighbor embeddings, but summing 
neighbor embeddings can create large magnitude differences. Nodes 
with significantly different degrees may lead to instability and 
optimization challenges. 

ℎ$
(&()) = 𝑢𝑝𝑑𝑎𝑡𝑒 & ℎ$

& , 𝑚 𝑁 𝑢
Example: A node with 100× more neighbors than another will have 
drastically different embedding scales. Leads to numerical instability 
and difficulties in optimization.

A straightforward solution is degree-based normalization:

One solution to this problem is to normalize based upon the degrees of 
the nodes involved, which is called symmetric normalization: 

𝑚+($) = @
*∈+($)

ℎ*
|𝑁 𝑢 × 𝑁 𝑣

Graph convolutional networks (GCNs)



Generalized Message Passing
As the last attempt to generalize the basic neural message passing framework, now we extend the approach beyond the node 
level, leveraging edge and graph-level information at each stage.

One more generalized message passing approach can be formulized according to the following equations:
ℎ $,*
(&) = 𝑢𝑝𝑑𝑎𝑡𝑒/84/ ℎ $,*

&9) , ℎ$
&9) , ℎ*

&9) , ℎ:
&9)

𝑚+($) = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒2;8/ {ℎ $,*
& , ∀𝑣 ∈ 𝑁 𝑢 }

ℎ$
(&) = 𝑢𝑝𝑑𝑎𝑡𝑒2;8/ ℎ$

&9) , 𝑚+ $ , ℎ:
&9)

ℎ:
(&) = 𝑢𝑝𝑑𝑎𝑡𝑒4<=>5(ℎ:

&9) , {ℎ$
& , ∀𝑢 ∈ 𝑉}, {ℎ $,*

& , ∀ 𝑢, 𝑣 ∈ 𝐸})
The important innovation in this framework is that we generate hidden embeddings not only for each node ℎ*

(&), but also 
ℎ $,*
(&)  for each edge in the graph as well as an embedding ℎ:

(&) that corresponds to the entire graph. This allows the message 
passing model to easily integrate edge and graph-level features and have enhanced performances compared to a standard 
basic GNN. Generating embeddings for edges and the entire graph also makes it trivial to define loss functions based on 
the graph or edge-level classification tasks.
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The Universal Approximation Theorems



Universal Approximation Theorem



Statistical Theory of  Deep Learning

1
8
6

Approximation theory viewpoint

Recently, a large collection of works bridge approximation 
theory of neural network models with empirical processes.

Applications: Fast convergence rates of excess risks in 
regression and classification tasks.

Perspectives: Measuring complexities of neural networks 
for function approximations.

Scaling Parameters: Network width, depth, and active 
parameters should scale with sample size, data dimension, 
and function smoothness index.

Assumptions:
Ø Assumes global minimizers of loss functions are 

obtainable.
Ø Focuses on statistical properties without optimization 

concerns.
Ø Recognizes non-convexity of loss functions due to non-

linear activation functions.

Training Dynamics Viewpoint
                                                                                  
Understanding non-convex loss functions for neural network 
models is crucial. Key implications for generalization capabilities.
Key Empirical Findings: Overparameterized neural networks 
trained by stochastic gradient descent can fit noisy data or 
random noise perfectly but still generalize well.

Overparameterization Insights:
• The dynamics of deep neural networks with large enough 

width, trained via gradient descent (GD) in ℓ2-loss, behave 
similarly to those of functions in reproducing kernel Hilbert 
spaces (RKHS),where the kernel is associated with a specific 
network architecture. 

• In the Mean-Field (MF) regime, the network parameters have 
the flexibility to deviate significantly from their initial values, 
even though it necessitates an infinite width.

• Comprehensive understanding of weight initializations and 
learning rate scalings in gradient-based methods.



Deep learning theory

~ p(x)p(y|x)Data

Model

Assumption

Ideal 

Estimate

The Risk Error

Approx Error

Complexity



Functional Equivalence can reduce 
stochastic and optimization errors



Deep learning theory
• Much of the current theoretical understanding is 

counterintuitive and falls short of explaining why deep 
learning or reinforcement learning methods perform 
effectively in real-world scenarios. There is a big gap between 
popular deep learning algorithms and current theoretical 
results. 

• Many deep learning (DL) theoretical studies primarily focus 
on fully connected neural networks (FNN) within 
nonparametric settings, while making unrealistic 
assumptions.

• Key breakthroughs in algorithmic modeling often lack a solid 
mathematical foundation due to the absence of powerful tools 
in such complex scenarios. 

• Furthermore, existing methodologies, such as traditional  
harmonic analysis and empirical process theory, are 
insufficient for addressing heterogeneous object structures 
(e.g., Lie group/algebra) commonly encountered in computer 
vision (CV) and natural language processing (NLP). 

1
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v Expressivity: What graph structures can a GNN distinguish?
– Traditional results relate GNNs to the 1-WL test, but finer geometric 
notions are needed.
v Approximation: Under what conditions can GNNs
approximate continuous, permutation-invariant functions?
– Universal approximation results require a careful
treatment of the topology of graph space.
v  Generalization: How well do GNNs perform on unseen
graphs?
– Existing VC-dimension based bounds are loose and do not
fully capture the influence of architectural choices and graph
structure.

Theoretical Properties

Morris, Christopher, Fabrizio Frasca, Nadav Dym, Haggai Maron, Ismail Ilkan Ceylan, Ron Levie, Derek Lim, Michael M. Bronstein, Martin Grohe, and Stefanie Jegelka. 
"Position: Future Directions in the Theory of Graph Machine Learning." In Forty-first International Conference on Machine Learning.

Future Directions
v Develop fine-grained expressivity results that quantify not only if two graphs are distinguishable, but how similar they are.
v Derive uniform approximation bounds for GNNs using a refined topology on graph space.
v Establish tighter generalization bounds that incorporate architectural choices and graph geometry.
v Explore the interplay between expressivity, optimization, and generalization to inform the design of more robust GNN 

architectures.



Deepset

de Finetti’s theorem states that any exchangeable model can be 
factored as

For Exponential Family with Conjugate Priors:



PINE

Then, PINE provides specific parameters for ℎ(·) and 𝑔 · , which can be trained as follows: 

which requires ℎ(·) and 𝑔(·) to ensure permutation invariant : 

then the PINE framework provides a

Core Representation Theorem as



Accuracy (%) of multi-class classification in homogeneous and heterogeneous graphs

Evaluation
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