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Conditional Distributional Learning: What and Why? 

Objective: Estimate the full conditional distribution P(Y | X = x),  not just the mean.

Motivations.
v Risk Management: Value-at-Risk and Conditional VaR quantify tail losses.
v Decision Support: Design quantile-based policies (e.g., alarm thresholds).
v Uncertainty Quantification: Build prediction intervals with guaranteed coverage.

Benefits: Captures heteroskedasticity, multimodality, tail behavior, and complex noise structures.

Applications: 
Ø Finance: Tail risk (VaR), portfolio optimization under distributional forecasts.
Ø Healthcare: Personalized survival distributions, disease progression quantiles.
Ø Engineering: Reliability analysis, failure time distributions, safety thresholds.
Ø Ride-Sharing Platforms: Supply and demand, matching, dispatching, price, and subsidies.  



Challenges 
v Quantile Crossing: Enforce monotonicity 

across quantiles.
v Complexity: Reduce complexity in high-

dimensional X via  embeddings or sparsity.
v Scalability: Efficiently fit many quantiles or 

large flows on big data.
v Calibration: Validate predictive intervals 

(coverage, sharpness) on  held-out data.

Computational Challenges 
Major Approaches
Ø Quantile Regression:              Techniques: linear, spline-based, 

deep networks with non-crossing constraints.
Ø Distribution Regression: Model the conditional CDF via classification or monotonic splines.
Ø Conditional Density Estimation: Mixture density networks & normalizing flows for flexible 

parametric/nonparametric densities.
Ø Bayesian Nonparametrics: GP conditional density models and Dirichlet process mixtures for 

adaptive tail modeling.
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Question of  Interest

How to establish the theoretical properties of our Non-crossing Quantile 
Network from classical non-parametric quantile regression to distributional 
reinforcement learning (RL)? 

Shen, G., Dai, R., Wu, G., Luo, S., Shi, C., and Zhu, H.. (2025). Deep Distributional 
Learning with Non-crossing Quantile Network. https://arxiv.org/abs/2504.08215



Background and Problem Formulation

Ø Quantile Regression

Ø Distributional learning:

•  Let             be a non‐decreasing 
sequence of  K quantile levels. 

• To estimate                                   the 
corresponding conditional quantile functions 

❓Longstanding Crossing Quantiles Problem
Fig. 1. A demonstration of quantile crossing on a simulated dataset. The
estimated quantile curves at τ = 0.1, 0.2, . . . , 0.9 and the observations
are depicted. The left panel presents the estimates from the deep quantile
regression without any constraint and there appear crossings. The right
figure presents our proposed quantile estimations with non-crossing
constraints, and there is no crossing.



Non-Crossing Quantile Networks

1. One-Step: our estimation of the quantile neural network is implemented in one-step 
without multiple iterative learning algorithms 

2. Non-crossing: our quantile neural network can guarantee instead of encourage the 
estimated quantile curves are non-crossing

3. Theory and Optimal Rate: our quantile neural network is supported by learning theory 
and achieves minimax optimal rate of convergence for non-parametric estimation

4. Low-dimensional Result: our quantile neural network can adapt to low-dimensional 
structures of data to achieve faster convergence rate.



Non-Crossing Quantile Networks

Fig. 2. A graphical illustration of the Non-Crossing
Quantile Network. The“Mean Net” aims to learn the
average of all quantiles, and the“Gaps Net” aims to
learn the differences between adjacent quantiles.

Ø Mean network:

Ø Gaps network:

• Pre-activated Gaps                                can 
take negative values

• Apply                                      to get non-
negative gaps           where 

Ø Final Output:

• Verifies: Mean 

    Gaps



Non-Crossing Quantile Networks
Ø We use the figures to show how to formulate non-crossing estimation of quantiles.

• Output of a neural network: Pre-activated Gaps

• Apply the activation function

• Calculate the cumsum for non-crossing quantiles.

• Center the outputs

Fig. 3. How to formulate non-crossing estimation of quantiles



Training of  NQ Networks
Ø Implement NQ network as a feedforward 

ReLU network 

Ø Mean:

 first output coordinate

Ø Raw Gaps scores:

 remaining K coordinates

Ø Class of NQ networks:

• Width      : maximum number of neurons in the 
hidden layers 

• Depth      : number of hidden layers

• Size     : total number of parameters (weights 
and biases)

• Number of Neurons

• Bound    : for each entry of NC network output

Ø Empirical risk for a NQ network f:

 

Ø  Empirical risk Minimizer (ERM):

Ø  Risk Minimizer (Target, ground truth):

ReLU-activated feedforward neural network



Learning Guarantees
📌Target: Excess risk 

🔹 Reason:

      Positivity: Since                         for any estimator f.
      Self-calibration:          towards 0 implies      towards
 

💡Error Decomposition

   Variance (or Stochastic error):

   Bias (or Approximation error):
Fig. 4. An error decomposition of 
empirical risk minimization problems



Assumptions
Assumption 1: Smooth Target quantiles

Assumption 2: Local Quadratic Bound of The Excess Risk



Main Results
Theorem 1 (Non-Asymptotic Upper Bound)

Ø Stochastic Error:

• Linear in sample size N

• Square faster to those derived from 
standard concentration inequalities 
(Takeuchi et al., 2006;Sangnier et al., 2016; Mohri et al., 
2018; Padilla et al., 2022; Shen et al., 2024)

Ø Approximation Error:

• Differences from traditional results 
on quantile and robust regression 
(Lederer, 2020; Padilla et al., 2022; Shen et al., 2024)

• Bias is proportional to 𝐾!, number 
of quantile curves being estimated.

• Error term exp(−2B) emerges due to 
used truncation technique to manage 
the unbounded preimage associated 
with ELU activation. Negligible if B 
increases appropriately



Main Results
Trade-off between Stochastic Error and approximation Error Ø Stochastic Error:

• Increasing in network size (depth, 
width and number of neurons)

• Decreasing in sample size N

Ø Approximation Error:

• Decreasing in network size (depth, 
width and number of neurons)

•  Decreasing in the smoothness 𝛽	of 
the target quantiles 𝑄"

• Increasing in input dimension 𝑑#

Ø Choose Proper Width and Depth:

• With respect to N, 𝛽, 𝑑#
• To optimize convergence rates

Fig. 5. between Stochastic Error and approximation Error



Main Results
Corollary 1 (Convergence Rate)

Ø Minimax optimal Rate: (up to logarithms) for nonparametric regression (Stone, 1982)

Ø Network Architecture:

• Choice of U = 1 and M = 𝑁$ for NQ network architecture is for parameter efficiency rather than as a strict requirement as 
network size scales faster with increasing width than with depth (𝑆 ≈ 𝐷𝑊!). 

• Various network architectures, including those with varying widths and depths, can achieve the optimal rate as long as the 
total number of parameters in the network scales properly with the sample size.



Main Results

📌Curse of Dimensionality

🔹 In scenarios common to many machine learning tasks, where the input 
dimension 𝑑!	is large, the convergence rate of the NQ network estimator 
slows markedly. 
🔹Such a slow convergence rate needs a significantly larger sample size to 
achieve the desired theoretical accuracy, often proving impractical in real-
world settings.      

Under self-calibration conditions (Padilla et al., 2022)



Main Results
Assumption 3: Low-dimensional Support of Data (Manifold Hypothesis)

Fig. 6. An example of data with low-dimensional support.



Main Results

📌NQ Networks Mitigate the Curse of Dimensionality
🔹 The convergence rate adapts to the intrinsic dimension 𝑑∗	 of the data, which can 
be significantly faster especially when 𝑑∗ ≪ 𝑑#	

🔹The NQ networks can mitigate the curse of dimensionality

Corollary 2 (Improved Convergence Rate)



Applications to Deep Reinforcement Learning
📌Markov decision process (MDP)
🔹

🔹 

🔹

🔹

🔹

💡Problem definition Fig. 7. An Atari example to show how the crossing issue 
may affect the exploration efficiency.

We want to estimate the distribution of 𝑍& as well as 
get an optimal one 𝑍&∗ in the sense that [𝐸[𝑍&∗] ≥
𝐸𝑍&] for any π.



Applications to Deep Reinforcement Learning
📌Distributional Bellman 

optimality equation

 

🔹Quantile regression to represent the 
entire distribution of Z(s, a)
🔹NQ Network is iteratively trained to 
solve Bellman optimality equation
🔹In the m-th iteration, update NQ 
network using newly generated data

🔹Modify the original NQ networks 
for the value distribution estimation



Assumptions
Assumption 4: Unbounded Reward with 1st+ moment

Assumption 5: Smooth Target Function

Assumption 6: Self-Calibration

📌Relaxation over Existing studies

🔹We do not require the data to be 
i.i.d. like the existing literature (see e.g., 
Chen and Jiang, 2019; Fan et al., 2020; Li et al., 2021)

as it is often violated in MDPs due to 
the temporal dependence between the 
observations(Hao et al., 2021).

🔹Nor do we require stationarity, 
ergodicity, or mixing conditions (see e.g., 
Shi et al., 2022; Ramprasad et al., 2023)

🔹We only requires the reward 
function to have bounded absolute 
moments of order p > 1, no matter 
how closely p approaches 1. unlike 
those bounded (see e.g., Chen and Jiang, 2019; Fan et 

al., 2020;Shi et al., 2022; Ramprasad et al., 2023) or sub-
Gaussian (see e.g., Rowland et al., 2023).



Theoretical Results

🔹The expected cumulative reward
🔹Approximation error occurs since we use the average of K quantiles to approximate the mean. 
🔹Algorithmic error converges to zero at a linear rate with respect to the number of fitted iterations M

🔹Estimation error intrinsically relates to distributional learning with quantile regression using NQ network.
🔹Estimation error dominates when iterations M and number of quantiles K are large, with rate 



Real-Data Experiments
📌Evaluation on Atari 2600
🔹On six selected Atari game 
environments
🔹To learn an optimal policy as a 
function of the snapshots of the 
game interface 
🔹Compare NQ-Net against NC-
QR-DQN (Zhou et al., 2020) 
utilizing the same image-
embedding network architecture 
and downstream networks with 
similar scales.
🔹Specifically, we employ ReLU 
activation for the “Gaps net” in our 
model, denoted by NQ-Net*. 

Fig. 8. Testing scores for NQ-Net* and NC-QR-DQN along the 
training process.



Real-Data Experiments
📌Evaluation on Atari 2600
🔹On six selected Atari game 
environments 
🔹Compare NQ-Net against NC-QR-
DQN (Zhou et al., 2020) utilizing the 
same image-embedding network 
architecture and downstream networks 
with similar scales. We employ ReLU 
activation for the “Gaps net” in our 
model, denoted by NQ-Net*. 
🔹Configuration

Number of quantiles K = 200

Sample size N=200million frames
Learning rate 5 × 10−5
Linear ϵ-greedy exploration strategy 
starting with ϵ = 1 at 0.5 million frames 
gradually decreasing to ϵ = 0.01 by 1 
million frames

Fig. 9. The advantage of the best-performing NQ-Net* model over NC-QR-DQN. 
The advan-tage (%) on the y-axis is defined as (ScoreNQ − ScoreNC )/ScoreNC , 
where ScoreNQ and ScoreNC denote the highest testing scores achieved by the 
trained NQ-Net* and NC-QR-DQNmodels, respectively.



Simulation Studies
📌Comparison Methods
🔹DQR: Deep quantile regression 
(Padilla et al., 2022). As benchmark: 
estimates quantiles using ReLU NN 
without non-crossing constraints. 
🔹DQR*: Extension of DQR with 
log(1 + exp(·)) activation for non-
crossing multiple quantile estimation.
🔹DQRP: Deep quantile regression 
process using rectified quadratic unit 
networks (Shen et al.,2024). Estimates 
the quantile process with a non-crossing 
penalty. Implemented with tuning 
parameter λ = log(n) and ξ ∼ Unif (0, 1).

🔹NC-QR-DQN: (Zhou et al., 2020) A 
non-crossing quantile network proposed 
for optimal policy learning in DRL.
🔹NQ-Net: The proposed method.

📌Training and Testing
🔹Training Data: Sample size N = 512 or 2048 with N/4 
validation data for early stopping in the training.
🔹Testing Data: Sample size 𝑇 = 10' 

🔹Architecture: Rectangular neural networks with the same 
architecture for all methods:
• hidden layers width [128, 128, 128] for univariate target 

• hidden layers width [256, 256, 256] for multivariate target 
🔹Optimization: Pytorch with Adam : 

• default   hyperparameters, learning rate 0.001. 

• Batch size 128, maximum epochs 1000
🔹Estimate: 

• Quantile curves at 19 different levels 𝜏(, … , 𝜏() =(0.05, 
0.1, . . . , 0.9, 0.95)
🔹Metric: Mean and standard deviation of L1 and L2 distances 
over R = 100replications.



Simulation Studies

Fig. 10. The simulated univariate models. The sample data with size N = 512 is 
depicted asgrey dots. Five conditional quantile curves at levels τ =0.05 (blue), 0.25 
(orange), 0.5 (green),0.75 (red), and 0.95 (purple) are depicted as solid curves.



Simulation Studies

Fig. 11. An instance of the fitted quantile curves under “Wave” model when N = 512. The training 
data is depicted as grey dots. The target (estimated) quantile curves are depicted as dashed(solid) 
curves at levels τ =0.05 (blue), 0.25 (orange), 0.5 (green), 0.75 (red), 0.95 (purple). The NQ-Net* is 
a variant of the NQ-Net, employing ReLU activation instead of ELU + 1.



Simulation Studies: “Wave” model



Simulation Studies: Multivariate Linear model



Simulation Studies: Univariate Linear model



Simulation Studies: Additive model
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Questions of  Interest

How to extend our Non-crossing Quantile Network to time-to-event analysis, 
while considering more advanced DL architectures? 

S. Huang, Z. Qu,  Z. Hua , G. Shen, Rui Tang, H. Zhu (2025). Non-Crossing Quantile 
Regression for Time-to-Event Analysis: A Deep Learning Framework with Theoretical 
Guarantees. In submission. 



Traditional methods: baseline 
covariates not incorporated -
Heterogeneity in patient 
population, prognostic factors

Traditional methods: 
model assumptions – 
AFT, CoxPH

Motivations and resolution

Motivations Goals

• With covariates incorporated
• Enhance prediction accuracy. 

Time-to-event 
prediction

• Distribution – free
• Flexible to non-linear patterns
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Related applications in clinical trials

identify prognostic 
factors, optimize 

treatment strategy identify patients sensitive 
to benefit from treatment, 
those at high risk of 
severe safety eventsclinical trial designs, 

predicting timeline for 
efficacy readout

Improve quality of life
Optimize resource



Deep censored quantile regression

Traditional quantile regression:

Under right censoring, the estimator 
#𝛽" can be obtained by minimizing 

the loss function:

%
#$%

&

𝜔# 𝜌"(log 𝑌# − 𝛽"'𝑋#)

Deep quantile regression:
Replace the linear functional by the 

output from the neural network log(0Q(
" ), 

and train by minimizing the new loss:

%
#$%

&

𝜔# 𝜌"(log 𝑌# − log(0Q(
(")))

𝜔! = 𝛿!/ %𝐺(𝑌!), %𝐺(𝑌!): Kaplan-Meier estimator of the censoring distribution; 
𝜌" 𝑢 : check function, 𝜌" 𝑢 = 𝑢 𝜏 − 𝐼 𝑢 ≤ 0
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Technical challenges: 
multiple quantile estimation and crossing

Non-crossing:            𝑄+
"# 𝑋 ≤ ⋯ ≤ 𝑄+

"$ 𝑋

Positive activation:  log 1 + exp(⋅) ; Base network, Gap networks; Cumsum

•Estimate a grid of M desired quantiles at a time

•Efficient and resource-saving
Sequential 
estimation

•Implicit restriction in quantile regression

•Positive activation function log(1 + exp(⋅))
Crossing issues
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TabTransformer

ØOur data: 
• - Each feature is a scalar.

• - The order of features does not matter

ØAttentions are performed on the features
• - Embed each scalar feature to a feature vector

• - Do attentions across different feature vectors

MLP

outputs
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KAN

• Kolmogorov-Arnold Network (KAN), proposed in May 2024.

• Kolmogorov-Arnold representation theorem

• Learnable functions instead of parameters

• Right figure: n=2, 2n+1=5

• Replace feed forward layer (MLP) in Transformer

𝑓 𝑥 = 𝑓 𝑥!, … , 𝑥" = &
#$!

%"&!

Φ#(&
'$!

"

𝜙#,'(𝑥'))



Model structures



Theoretical guarantees

Theorem 1: Let ℛ be the excess risk defined in (11). Then for any 𝑁 ≥ 1, and 
𝜂 > 0, with probability of not less than 1 − D

E 𝑒
FG − exp(−𝐻H/3𝑁),

ℛ "𝑓I = 𝐿 "𝑓I − inf
J∈ℱ

𝐿 𝑓

≤
𝐵 6 𝜂 + log𝒩(ℱI , || ⋅ ||M, 𝜖)

2 + 𝐷N + 2

𝐻OP 𝑁
+
8𝜖𝐿Q
𝐻OP



Real data distributions



Results - Simulation and real data

Censored Non-Crossing Quantile (CNQ) network
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Question of  Interest: Policy Evaluation with ride-sharing



Challenges

Dai, R., Wang, J., Zhou, F., Luo, S., Qin, Z., Shi, C., & Zhu, H. (2024). Causal PIE: Permutation 
Invariant Estimator for Off-policy Evaluation under Spatio-temporal Interferences. In submission. 

The interference effect occurs both spatially and 
temporally, thus violating SUTVA assumption. 

Key Challenge

Research Question
• Temporal interference effects are typically addressed 

through the Markov assumption and are commonly 
modeled using Reinforcement Learning methods.

• How to effectively model spatial interference effect?



Key Assumptions
Neighborhood interference assumption

For any 𝐴 and 𝐴′ and region 𝑖, 𝑌* 𝐴 = 𝑌* 𝐴′  
whenever 𝐴* = 𝐴*+ 	and 𝐴,(*) = 𝐴,(*)+  

Permutation invariant assumption
For any region 𝑖 and any permutation Π:Ν 𝑖 → Ν(𝑖)

𝔼[𝑌*(𝐴* , 𝑨, * , 𝑨, /* )|𝑋* , 𝑿, * ] 
=𝔼[𝑌*(𝐴* , 𝑨0" # , 𝑨, /* )|𝑋* , 𝑿0" # ] 

Permutation invariant mean outcome
𝔼 𝑌* 𝒂 𝑋* , 𝑿, * = 𝑓*(𝑋* , 𝑎* , 𝑋, * , 𝑎, * ) 

Neighborhood Interference Effect
Mean field Interference Effect

f(  ,mean(  ,  ,  ,  ,  ,  ))

f(  ,mean(  ,  ,  ,  ,  ,  ))

f(  ,mean(  ,  ,  ,  ,  ,  ))

Permutation Invariant Neighborhood 
Interference Effect

f(  ,  ,  ,  ,  ,  ,  )

f(  ,  ,  ,  ,  ,  ,  )

f(  ,  ,  ,  ,  ,  ,  )

Our permutation-invariant assumption enables more flexible 
modeling of interference effects.



PIE Structure and Estimators
Lemma 1: Assume the mean outcome function 𝑓* is 
permutation invariant. For any 𝜀 > 0, there exist 
functions 𝜓* and 𝜑* such that for any 𝑥, 𝑎, 𝒙, * , 𝒂, *

𝜓! 𝑥, 𝑎,𝑚"#$,! 𝒙& ! , 𝒂& ! − 𝑓! 𝑥, 𝑎, 𝒙& ! , 𝒂& ! ≤ 𝜀
where 

𝑚"#$,! 𝒙& ! , 𝒂& ! =
1
Ν 𝑖

6
'∈& !

𝜑!(𝒙' , 𝒂')

Value-based method:

Importance sampling method:

Doubly robust methods, along with their extensions to spatio-temporal variants. We use 
fitted Q-learning to construct the value-based method and use minimax learning for 
importance sampling method.



Theoretical Guarantees
1. Minimax Optimality

2. Faster Convergence rate

Theorem 1: Let 𝑁 be the number of neighbors, M	denote the dimension of each region and n being 
sample size. Under permutation invariant assumption and additional assumptions on smoothness and 
boundedness, PIE satisfies

∥ #𝑓 − 𝑓 ∥!% "& = 𝑂#(𝑛
$ %&
'()%&𝑙𝑜𝑔%𝑛)

Theorem 2: In a special case where 𝛽 = 1 with same assumptions, we have

 

∥ #𝑓 − 𝑓 ∥!% "& = 𝑂#( %'()' '( *

(!

%&
'()%& 	𝑛

$%&
'()%& 𝑙𝑜𝑔%𝑛)

Another theorem establishes the lower bound on the minimax estimation error for learning permutation invariant functions. 
We demonstrates that PIE achieves the minimax optimal convergence rate (up to logarithmic factors).

Theorem 2 demonstrates that PIE achieves a faster convergence rate—improved by a factor of (𝑁!/2+)
)*+

,+-)* —compared 
to general neural networks that do not exploit the permutation invariance structure of the target function.



Experimental Results
• We apply the proposed methods to a real-world ride-sharing dataset, to evaluate the 

effectiveness of a particular passenger-side subsidy policy. 
• We utilize a real-data-based simulator developed by Didi Chuxing to generate offline data 

and evaluate PIE and mean-field algorithm. 



Experimental Results

PIE consistently perform well across most scenarios while the mean-field method fails to effectively 
capture the complex spatial interference patterns present in real-world data.
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Question of  Interest

How to address the challenges of unstructured image data in the supervised 
learning framework? 

Shen, G. and Zhu, H.. (2025). Understanding Convolutional Neural Networks: 
Statistical Generative Models for Unstructured Image Data. In submission. 

While the manifold hypothesis provides a useful guiding intuition, its strict mathematical form is often 
too brittle for real-world, noisy, heterogeneous datasets. Modern work therefore moves toward looser 
notions—mixtures of manifolds, fractal supports, or purely learned latent distributions—that can 
better tolerate noise, intersections, and varying intrinsic dimensions.



Understanding CNNs: Statistical Generative Models for Image Data
ØTo understand CNN: learning theories through 

the lenses of complexity, approximation, and 
optimization (training dynamics). 

• Optimization: algorithms, such as SGD can 
effectively find global minima of the training 
objectives (Zhou & Feng, 2018; Allen-Zhu et al., 2019). 

• Studies on Complexity lead to generalization 
guarantees for learning tasks involving CNNs. 
and approximation (Lin & Zhang, 2019; Feng et al., 2021; Shen,2024; 
Petersen & Voigtlaender, 2020; Zhou, 2020a;b)

ØRevealing no significant advantage of CNNs 
over other FNNs on image data

• The limitation stems from insufficient calibration 
of the heterogeneous characteristics of image 
data, identifying the signals and noises, and 
understanding their interactions with CNNs 
during feature extraction.

Fig. 1. An example of a convolutional neural 
network(CNN) for classification, comprising a feature 
extraction stage followed by classification using fully 
connected layers. 



Understanding CNNs: Statistical Generative Models for Image Data

ØTo address these challenges, three critical questions arise:

Ø (Q1) How can we model image data statistically, particularly in differentiating between ’signals’ 
and ’noise’ for downstream tasks?

Ø (Q2) How can we understand the role of feature maps by using stacked convolutional and pooling 
layers that trans-form heterogeneous image data into relatively homogeneous feature representations?

Ø (Q3) How can we evaluate the learning efficiency of CNNs in vision tasks using our image data 
model and feature mapping approach?

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data



Statistical Generative Models (SGMs) of  Image Data
📌Statistical Generative Models (SGMs) of image data

🔹X: image data with domain Ω = 𝑍1×𝑍2
🔹𝑋345( , … , 𝑋345

6 : Random Objects in the image

🔹𝜖: Backgrounds, may correlate with objects

🔹⊕: Masked addition operation, overlaying objects 
🔹𝐽: Number of objects, 𝐽 ∼ 𝑃𝑜𝑠𝑠𝑖𝑜𝑛(Λ(Ω)) 

🔹𝜆(u): Intensity function, Λ Ω = ∫7 𝜆 𝑢 𝑑𝑢 

🔹𝑢5: Location of object j, 𝑢5 ∼ 𝑃8 = 𝜆(𝑢)/Λ(Ω)

💡Problem definition
Fig. 2. Sample images from the VOC2012 dataset. The top 
row displays original images, while the bottom row 
highlights the objects with the background shaded in gray.

• Flexibility and Adaptability
• Statistical Interpretability
• Enhanced Feature Prioritization

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data



Feature Mapping Approach (FMA) for Learning Tasks

📌Predict an attribute Y from image X
🔹Often modeled as 𝑌 = 𝑓∗(𝑋, 𝜖), where 𝑓∗	is the target 
function and 𝜖 is the noise. The efficiency of learning 
methods, especially FNNs, relies on intrinsic structures in 
X and 𝑓∗	and the adaptation of FNNs to these 
structure(Schmidt-Hieber, 2019; 2020; Jiao et al., 2023; Zhou & Huo,2024). 

🔹For image data, we redefine 𝑋	as 𝑋 = 𝑋345 ⊕ 𝜖	and 
express the relationship as 𝑌 = 𝑓∗(𝑋345)	where 𝑋345 
includes the objects of interest relevant to 𝑌 , and 𝜖 
encompasses irrelevant objects and noise.

🔹𝑌 = 𝑓∗(𝑋345)	assumes that X contains all necessary 
information to infer 𝑌 through 𝑋345, allowing estimators to 
achieve near-perfect performance. This aligns with the 
success of deep neural networks in vision tasks (Wang et al., 2017; 
Langer & Schmidt-Hieber, 2022).

🔹The model fundamentally differs from conventional 
regression models 𝑌 = 𝑓∗ 𝑋 + 𝜖. No estimator can 
perfectly predict 𝑌 , as 𝐸 𝑓 𝑋 − 𝑌 ! ≥ 𝜖!.	

🔹In CV, 𝑋345 	can be described using low-dimensional 
structures like edges and textures (Zhao et al., 2019; Zou et al., 2023). 
We assume 𝑋345 	encapsulates all relevant information for 
inferring 𝑌 via 𝑀∗	local patterns 𝐻(, … , 𝐻9∗ ∈ 0,1 :∗×:∗. 
Each local pattern is a 𝑘∗×𝑘∗	sub-image within the larger 
image domain Ω. 

🔹Using the widely adopted sliding window approach in 
CV, we define 𝜌 𝑋345 , 𝐻2 ∈ 𝑅 1/:∗<( ×(1/:∗<() to 
represent the feature map of 𝑋345 	with respect to 𝐻2.

🔹The target link 𝑓∗	for the relationship between Y and 
𝑋345 is characterized as

𝑌 = 𝐹∗(𝜌 𝑋345 , 𝐻( , … , 𝜌 𝑋345 , 𝐻9∗ )

where 𝐹∗	is a nonlinear mapping.

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data



Informative Metrics of  FMA

📌Object Size
🔹Quantifies the spatial extent of objects in an image, 
which is crucial for object recognition and various image 
processing tasks (Ghassemian & Landgrebe,1988; Bainbridge & Oliva, 2015). 

Structure (Schmidt-Hieber, 2019; 2020; Jiao et al., 2023; Zhou & Huo,2024). 

𝛽 =
|𝑚𝑎𝑠𝑘(𝑋345)|

|Ω	|

🔹Larger objects lead to proportionally larger 𝑘∗×𝑘∗ local 
patterns, which in turn reduce the dimensionality of the 
feature maps to (𝑛 − 𝑘∗+1)×(𝑚 − 𝑘∗+1).	This reduction 
facilitates learning the target function 𝐹∗ , enhancing both 
the efficiency and effectiveness of the learning process.

📌Number of Objects
🔹Quantifies scene composition and complexity

𝐽 ∼ 𝑃𝑜𝑠𝑠𝑖𝑜𝑛(Λ(Ω))
🔹Images with multiple objects provide stronger and robust 
signals in the feature map, enhancing the learning of 𝐹∗ in 
tasks such as object detection and segmentation (Lempitsky & 
Zisserman, 2010).

📌Spatial distribution of objects
🔹Captures their arrangement within an image, influencing 
tasks such as localization, segmentation, and scene 
understanding (Schauerte& Stiefelhagen, 2013; Andrianov et al., 2015). 

𝑆 𝜆 ≔ −y
=∈?

𝑝8 𝑢 log(𝑝8(𝑢))

🔹 S(λ) reaches its maximum for a uniform λ, indicating 
evenly distributed locations, and is minimized at 0 when 𝑝8 
concentrates at a single point for deterministic placement.

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data



Informative Metrics of  FMA

📌Signal-to-Noise Ratio (SNR)

🔹𝑆𝑁𝑅 𝑋,𝐻2 ≔ ‖A(B$%&,D')‖
‖A B,D' /A(B$%&,D')‖

🔹Noise in the feature maps 𝜌 𝑋, 𝐻2 − 𝜌(𝑋345 , 𝐻2), 
i.e., the difference between the feature maps derived 
from the image 𝑋 and the object 𝑋345.

🔹A larger SNR facilitates the learning of the 
downstream nonlinear map 𝐹∗ , leading to more 
accurate predictions, while a smaller SNR increases the 
difficulty in distinguishing object patterns from noise, 
reflecting greater learning challenges. SNR can be 
influenced by factors such as object size and count with 
larger objects and higher counts naturally in-crease the 
signal-to-noise ratio.

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data



Experiments on MNIST Dataset

📌CNN Configuration 

🔹For our simulations, we train 5-layer CNNs with a 
fixed architecture under various scenarios.
🔹 The architecture includes the following components: 

• a convolutional layer C(16, 3, 1, 1) with 16 filters of 
size 3 × 3, a stride of 1, and padding of 1;

• a non-overlapping max-pooling layer with a window 
size of 2 and a stride of 2; 

• another convolutional layer C(32, 3, 1, 1) with 32 
filters of size 3 × 3, a stride of 1, and padding of 1; 

• a second non-overlapping max-pooling layer with a 
window size of 2 and a stride of 2; 

• and a fully connected layer with an input dimension of 
32 × 7 × 7 and an output dimension of 10.

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data

📌Image Manipulation

🔹Resize the handwritten digits

🔹Duplicate the number of objects

🔹Change spatial distribution patterns for the objects



Experiments on MNIST Dataset

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data

Fig. 3. Performance of CNNs trained on modified MNIST datasets. 
Columns in the left figure present samples of original (β = 0.186) 
and modified datasets with different sizes of objects where β denotes 
theaverage size in the datasets.



Experiments on MNIST Dataset

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data

Fig. 4. Performance of CNNs trained on modified MNIST datasets. 
Columns in the left figure present samples of modified datasets with 
different numbers of objects J.



Experiments on MNIST Dataset

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data

Fig. 5. Performance of CNNs trained on modified MNIST datasets. 
Rows in the left figure present samples of modified datasets with 
different distributions of objects given different numbers of objects J.



Experiments on ImageNet Dataset

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data

📌Feature Visualization of 
  original image vs object segmentation

🔹Sample image from ImageNet. For each subfigure, the 
top row displays original image and the object 
segmentation by “SAM2" (Ravi et al., 2024). The rest rows 
visualize the feature maps calculated from the pretrained 
models at different layers (levels).



Experiments on ImageNet Dataset

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data

Fig. 6. The distribution of the object size of the subset of 17,489 
ImageNet images



Experiments on ImageNet Dataset

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data

Fig. 7. The accuracy and the averaged CE loss of the 
pretrained models on a subset of 17,489 ImageNet images.



Experiments on ImageNet Dataset

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data

Fig. 8. Regression Curves of Classification Accuracy vs. 
Object Size with 95% confidence bands for pretrained 
models on a subset of 17,489 ImageNet images.



Experiments on ImageNet Dataset

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data

Fig. 8. Regression Curves of Signal-to-Noise Ratio vs. 
Object Size for pretrained models on asubset of 17,489 
ImageNet images.



Experiments on ImageNet Dataset

Shen, Guohao and Zhu Hongtu (2025). Understanding Convolutional Neural Networks: Statistical Generative Modelsfor Unstructured Image Data

Fig. 9. Regression Curves of Cross Entropy Loss vs. Signal-
to-Noise Ratio for pretrained modelson a subset of 17,489 
ImageNet images.
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